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Abstract  In this paper, a new parametric relationship for population mode (Mo) has been established after involving an 
unknown constant ‘k’. The optimum value of ‘k’ is obtained by minimizing the MSE, upto terms of order n-1, of consistent 
estimator of mode � 𝑀�𝑜1�. Further, for bivariate populations, the ratio-type and product type estimators of Mo have been 
proposed. At optimum value of ‘k’, the expressions of biases and MSE’s of proposed estimators have been obtained and 
compared with each other. Also, the conditions for ratio-type and product-type estimators of Mo have been found out for 
which these estimators are more efficient than  𝑀�𝑜1. The authenticity of new parametric relation of mode has also been 
verified for some theoretical univariate and bivariate distributions. Empirically, the values of minimum MSE’s of proposed 
estimators have been obtained for some specific populations and also the authenticity of the relationship has been verified for 
these populations. 

Keywords  Estimation, Mode, Skewness, Coefficients of skewness, Univariate and bivariate normal distributions, 
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1. Introduction 
In sample surveys, researchers generally estimate the 

population mean as a measure of location. Many estimators 
like mean per unit estimator, usual ratio estimator, usual 
product estimator etc are available in literature to estimate 
population mean under SRS. These estimators are used 
because mean is generally more stable measure of location 
as compared to the others. But, in some situations, median 
and mode are also more important than the mean. Median is 
often used as the measure of location for skewed 
distribution because it is insensitive to extreme values. In 
this direction, Gross (1980) for the first time proposed 
sample median as a consistent estimator of population 
median. Further, Kuk and Mak (1989) suggested ratio 
estimator for population median. Moreover, a number of 
estimators for population median have been proposed by the 
researchers in last two decades.  

Mode is another measure of location which has been 
neglected so far in sample surveys. But in case of unimodal 
distribution, unique mode represents most likely value of 
the population. Due to this property, mode sometimes 
becomes more appropriate measure of location as compared 
to mean and median. It is especially useful in finding the 
most popular size in studies related to marketing, trade and  
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industry etc. For example, in the manufacturing of shoes or 
ready-made garments, one is interested to know which size 
of shoe or garment is most popular. Also, in the medical 
field, a medical researcher would normally be more 
interested in the most probable value of the heart rate than 
in the total of heart rate measurements divided by the 
number of measurements. 

In literature, very few researchers paid the attention for 
estimation of population mode, all using different 
techniques. Initially, Parzan (1962) estimated the mode first 
estimating the probability density function of the population 
and then mode. Bickel (2010) estimated the mode first 
transforming the data to the approximate normal and then 
estimated the mean which is equals to the mode for the 
transformed data. Chen et al. (2014) defined the sequence 
of (k, ρ)-modes where a point is (k, ρ)-mode iff its 
probability density is higher than all the points within 
distance k under a distance metric ρ. Recently Sedory and 
Singh (2014), first estimated the median using technique of 
Kuk and Mak (1989) then using the empirical relationship 
for mean, median and mode, defined the estimator of mode. 

In this paper, we develop the new simple and efficient 
technique of estimating the population mode by using well 
known measures of skewness (Karl Pearson and based upon 
central moments). Here we first establish the new 
parametric relationship for population mode involving 
population parameters and an unknown constant 𝑘 . By 
proposing the conventional consistent estimator (𝑀�𝑜1) of 
population mode 𝑀𝑜, we find the approximate value of 𝑘 
by minimizing the 𝑀𝑆𝐸�𝑀�𝑜1�, upto terms of order 𝑛−1. 
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Further, for the bivariate (𝑌,𝑋) −population, we have also 
proposed ratio-type (𝑀�𝑜2)  and product-type (𝑀�𝑜3) 
estimators of 𝑀𝑜. We have checked authenticity of the new 
parametric relationship for 𝑀𝑜 . Upto terms of order 𝑛−1, 
the optimum biases and minimum MSE's of the proposed 
estimators are obtained and compared with each other. 
Empirically, we have also checked the authenticity of the 
parametric relationship by showing that for the given 
population established new parametric relation is more 
accurate than the empirical relationship for mean, median 
and mode, and obtained the values of minimum MSE's of 
the proposed estimators. 

