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Abstract  Time and money can be saved by measuring only relevant predictors. Measuring relevant predictors also 
ensures a noise free estimation of parameters and preserves some degrees of freedom for a given predictive model. By 
comparing the performance of SCAD, LASSO and H-Likelihood, this study seeks to select among access to credit, training, 
study tour, demonstrative practicals, networking events, post-harvest equipments, size of plot cultivated and number of 
farmers; variables (fixed and interaction terms) that significantly influences crop yield in the three Northern regions of Ghana. 
Our simulation as well as real life results gives evidence to the fact that H-Likelihood method of penalized variable selection 
performs best followed by SCAD, with LASSO coming last. It does both selection of significant variables and estimation of 
their coefficients simultaneously with the least penalize cross-validated errors compared to the SCAD and the LASSO. The 
study therefore recommends that deliberate efforts be put into strengthening the Agricultural support systems as a form of 
strategy for increasing crop production in Northern Ghana. 
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1. Introduction 
The rate of food production in many parts of sub-Saharan 

Africa has not kept pace with the rate of population growth. 
Whereas the estimates of population growth rate increase at 
about 3 per cent annually, that of food production increases 
by only 2 per cent (Rosegrant et al., 2001). The sub-region's 
per capita deficit in grains and cereals according to 
Rosegrant et al., (2001) is one of the highest in the world. 
Way back in 1967, the sub-region's cereal imports was 1.5 
million tons. However, just within thirty years down the 
way, this figure increased to 12 million tons in 1997, and 
projections have it that the sub-region will require about 27 
million tons of cereal imports to satisfy demand by 2020 
(Rosegrant et al., 2001). In the long run, importation may 
not be economically feasible to ameliorate food shortages. 
Thus, there is a need to increase domestic production to 
guarantee food security. 

Ghana is still recognized worldwide as an 
agriculture-based economy. Agriculture has been the anchor  
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of Ghana’s economy throughout post-independence history 
(McKay and Aryeetey, 2004). While policy and political 
instability had induced the fall of per capita GDP growth 
until 1980s, the agricultural sector had been less affected due 
to less interventions by the government compared to the 
non-agricultural sector and the fact that its growth is mainly 
led by smallholder farmers for subsistence purposes. Beyond 
1992 when Ghana gained the forth republican political 
stability, there has been a rapid growth in the nonagricultural 
sectors; expanding by an average rate of 5.5 percent annually, 
compared to 5.2 percent for the entire economy (Bogetic   
et al., 2007). 

The analysis presented in this paper suggests that a system 
of support services; Access to credit facility, Training, Study 
tour, Demonstrative practical, Networking events and 
Post-harvest Equipments, plays an important role in 
determining crop yields even though their individual and 
interaction effects on yield is not uniform across farmer base 
organizations. This research focuses primarily on the 
production of Maize and Soy beans in northern region of 
Ghana where there exists considerable farming activity. 
Maize and Soy beans are the very much cultivated in these 
parts of the country due to their vegetation which supports 
the growth of grains and cereals. Beyond the numbers and 
descriptive statistics on yield of such crops, this study tries to 
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bring out variables that significantly contribute to yield. We 
seek to select among access to credit, training, study tour, 
demonstrative practicals, networking events, post-harvest 
equipments, size of plot cultivated and number of farmers; 
variables (fixed and interaction terms) that significantly 
influences crop yield in the three Northern regions of Ghana. 

2. Variable Selection 
Variable selection is aims at choosing the “optimum” 

subset of predictors. If a model is to be used for prediction, 
time and/or money can be saved by measuring only 
necessary predictors. Redundant predictors will add noise to 
the estimation of other quantities of interest and also lead to 
loss of some degrees of freedom. Choosing which predictors 
amongst many potential ones to be included in a model is one 
of the central challenges in regression analysis. Traditionally, 
stepwise selection and subset selection are the main means of 
variable selection for many years. Unfortunately, these 
methods are unstable and ignores the stochastic errors 
projected by the selection process. 