2. Notations and Expectations 
Suppose a simple random sample of size 𝑛 is drawn from 

a finite population of size 𝑁  without replacement and 
observations on both study variables 𝑦  and auxiliary 
variable 𝑥 are taken. Let the values of variable 𝑦 and 𝑥 be 
denoted by 𝑌𝑖  and 𝑋𝑖  respectively on the 𝑖𝑡ℎ  unit of the 
population 𝑖 = 1, 2, … ,𝑁  and the corresponding small 
letters 𝑦𝑖 and 𝑥𝑖 denote the values corresponding to the 𝑖𝑡ℎ 
unit in the sample.  

Taking, 

𝑌� =
1
𝑁
�𝑌𝑖

𝑁

𝑖=1

 ,     

𝑋� =
1
𝑁
�𝑋𝑖

𝑁

𝑖=1

    

𝑆𝑦2 =
1

𝑁 − 1
�(𝑌𝑖 − 𝑌�)2
𝑁

𝑖=1

, 

𝑆𝑥2 =
1

𝑁 − 1
�(𝑋𝑖 − 𝑋�)2
𝑁

𝑖=1

 

𝜇𝑟𝑠 =
1
𝑁
�(𝑌𝑖 − 𝑌�)𝑟
𝑁

𝑖=1

(𝑋𝑖 − 𝑋�)𝑠,   

  𝜆𝑟𝑠 =
𝜇𝑟𝑠

𝜇20
𝑟 2⁄ 𝜇02

𝑠 2⁄       

𝑚30 =
𝑛

(𝑛 − 1)(𝑛 − 2)�
(𝑦𝑖 − 𝑦�)3

𝑛

𝑖=1

, 

Obviously 
𝜆11 = 𝜌𝑥𝑦 = 𝜌(Correlation between 𝑥 and 𝑦),  
𝜆30 = 𝛽1𝑦 (Coefficient of skewness of 𝑦) 
𝜆40 = 𝛽2𝑦  (Coefficient of kurtosis of 𝑦). 
 
Defining, 

𝛿0 =
𝑦�
𝑌�
− 1, 𝛿 =

𝑠𝑦2

𝑆𝑦2
− 1 

𝜖 =
𝑥̅
𝑋�
− 1, 𝜂1 =

𝑚30

𝜇30
− 1 

For the sake of simplicity, assume that 𝑁 is large enough 
as compares to 𝑛 so that finite population correction (fpc) 
terms are ignored throughout. 

For the given SRSWOR, we have the following 
expectations, 

𝐸(𝛿0) = 𝐸(𝛿) = 𝐸(𝜖) = 𝐸(𝜂1) = 0 

𝐸(𝛿02) =
1
𝑛
𝐶𝑦2                       

𝐸(𝜖2) =
1
𝑛
𝐶𝑥2, 

𝐸(𝛿0𝜖) =
1
𝑛
𝐶𝑦𝑥                        

𝐸(𝜖𝛿) =
1
𝑛
𝜆21𝐶𝑥 

𝐸(𝛿0𝛿) =
1
𝑛
𝜆30𝐶𝑦 =

1
𝑛
𝛽1𝑦𝐶𝑦 

and up to terms of order 𝑛−1 

𝐸(𝛿2) =
1
𝑛

(𝜆40 − 1) =
1
𝑛
�𝛽2𝑦 − 1�,    

𝐸(𝜂12) =
1
𝑛

(𝜆60 − 6𝜆40 − 𝜆302 + 9)
𝜆302

 

             =
1
𝑛
�𝜆60 − 6𝛽2𝑦 − 𝛽1𝑦2 + 9�

𝛽1𝑦2
, 

𝐸(𝛿0𝜂1) =
1
𝑛

(𝜆40 − 3)
𝜆30

𝐶𝑦 =
1
𝑛
�𝛽2𝑦 − 3�

𝛽1𝑦
𝐶𝑦 ,          

𝐸(𝛿𝜂1) =
1
𝑛

(𝜆50 − 3𝜆30)
𝜆30

=
1
𝑛
�𝜆50 − 3𝛽1𝑦�

𝛽1𝑦
 ,            

𝐸(𝜖𝜂1) =
1
𝑛

(𝜆31 − 3𝜌)
𝜆30

𝐶𝑥 =
1
𝑛

(𝜆31 − 3𝜌)
𝛽1𝑦

𝐶𝑥  .       

3. Proposed Estimators and Their Biases 
and MSE’s  

Karl Pearson coefficient of skewness and coefficient of 
skewness based upon moments are respectively given by 

𝑆𝑘 = 𝑀𝑒𝑎𝑛−𝑀𝑜𝑑𝑒
𝑆.𝐷.