Many techniques, including ridge regression, least 
absolute shrinkage and selection operator (LASSO) 
(Tibshirani 1996), smoothly clipped absolute deviation 
(SCAD) (Fan and Li 2001), elastic net (EN) (Zou and Hastie 
2005), and adaptive lasso (A-LASSO) (Zou 2006) have been 
projected to select variables and estimate their regression 
coefficients simultaneously. All these techniques have 
common advantages over the traditional selection methods; 
they are computationally simpler, and the derived distributed 
estimators are stable, and they enhance higher prediction 
accuracies. These techniques can be cast in the frame of 
penalized least squares and likelihood. The central benefit of 
those techniques is that they choose vital variables and 
estimate their regression coefficients at the same time. In this 
paper, the H-likelihood (Lee and Oh, 2009) is projected for 
its special ability to produce penalty functions for variable 
selection, allow an oracle variable selection and at the same 
time improve estimation power.  

In Agricultural and particularly crop yield analysis, 
variable selection for decision making in is mostly guided by 
expert opinion. Very few studies have tried to statistically 
evaluate these methods in decision making, or to indicate 
how they might be made better. Variable selection is 
especially central in the interpretation of Statistical models, 
particularly, when the actual fundamental model has a 
distributed representation. Identifying null predictors 
improves the prediction performances of the fitted model. 
Notwithstanding, traditional variable selection techniques 
have two important challenges. First, when the number of 
predictors 𝒅  is large, it is computationally infeasible to 
perform subset selection. Secondly, subset selection is 
extremely unreliable due to its inherent discreteness 
(Breiman, 1996; Fan and Li, 2001). 

To overcome these difficulties, several other penalties 
have been proposed. The L2-penalty yields ridge regression 

estimation, but it does not perform variable selection. With 
the L1-penalty, specifically, the penalized least squares (PLS) 
estimator becomes the least absolute shrinkage and selection 
operator (LASSO), (Tibshirani, 1996). LASSO is a common 
method for simultaneous estimation and variable selection, 
ensuring high prediction accuracy, and enabling the 
discovery of relevant predictive variables. Donoho and 
Johnstone (1994) selected significant wavelet bases by 
thresholding based on an L1-penalty. Prediction accuracy can 
sometimes be improved by shrinking (Efron and Morris, 
1975) or setting some coefficients to zero by thresholding 
(Donoho and Johnston, 1994). 

LASSO has been criticized on the grounds that a single 
parameter λ is used for both variable selection and shrinkage. 
It results in choosing a model with too many variables to 
forestall over shrinkage of the regression coefficients 
(Radchenko and James, 2008); otherwise, regression 
coefficients of the chosen variables are often over shrunken. 
To surmount this challenge, Fan and Li (2001) proposed a 
variable selection method based on a non-concave penalized 
likelihood approach called the smoothly clipped absolute 
deviation (SCAD) penalty. These methods are distinct from 
traditional techniques of variable selection in that they 
remove insignificant variables by estimating their 
coefficients as 0.  

Consequently, their approaches simultaneously select 
significant variables and estimate regression coefficients. 
Recent related studies include [Fan and Li 2006, Leng et.al, 
2006, Zou and Li, 2008]. More recently, Zou (2006) showed 
that LASSO does not satisfy Fan and Li’s (2001) oracle 
property, and proposed the adaptive LASSO. We 
demonstrate how the h-likelihood methods overcome such 
difficulties to allow an oracle variable selection and at the 
same time improve estimation power. 

3. Methods 
The idea of penalization was initially introduced in the 

context of solving integral equation numerically by 
Tikhonov (1943). As is well known, if f ∈ L2(ℝ) and K(x, y) 
is a smooth kernel, the range of the operator A, R(A), A: L2(ℝ) 
→ L2(ℝ) with (A f)(y) ≡ ∫ K(x, y) f(x)dx is dense in L2(ℝ) 
but not onto. Hence, the inverse A−1 is ill-posed. The solution 
to the equation 

A f = g                      (1) 
is difficult to evaluate since approximations to g easily lie 
beyond R(A). Tikhonov’s solution was to replace (1) by the 
minimization of 

‖𝐴𝑓 −  𝑔‖2 + γW(f) 
where the Tikhonov’s factor γ > 0 is a regularization 
parameter and W(f) is a smoothness penalty such as 
∫[𝑓′(𝑥)]2dx. Numerical (finite dimensional) approximations 
to this problem are more stable. Note that unless γ = 0, the 
solution will not satisfy (1). 