= 𝑌�−𝑀𝑜
𝑆𝑦

          (3.1) 

and  

𝛽1 = 𝜇30
𝜇20
3 2⁄ = 𝜇30

𝑆𝑦3
 .                (3.2) 

Without loss of generality, we can take 

𝑆𝑘 = 𝑘𝛽1 

where 𝑘 is unknown constant to be determined. 
Therefore, 

𝑌� − 𝑀𝑜

𝑆𝑦
= 𝑘𝛽1,  

That implies 

𝑀𝑜 = 𝑌� − 𝑘𝑆𝑦𝛽1 = 𝑌� − 𝑘 𝜇30
𝑆𝑦2

,         (3.3) 
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which is a new parametric functional relationship for 
population mode for any population. 

We here propose three estimators of 𝑀𝑜 under the three 
different situations as  

𝑀�𝑜1 = 𝑦� − 𝑘1
𝑚30
𝑠𝑦2

,                   (3.4) 

𝑀�𝑜2 = 𝑦� 𝑋
�

𝑥̅
− 𝑘2

𝑚30
𝑠𝑦2

𝑋�

𝑥̅
 ,            (3.5) 

 and  𝑀�𝑜3 = 𝑦� 𝑥̅
𝑋�
− 𝑘3

𝑚30
𝑠𝑦2

𝑥̅
𝑋�

 ,            (3.6) 

where 𝑘1, 𝑘2 and 𝑘3 are unknown constants, whose values 
are determined by minimizing the MSE’s of respective 
estimators 𝑀�𝑜1, 𝑀�𝑜2  and 𝑀�𝑜3 . Here the estimator 𝑀�𝑜1 
uses no information on auxiliary variable 𝑥 which is highly 
correlated with 𝑦, whereas 𝑀�𝑜2 and 𝑀�𝑜3 uses the known 
information of 𝑋� , which are of ratio and product type 
estimators respectively. 

To find the biases and MSE’s of 𝑀�𝑜1, 𝑀�𝑜2 and 𝑀�𝑜3, we 
expand them in terms of 𝜖′𝑠, 𝜂′𝑠, 𝛿′𝑠 and then taking the 
expectations as given in section 2, upto terms of order 𝑛−1, 
we get, 

𝐵�𝑀�𝑜1� =
𝑘1
𝑛
𝑌�𝐶𝑦�𝜆50 − 𝛽1𝑦�𝛽2𝑦 + 3�� ,      

𝐵�𝑀�𝑜2� =
1
𝑛
𝑌���𝐶𝑥2 − 𝐶𝑦𝑥�

− 𝑘2𝐶𝑦�𝛽1𝑦�𝐶𝑥2 + 𝛽2𝑦 + 3�+𝐵 − 𝜆50��, 

𝐵�𝑀�𝑜3� =
1
𝑛
𝑌��𝐶𝑦𝑥 − 𝑘3𝐶𝑦�𝛽1𝑦�𝛽2𝑦 + 3� − 𝐵 − 𝜆50��,   

and 

𝑀𝑆𝐸�𝑀�𝑜1� =
1
𝑛
𝑌�2𝐶𝑦2�1 + 𝑘12�𝜆60 − 6𝛽𝑦 + 𝛽0𝑦� − 2𝑘1𝛽𝑦�, 

𝑀𝑆𝐸�𝑀�𝑜2� =
1
𝑛
𝑌�2 ��𝐶𝑦2 + 𝐶𝑥2 − 2𝐶𝑦𝑥�

+ 𝑘22𝐶𝑦2 �𝜆60 − 6𝛽𝑦 + 𝛽0𝑦
+ 𝛽1𝑦�𝛽1𝑦𝐶𝑥2 + 2𝐵��

− 2𝑘2𝐶𝑦�𝛽𝑦𝐶𝑦 + 𝛽1𝑦�𝐶𝑥2 − 𝐶𝑦𝑥� + 𝐵��, 

𝑀𝑆𝐸�𝑀�𝑜3� =
1
𝑛
𝑌�2 ��𝐶𝑦2 + 𝐶𝑥2 + 2𝐶𝑦𝑥�

+ 𝑘32𝐶𝑦2 �𝜆60 − 6𝛽𝑦 + 𝛽0𝑦
+ 𝛽1𝑦�𝛽1𝑦𝐶𝑥2 − 2𝐵��

− 2𝑘3𝐶𝑦�𝛽𝑦𝐶𝑦 + 𝛽1𝑦�𝐶𝑥2 + 𝐶𝑦𝑥� − 𝐵��. 