Generally, regularization is the class of methods required 
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to develop the maximum likelihood to give valid answers in 
volatile situations. There is a great amount of work in 
statistics relating to regularization in a broad scope of 
problems. A thorough survey is beyond the scope of this 
paper. The central characteristic of most recent data has to do 
with both size and complexity. The size may allow us to 
non-parametrically estimate quantities which are ‘unstable’ 
and ‘discontinuous’ rudimentary functions of the 
distributions of the data, with the density being a typical 
instance. Complexity of the data, which usually relates to 
high dimensionality of observations, makes us attempt more 
and more complex models to accommodate the data. The 
fitting of models with a large number of parameters is also 
inherently unstable (Breiman, 1996). Both of these features, 
compel us to regularize in order to get sensible procedures. 
For recent discussions of these issues from different aspects, 
see Donoho (2000) and Fan and Li (2006). We will consider 
and relate the LASSO (Tibshirani, 1996), SCAD (Fan and Li, 
2001) and H-Likelihood (Lee and Nelder, 2009). 

3.1. Least Absolute Shrinkage and Selection Operator 
(LASSO) 

We consider the setting where we have observed data  
(𝑦1, 𝑥1),…, (𝑦𝑛, 𝑥𝑛) with each 𝑦𝑖 a realization of a scalar 
random variable Yi, and each xi =(𝑥𝑖1, … , 𝑥𝑖𝑝)𝑇 a p-vector of 
explanatory variables. Let X be a matrix with ith row given 
by 𝑥𝑖𝑇. Without loss of generality, we shall require that the 
columns of X are centred. We assume that 

Yi = µ + (Xβ) i + εi,                (2) 
where each εi is i.i.d N(0, 𝜎2). In the classical linear model, 
we would assume X has full column rank, and so p < n. The 
tuning parameter λ controls the sparsity of the estimate, with 
large values of λ resulting in estimates with many 
components set to 0. Unfortunately, this optimization 
problem is hard, and to the best of our knowledge, it is 
computationally intractable for p > 50. 

The Lasso (Tibshirani, 1996) solves the related problem: 

�𝜇,� 𝛽̂(λ)� =  𝑎𝑟𝑔𝑚𝑖𝑛𝑚,𝑏{ 1
2𝑛

 ‖𝑌 − 𝑚 − 𝑋𝑏‖2 + λ‖𝑏‖1} (3) 

The non-differentiability of the 𝑙1 norm at 0 ensures that 
the resulting estimator is sparse, and its convexity makes the 
overall optimization problem convex. There exist very 
efficient algorithms for solving this problem, even when p > 
105 (see for example the R package glmnet). 

3.2. The Smoothly Clipped Absolute Deviation (SCAD) 

We again analyze the setting where we have (Xi , Yi), i = 
1, … , n, as n observations satisfying 

Yi = β0 + 𝑋𝑖′β + εi, i = 1, … , n             (4) 
where Yi ∈ R is a response variable, Xi is a pn × 1 covariates 
vector and εi has mean 0 and variance 𝜎2 . Here the 
superscripts are used to make it explicit that both the 
covariates and parameters may change with n. For simplicity, 
we assume β0 = 0. In sparse models. the pn covariates can be 
classified into two categories: the important ones whose 
corresponding coefficients are non-zero and the trivial ones 

whose coefficients are zero. For notational convenience, we 
write  

β = (𝛽1′ , 𝛽2′)′                  (5) 
where 𝛽1′  = (β1, … , βkn) and 𝛽2′  = (0, . . . , 0). Here 
𝑘𝑛 (≤  𝑝𝑛)  is the number of non-trivial covariates. Let 
𝑚𝑛  =  𝑝𝑛 − 𝑘𝑛 be the number of zero coefficients. Let Y = 
(𝑌1, … , 𝑌n)′ and let X = (Xij, 1 ≤  𝑖 ≤  𝑛, 1 ≤  𝑗 ≤  𝑝𝑛) be 
the 𝑛 × 𝑝𝑛 design matrix. According to the partition of β, 
write X = (X1, X2), where X1 and X2 and 𝑛 × 𝑘𝑛  and 
𝑛 × 𝑚𝑛 matrices, respectively. Given a > 2 and λ > 0, the 
SCAD penalty at θ is  