The above MSE’s of 𝑀�𝑜1, 𝑀�𝑜2 and 𝑀�𝑜3, are minimised 
for  

𝑘1𝑜𝑝𝑡 =
𝛽𝑦

𝜆60 − 6𝛽𝑦 + 𝛽0𝑦
,   

𝑘2𝑜𝑝𝑡 =
𝛽𝑦𝐶𝑦 + 𝛽1𝑦�𝐶𝑥2 − 𝐶𝑦𝑥� + 𝐵

𝐶𝑦 �𝜆60 − 6𝛽𝑦 + 𝛽0𝑦 + 𝛽1𝑦�𝛽1𝑦𝐶𝑥2 + 2𝐵��
 , 

𝑘3𝑜𝑝𝑡 =
𝛽𝑦𝐶𝑦 + 𝛽1𝑦�𝐶𝑥2 + 𝐶𝑦𝑥� − 𝐵

𝐶𝑦 �𝜆60 − 6𝛽𝑦 + 𝛽0𝑦 + 𝛽1𝑦�𝛽1𝑦𝐶𝑥2 − 2𝐵��
 , 

and the Biases and minimum MSE’s are given as, 

𝐵𝑘1𝑜𝑝𝑡�𝑀�𝑜1� =
1
𝑛 𝑌
�𝐶𝑦

𝛽𝑦 �𝜆05 − 𝛽1𝑦�𝛽2𝑦 + 3��

�𝜆60 − 6𝛽𝑦 + 𝛽0𝑦�
 ,    

𝐵𝑘2𝑜𝑝𝑡�𝑀�𝑜2�

=
1
𝑛 𝑌
� ��𝐶𝑥2 − 𝐶𝑦𝑥�

−
�𝛽1𝑦�𝐶𝑥2 + 𝛽2𝑦 + 3� + 𝐵 − 𝜆50��𝛽𝑦𝐶𝑦 + 𝛽1𝑦�𝐶𝑥2 − 𝐶𝑦𝑥� + 𝐵�

�𝜆60 − 6𝛽𝑦 + 𝛽0𝑦 + 𝛽1𝑦�𝛽1𝑦𝐶𝑥2 + 2𝐵��
�, 

𝐵𝑘3𝑜𝑝𝑡�𝑀�𝑜3�

=
1
𝑛 𝑌
� �𝐶𝑦𝑥

−
�𝛽1𝑦�𝛽2𝑦 + 3� − 𝐵 − 𝜆50��𝛽𝑦𝐶𝑦 + 𝛽1𝑦�𝐶𝑥2 + 𝐶𝑦𝑥� − 𝐵�

�𝜆60 − 6𝛽𝑦 + 𝛽0𝑦 + 𝛽1𝑦�𝛽1𝑦𝐶𝑥2 − 2𝐵��
�  , 

and 

𝑀𝑆𝐸𝑚𝑖𝑛�𝑀�𝑜1� =
1
𝑛
𝑌�2𝐶𝑦2 �1 −

𝛽𝑦2

�𝜆60 − 6𝛽𝑦 + 𝛽0𝑦�
�,   

𝑀𝑆𝐸𝑚𝑖𝑛�𝑀�𝑜2�

=
1
𝑛
𝑌�2 ��𝐶𝑦2 + 𝐶𝑥2 − 2𝐶𝑦𝑥�

−
�𝛽𝑦𝐶𝑦 + 𝛽1𝑦�𝐶𝑥2 − 𝐶𝑦𝑥� + 𝐵�2

�𝜆60 − 6𝛽𝑦 + 𝛽0𝑦 + 𝛽1𝑦�𝛽1𝑦𝐶𝑥2 + 2𝐵��
�, 

𝑀𝑆𝐸𝑚𝑖𝑛�𝑀�𝑜3�

=
1
𝑛
𝑌�2 ��𝐶𝑦2 + 𝐶𝑥2 + 2𝐶𝑦𝑥�

−
�𝛽𝑦𝐶𝑦 + 𝛽1𝑦�𝐶𝑥2 + 𝐶𝑦𝑥� − 𝐵�2

�𝜆60 − 6𝛽𝑦 + 𝛽0𝑦 + 𝛽1𝑦�𝛽1𝑦𝐶𝑥2 − 2𝐵��
�. 