pλ(θ; a) = 

⎩
⎪
⎨

⎪
⎧ 𝜆|𝜃|,                             |𝜃| ≤ 𝜆,

− 𝜃2−2𝑎𝜆|𝜃|+𝜆2

[2(𝑎−1)]
,                     𝜆 < |𝜃| ≤ 𝑎𝜆,

(𝑎+1)𝜆2

2
,                           |𝜃| > 𝑎𝜆 

�  (6) 

More insight into it can be gained through its first 
derivative: 
𝑝′λ(θ; a) = 

�
𝑠𝑔𝑛(𝜃)𝜆,                                                 |𝜃| ≤ 𝜆,

𝑠𝑔𝑛(𝜃)(𝑎𝜆 − |𝜃|)/(𝑎 − 1),                  𝜆 < |𝜃| ≤ 𝑎𝜆,
0,                                                                       |𝜃| > 𝑎𝜆 

�   (7) 

The SCAD penalty is continuously differentiable on (−∞, 
0) ∪ (0, ∞), but not differentiable at 0. Its derivative vanishes 
outside [−aλ, aλ]. Consequently, SCAD penalized regression 
can produce distributed solutions and unbiased estimates for 
large coefficients. More in dept analysis of this penalty can 
be found in Fan and Li (2001). The penalized least squares 
objective function for estimating β with the SCAD penalty is 

𝑄𝑛(b;𝜆𝑛, 𝑎) =‖𝑌 − 𝑋𝑏‖2 + 𝑛∑ 𝑝𝜆𝑛(𝑏𝑗; 𝑎)𝑃𝑛
𝑗=1       (8) 

where ‖. ‖ is the L2 norm. Given penalty parameters λn and a, 
the LS-SCAD estimator of β is 

𝛽̂n ≡ 𝛽̂(λn ; a) = arg min Qn (b; λn , a)     (9) 

We write 𝛽̂n =(𝛽1𝑛′ , 𝛽2𝑛′   )′ the way we partition β into β1 
and β2. 

3.3. Variable Selection Using the Penalized H-Likelihood 
In this section, we consider variable selection of fixed 

effects β by maximizing a penalized profile h-likelihood hp 
using a weight ℎ𝜔∗ (β, v, θ) and a penalty defined by 

ℎ𝑝(𝛽, 𝑣, 𝜃) =  ℎ𝜔∗ − 𝑛∑ 𝐽γ(�𝛽𝑗�)𝑃
𝑗=1             (10) 

where Jγ (|·|) is a penalty function that controls model 
complexity using the tuning parameter γ. Normally, setting γ 
= 0 result in a sub-hazard frailty model, whereas the 
regression coefficient estimates β approaches 0 as γ → ∞ is 
inclined to choose a complex model (Fan and Lv, 2010).  

Although several penalty functions have been applied in 
the literature section, (Fan and Li, 2001, 2002; Fan and Lv, 
2010), this paper primarily analyze the following three 
penalty functions.  
• LASSO (Tibshirani, 1996) 

𝐽𝛾(|𝛽|)  =  𝛾|𝛽|                 (11) 
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• SCAD (Fan and Li, 2001) 

𝐽𝛾 
′ (|𝛽|) = 𝛾(|𝛽| ≤ 𝛾) + (𝛼𝛾−|𝛽|)

𝛼−1
 𝐼(|𝛽| > 𝛾)  (12) 

where a = 3.7 and 𝑥+ denotes the positive part of x, i.e. 𝑥+ 
is x if x > 0, zero otherwise. 
• HL (Lee and Oh, 2009) 