Where, 
𝛽𝑦 = 𝛽2𝑦 − 𝛽1𝑦2 − 3,                         

𝛽0𝑦 = 𝛽1𝑦2 𝛽2𝑦 − 2𝛽1𝑦𝜆50 − 9,            

𝐵 = 𝛽1𝑦𝜆21𝐶𝑥 − 𝜆31𝐶𝑥 + 3𝜌𝐶𝑥 .  
Srivastava and Jhajj (1983) have shown that if we replace 

the parameters involved in the optimum value of the 
unknown constant by their consistent estimators then upto 
terms of order 𝑛−1, the MSE remains the same. Using this, if 
we replace the parameters involved in 𝑘1𝑜𝑝𝑡,𝑘2𝑜𝑝𝑡  and 
𝑘3𝑜𝑝𝑡 by their consistent estimators then their estimators say 
become 𝑘�1𝑜𝑝𝑡 ,𝑘�2𝑜𝑝𝑡  and 𝑘�3𝑜𝑝𝑡  respectively. Then our 
estimators reduce to 

𝑀�𝑜1′ = 𝑦� − 𝑘�1𝑜𝑝𝑡
𝑚30

𝑠𝑦2
,       

𝑀�𝑜2′ = 𝑦�
𝑋�
𝑥̅
− 𝑘�2𝑜𝑝𝑡

𝑚30

𝑠𝑦2
𝑋�
𝑥̅

 , 
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and 

𝑀�𝑜3′ = 𝑦�
𝑥̅
𝑋�
− 𝑘�3𝑜𝑝𝑡

𝑚30

𝑠𝑦2
𝑥̅
𝑋�

 

Among the three estimators, the most efficient is 𝑀�𝑜2 iff 

𝜌 𝐶𝑦
𝐶𝑥

>

1
2

+ 1
2𝐶𝑥2

� 𝛽𝑦2𝐶𝑦2

�𝜆60−6𝛽𝑦+𝛽0𝑦�
− �𝛽𝑦𝐶𝑦+𝛽1𝑦�𝐶𝑥2+𝐶𝑦𝑥�−𝐵�

2

�𝜆60−6𝛽𝑦+𝛽0𝑦+𝛽1𝑦�𝛽1𝑦𝐶𝑥2−2𝐵��
� (3.7) 

𝑴� 𝒐𝟑 iff 

𝜌 𝐶𝑦
𝐶𝑥

<

−1
2
− 1

2𝐶𝑥2
� 𝛽𝑦2𝐶𝑦2

�𝜆60−6𝛽𝑦+𝛽0𝑦�
− �𝛽𝑦𝐶𝑦+𝛽1𝑦�𝐶𝑥2+𝐶𝑦𝑥�−𝐵�

2

�𝜆60−6𝛽𝑦+𝛽0𝑦+𝛽1𝑦�𝛽1𝑦𝐶𝑥2−2𝐵��
�(3.8) 

𝑴� 𝒐𝟏 iff 

−1
2
− 1

2𝐶𝑥2
� 𝛽𝑦2𝐶𝑦2

�𝜆60−6𝛽𝑦+𝛽0𝑦�
− �𝛽𝑦𝐶𝑦+𝛽1𝑦�𝐶𝑥2+𝐶𝑦𝑥�−𝐵�

2

�𝜆60−6𝛽𝑦+𝛽0𝑦+𝛽1𝑦�𝛽1𝑦𝐶𝑥2−2𝐵��
�  

<  𝜌 𝐶𝑦
𝐶𝑥

   

< 1
2

+ 1
2𝐶𝑥2

� 𝛽𝑦2𝐶𝑦2

�𝜆60−6𝛽𝑦+𝛽0𝑦�
− �𝛽𝑦𝐶𝑦+𝛽1𝑦�𝐶𝑥2−𝐶𝑦𝑥�+𝐵�

2

�𝜆60−6𝛽𝑦+𝛽0𝑦+𝛽1𝑦�𝛽1𝑦𝐶𝑥2+2𝐵��
� 

(3.9) 
Above conditions (3.7), (3.8) and (3.9) represent the 

optimum situations for 𝑀�𝑜2, 𝑀�𝑜3 and 𝑀�𝑜1 respectively. 

4. Authenticity of Parametric 
Functional Relationship for 𝑴𝒐 

The new parametric functional relationship for 𝑀𝑜 is 

𝑀𝑜 = 𝑌� − 𝑘 𝜇30
𝑆𝑦2

,              (4.1) 

where 𝑘  is an unknown constant whose value is to be 
determined for the given population.  

If 𝑘 is optimised by minimising the MSE of conventional 
consistent estimator  𝑀�𝑜1 = 𝑦� − 𝑘1

𝑚30
𝑠𝑦2

,  (up to the order 

𝑛−1), the above functional relationship reduced to 

𝑀𝑜1 = 𝑌� − 𝑘1𝑜𝑝𝑡
𝜇30
𝑆𝑦2

.   

As in sampling theory, the nature of the population under 
study is not known. To see the authenticity of approximate 
parametric relation 𝑀𝑜1, we have to consider the population 
of particular nature. The approximation is due to the fact that 
we are using the optimum value 𝑘1𝑜𝑝𝑡 of unknown constant 
𝑘, not the exact value. When the population is univariate, one 
can check the relationship for 𝑀𝑜1  easily. But, if the 
population is (𝑌,𝑋)-bivariate, then it is very difficult check 
this relationship because for this we need the bivariate 
moments and marginal distributions of 𝑋 and 𝑌. No doubt, 
this relationship can be checked by researchers in inference. 
So this problem is open for researchers involved in statistical 
Inference. But in sampling theory, for the known value of 𝑋� 
we can increase the precision of the estimators 𝑀�𝑜2  and 
𝑀�𝑜3 . Following particular populations are considered to 

check the authenticity of 𝑀𝑜1: 
(i) Population is Normal: 

(a) Let 𝑌~𝑁(𝜇𝑦, 𝜎𝑦2), then we know 𝛽1𝑦 = 𝜇30 = 𝜇50 =
0, 𝜆60 = 15 and 𝛽2𝑦 = 3. Using these values, we 
get, 

𝑀𝑜1 = 𝜇𝑦 = 𝑌� = 𝑀𝑜. 
Because 𝛽𝑦 = 𝛽2𝑦 − 𝛽1𝑦2 − 3 = 0 in numerator of 𝑘1𝑜𝑝𝑡 

and also,  

𝑀𝑆𝐸�𝑀�𝑜1� =
1
𝑛
𝑆𝑦2 

which is variance of 𝑦� when fpc are ignored. So 𝑀𝑜1  is 
verified for univariate normal population. 

(b) Let (𝑋,𝑌)~𝑁(𝜇𝑦,𝜇𝑥,𝜎𝑦2,𝜎𝑥2,𝜌) , then we know  
𝜆60 = 15 , 𝜆40 = 3 , 𝜆31 = 3𝜌 , 𝜆22 = 1 + 2𝜌2 , 
𝜆𝑟,𝑠 = 0  if 𝑟 + 𝑠  is odd. Also, 𝑋~𝑁(𝜇𝑥, 𝜎𝑥2)  and 
𝑌~𝑁(𝜇𝑦, 𝜎𝑦2). Using these values, we get, 

𝑀𝑜1 = 𝜇𝑦 = 𝑌� = 𝑀𝑜. 
The expressions for MSE’s are 

𝑀𝑆𝐸�𝑀�𝑜2� = 𝑀𝑆𝐸�𝑌��𝑅� =
1
𝑛
𝑌�2�𝐶𝑦2 + 𝐶𝑥2 − 2𝐶𝑦𝑥� 

and  

𝑀𝑆𝐸�𝑀�𝑜3� = 𝑀𝑆𝐸�𝑌��𝑃� =
1
𝑛
𝑌�2�𝐶𝑦2 + 𝐶𝑥2 + 2𝐶𝑦𝑥� 

So, 𝑀𝑜1 is verified for bivariate normal population and 
upto terms of order  𝑛−1, we have 

𝑀𝑆𝐸�𝑀�𝑜2� = 𝑀𝑆𝐸�𝑌��𝑅� 

and  

𝑀𝑆𝐸�𝑀�𝑜3� = 𝑀𝑆𝐸�𝑌��𝑃� 

So the relation 𝑀𝑜1 = 𝑌� − 𝑘1𝑜𝑝𝑡
𝜇03
𝑆𝑦2

 is true for univariate 

as well as for bivariate normal populations and in general 
true for all symmetrical populations. 
(ii) Population is Poisson:  

Let 𝑌~𝑃(𝜆) . We then have 𝜇10′ = 𝜇20 = 𝜇30 = 𝜆 , 
𝜇40 = 3𝜆2 + 𝜆, 𝛽1𝑦 = 1

√𝜆
, so Poisson distribution is always 

positively skewed, 𝛽2𝑦 = 3 + 1
√𝜆

. Using these values, we get 
𝛽𝑦 = 𝛽2𝑦 − 𝛽1𝑦2 − 3 = 0, so 𝑘1𝑜𝑝𝑡 = 0 and 𝑀𝑜1 = 𝜆 = 𝑀𝑜 
if 𝜆 is not integer and 𝑀𝑆𝐸�𝑀�𝑜1� = 1

𝑛
𝑆𝑦2. 