𝐽𝛾(|𝛽|)≡ 𝐽(𝑎,𝑏)(|𝛽|) = 𝑙𝑜𝑔Γ �1
𝑏
� + 𝑙𝑜𝑔𝑏

𝑏
+ 𝛽2

2𝑎𝑢(|𝛽|)
+

(𝑏−2)𝑙𝑜𝑔𝑢(|𝛽|)
2𝑏

+ 𝑢(|𝛽|)
𝑏

,                (13) 

where u(|β|) = [{8𝑏𝛽2/𝑎 + (2 +  𝑏)2 }1/2+ 2 − b]/4 
An acceptable penalty function should provide estimates 

that satisfy unbiasedness, sparcity, and continuity (Fan and 
Li, 2001, 2002). The LASSO penalty in (11) is as general as 
L1 penalty, but it does not satisfy these three properties at the 
same time. Fan and Li (2001) proved that SCAD in (12) meet 
all the three properties and that it can perform the orcale 
process in terms of choosing the correct subset model and 
estimating the true non-zero coefficient, at the same time. 

Lee and Oh (2009) proposed a new penalty unbounded at 
the origin in the structure of a random effect model. The form 
of the penalty changes from a quadratic shape (b = 0) for 
ridge regressions to a cusped form (b = 2) for LASSO and 
then to an unbounded form (b > 2) at the origin. In the case of 
b = 2, it allows for an uncountable number of gains at zero. 
The SCAD provides oracle ML estimates (least squares 
estimators), whereas the HL provides oracle shrinkage 
estimates. When multi-collinearity exists, shrinkage 
estimation becomes much better than the ML estimation. Lee 
et al. (2010, 2011a,b) has shown the importance of the HL 
approach over LASSO and SCAD methods, with respect to 
the number of covariates being larger than the sample size 
(i.e p > n). In reality it has an attribute for a variable selection 
without losing prediction power. Since in (13) it has a greater 
sensitivity to alter the penalty than b, we also analyze only a 
few values for b, e.g. b = 2.1, 3, 10, 30, 50 denoting small, 
medium and large. 

3.4. Penalized H-likelihood Procedure 
By maximizing the penalized h-likelihood hp in (10), we 

need to analyze the variable and estimate their related 
regression coefficients at the same time. In other words, 
those variable whose regression coefficients are estimated as 
zero are automatically removed. To accomplish this goal, by 
applying hp, the estimation process of the fixed parameters 
(𝛽, 𝜃) and random effects ν are needed. First, the maximum 
penalized h-likelihood (MPHL) estimates of (β, ν), are 
obtained by finding the joint estimating of β and ν: 

𝜕ℎ𝑝
𝜕𝛽𝑗

 =𝜕ℎ𝑤
∗

𝜕𝛽𝑗
− 𝑛∑  [𝐽𝛾(�𝛽𝑗�)]′ = 0 𝑃

𝑗=1     (14) 

and 
𝜕ℎ𝑝
𝜕𝛽𝑣

 =
𝜕ℎ𝑝∗

𝜕𝑣
 =0                   (15) 

Notice that (14) is an altered estimating equation evoked 
by adding the penalty term, but (15) is similar to the standard 
estimating equation without penalty. Notwithstanding, for 

the three penalty functions considered in (11)-(13), Jγ in (14) 
becomes non-differentiable at the origin and it does not have 
continuous second-order derivatives. To elicit this challenge 
in solving (14) we use local quadratic approximation 
(referred to as LQA, Fan and Li, 2001) to such penalty 
functions. That is, given an initial value of β0 approaching 
the true value of β, the penalty function Jγ can be locally 
approximated by a quadratic function as 

�𝐽𝛾(�𝛽𝑗�)�
′ = 𝐽𝛾′ (�𝛽𝑗�)𝑠𝑔𝑛(�𝛽𝑗�) ≈ �𝐽𝛾′ (�𝛽𝑗0�)/[�𝛽𝑗0�]�𝛽𝑗 

 for 𝛽𝑗 ≈  𝛽𝑗0                       (16) 

Then the negative Hessian matrix of β and ν founded on hp 
can be explicitly written as a simple matrix from (Ha and Lee, 
2003): 