Hence this relation is also verified for positively skewed 
distributions. 
(iii) Population is 𝝌𝟐:  

Let 𝑌~𝜒𝑛2 , then we have 𝜇10′ = 𝑛 , 𝜇20 = 2𝑛 ,      
𝜇30 = 8𝑛, 𝜇40 = 48 + 12𝑛𝟐, 𝛽2𝑦 = 12

𝑛
+ 3, 𝜆50 = 8(5𝑛+12)

𝑛√2𝑛
, 

𝜆60 = 5 (12𝑛𝟐+253𝑛+384)
4𝑛𝟐

, 𝛽1𝑦2 = 8
𝑛
 (positively skewed). 

(iv) Particular cases: 
(a) When 𝑛 = 16  then mean 𝑌� = 16 , 𝑀𝑜 = 14 , and 

𝑀𝑜1 = 15.9188. 
(b) When 𝑛 = 10  then mean 𝑌� = 10 , 𝑀𝑜 = 8 , and 
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𝑀𝑜1 = 9.9166. 
Hence we conclude that the new functional relationship 

for 𝑀𝑜  is always true for symmetric populations whether 
univariate or bivariate. In general, it is approximately true for 
all populations, whereas for the skewed distribution, it is 
approximately true. The approximation is due to the fact that 
we use the optimum value of 𝑘 not the exact one. 

5. Numerical Illustrations 
To illustrate the result numerically, we have made 

computations for 10 populations taken from literature by 

using Microsoft Excel 2010. 
The source of the populations, the nature of the variables, 

the values of 𝑌� , 𝑘1𝑜𝑝𝑡 , 𝜇20 , 𝛽1𝑦  and 𝜌𝑥𝑦  are listed in 
Table 1.  

In Table 2, we have given the true value of population 
Mode (𝑀𝑜), the values of the population mode obtained by 
using the new parametric functional relationship of 𝑀𝑜and 
values of population mode 𝑀𝑜𝐸  obtained by using the 
empirical relationship ‘Mode =3 Median- 2 mean’ for 
different populations. 

The efficiencies of proposed estimators are given in  
Table 3. 

Table 1.  Description of populations 

Sr. No. Source 𝒚 𝒙 𝒀� 𝒌𝟏𝒐𝒑𝒕 𝝁𝟐𝟎 𝜷𝟏𝒚 𝝆𝒙𝒚 

1 
Murthy (1967) 

P.91 (1-35) 
Cultivated area (acres) Holding size (acres) 2.3650 -0.2839 1.5818 0.9119 0.3685 

2 
Chakravarti et al.(1967) 

P-207 
Weight (kg) of female Height (cm) of 

female 28.5313 -0.4080 1.8109 0.1099 0.2306 

3 
Murthy (1967) 

P.398 
No. of absentees No. of workers 9.6512 0.0670 42.1341 1.5575 0.6608 

4 
Murthy (1967) 

P.399 
Area under wheat in 

1964 
Cultivated area in 

1961 199.441 -0.1442 21900.8936 1.1295 0.9043 

5 
Chakravarti et al.(1967) 

P-183 

Length (cm) 
measured by 1st 

person 

Length (cm) 
measured by 2nd 

person 
4.9737 -.02875 0.1346 -0.0546 0.9317 

6 
Chakravarti et al.(1967) 

P-207 
Weight 

(kg) of male 
Height 

(cm) of male 
29.2625 -0.0841 6.5836 0.3670 0.7709 

7 
Chakravarti et al.(1967) 

P-185 (1-35) 
Weight (lb) of 

Kayastha males 
Stature (cm) of 
Kayastha males 82.2000 -0.4975 191.7029 0.0439 0.8578 

8 
Chakravarti et al.(1967) 

P-185 (1-76) 
Weight (lb) of 

Kayastha males 
Stature (cm) of 
Kayastha males 89.4211 0.0503 278.4806 0.6068 0.4361 

9 
Maddala 

p-316 
Consumption per 
capital of Lamb 

Deflated prices of 
Lamb 4.5188 -0.1696 0.2103 -0.6578 -0.7517 

10 http://content.hccfl.edu 
highway fuel 

efficiency of vehicles 
(in miles) 

weight of vehicles  
(in 1000 lbs.) 30.6154 -0.5950 15.6213 0.0549 -0.8978 

Table 2.  Values of population mode (𝑀𝑜), values obtained from new parametric relationship 𝑀𝑜1 and empirical relationship 𝑀𝑜𝐸 

Pop. No. 𝑴𝒐 𝑴𝒐𝟏 𝑴𝒐𝑬 

1 2.7000 2.6906 1.1950 

2 27.8000 28.5916 28.4375 

3 9.0000 8.9739 4.6977 

4 278.0000 223.5494 28.6176 

5 4.8500 4.9679 4.9026 

6 30.6000 29.3416 29.0750 

7 70.0000 82.5022 81.6000 

8 88.0000 88.9114 85.1579 

9 5.1000 4.4676 4.7625 

10 30.0000 30.7444 28.7692 
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Table 3.  MSE’s of 𝑦�, 𝑀�𝑜1, 𝑀�𝑜2, 𝑀�𝑜3, 𝑌��𝑅 and 𝑌��𝑃 up to terms of 𝑛−1 

  𝟏 𝒏 × 𝑴𝑺𝑬 𝒐𝒇 ⁄      

Pop. No. 𝒚� 𝑴� 𝒐𝟏 𝑴� 𝒐𝟐 𝑴� 𝒐𝟑 𝒀��𝑹 𝒀��𝑷 

1 1.5818 1.2908 5.2902 14.1623 - - 

2 1.8109 1.2534 1.7332 2.2410 - - 

3 42.1341 38.9929 22.4016 84.6724 23.745 - 

4 21900.9 20163.19 4081.67 66594.1 4286.4 - 

5 0.1346 0.1085 0.0201 0.4480 0.0201 - 

6 6.5836 6.4593 3.8957 10.4341 3.9590 - 

7 191.702 102.2873 58.5715 172.635 105.52 - 

8 278.480 263.7385 220.986 532.868 237.22 - 

9 0.2103 0.1926 0.6273 0.1022 - 0.102 

10 15.6213 6.7198 39.3146 6.1189 - 6.764 

 

 
 

From Table 2, we observe that the values obtained from 
the new parametric functional relationship for mode i.e. 
𝑀𝑜1 = 𝑌� − 𝑘1𝑜𝑝𝑡

𝜇03
𝑆𝑦2

, are close to the true value of the 

population mode (𝑀𝑜) , as compared to the values of 
population mode obtained by using the empirical 
relationship for it. The small amount of errors (𝑀𝑜 −𝑀𝑜1 ) 

is due to the fact that we are using the optimum value of 𝑘 
not the exact value. So, empirically, this relation is verified. 

From Table 3, at the end, we observe that in the sampling 
theory, for the bivariate population, the known value of 𝑋�, 
increases the accuracy of the estimators of population mode 
(𝑀𝑜). We note that the MSE’s of all 𝑀�01, 𝑀�02 and 𝑀�03 are 
less than 𝑉(𝑦�), at the same time MSE’s of 𝑀�02 and 𝑀�03 are 
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less than 𝑉(𝑌��𝑅) and 𝑉(𝑌��𝑃) respectively. When the conditions 
(3.7) and (3.8) are satisfied then 𝑀�𝑜2  and 𝑀�𝑜3  are more 
efficient than 𝑀�𝑜1  respectively, otherwise 𝑀�𝑜1  is more 
efficient than the others. 

6. Conclusions 

The empirical study shows that the new parametric 
relationship for population mode is more beneficial for 
estimating population mode than the empirical relationship 
between mean, median and mode. Also, the values of MSEs 
of the proposed estimators for mode are less than the values 
of MSEs of mean per unit estimator of population mean. It 
means that the proposed estimators of population mode are 
more stable than the mean per unit estimator of population 
mean. Further, the conditions have been found out where 
ratio-type and product-type estimators of population mode 
are more efficient than 𝑀�𝑜1 . Also, the new parametric 
relationship for population mode provides a new way to 
estimate population mode for further study. 
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