H(ℎ𝑝; 𝛽, 𝑣)= 

𝜕2ℎ𝑝
𝜕(𝛽,𝑣)2

= �𝑋
𝑇𝑊 ∗ 𝑋 + 𝑛∑  𝛾 𝑋𝑇𝑊 ∗ 𝑍
𝑍𝑇𝑊 ∗ 𝑋 𝑍𝑇𝑊 ∗ 𝑍 + 𝑈

�    (17) 

Where ∑ =𝛾  diag{𝐽𝛾′  (β j)/β j}. Here X and Z are n × q 
and n × q∗ model matrices for β and v whose ijth row vectors 
are 𝑋𝑖𝑗𝑇  and 𝑋𝑖𝑗𝑇  respectively, 𝑊∗= 𝑊∗ (β, v) = −𝜕2ℎ𝑤/∂𝜂2 
is a form of the symmetric matrix given in Appendix 2 of Ha 
and Lee (2003) and Ha et al. (2013) η = Xβ + Zν and       
U = −𝜕2𝑙2/∂𝑣2 is a 𝑞∗ × 𝑞∗ matrix that takes a form of    
U = BD(∑ ,−1

  ..., ∑ )−1
  if ν ∼ N(0, ∑)  , where 𝑞∗ = q × r and 

BD(·) represents a block diagonal matrix. 
Following Ha and Lee (2003) and (15), it can be observed 

that given θ, the MPHIL estimates of (β, ν) are obtained from 
the following scores equations: 

�𝑋
𝑇𝑊∗𝑋 + 𝑛∑  𝛾 𝑋𝑇𝑊∗𝑍
𝑍𝑇𝑊∗𝑋 𝑍𝑇𝑊∗𝑍 + 𝑈

� �𝛽̂
𝑣�
� = ( 𝑋𝑇𝑤

𝑍𝑇𝑊∗ + 𝑅∗
)(18) 

where 𝑤 ∗= 𝑊∗η + (δ − µ) with µ = exp(log w + log 𝛬01𝑠  + 
η) and 𝑅∗ = Uv + (∂l/∂v). Here w is the weight wij and 𝛬01𝑠  
is the baseline cumulative sub-hazard function. The scores of 
equations (16) are extensions of the already existing 
estimation processes. For instance, under no penalty (i.e. γ) 
they become the score equations of Ha et al. (2003) for the 
standard sub-hazard frailty models, for variable selection 
under the Fine-Gray model (1999) without frailty. They also 
change to 

(𝑋𝑇𝑊∗𝑋 + 𝑛∑ )𝛾  𝛽̂ = 𝑋𝑇𝑤∗,              (19) 

suggesting that the new equations (16) allow a special case of 
the penalized equation (17) for the Fine-Gray model. 
Observe that, to refrain from some numerical complications, 
we apply ∑ =𝛾,𝜀 𝑑𝑖𝑎{𝐽𝛾′ (�𝛽𝑗�)/(�𝛽𝑗� + 𝜀)}, in solving (16) 
for a small non-negative value of 𝜀 (e.g. 𝜀 = 10−8), rather 
than ∑  𝛾 , to assert the existence of ∑  𝛾,𝜀 (Lee and Oh, 2009). 
So far as 𝜀  is small non-negative value, the diagonal 
component of ∑  𝛾,𝜀  are similar to that of ∑  𝛾 . As a matter of 
fact, this algorithm is similar to that of Hunter and Li (2005) 
for modifying the LQA; see also Johnson et al. (2008). In this 
paper, we report 𝛽̂ = 0 if all five printed decimals are zero. 
In the case of, SCAD and HL penalties, there exist many 
local maximums. Hence, an acceptable initial value is vital to 
get a proper estimate 𝛽. In this paper, a LASSO solution will 
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be applied as the initial value for the SCAD and HL 
penalties. 

Consequently, we apply an adjusted profile h-likelihood  
pτ (hp) for the estimation of θ (Ha and Lee, 2003; Lee et al., 
2006) which removes (β, v) from hp in (11), defined by 

𝑝𝜏�ℎ𝑝� = [ℎ𝑝 −
1
2

log 𝑑𝑒𝑡 {𝐻(ℎ𝑝;𝜏)
2𝜋

}         (20) 

where τ = (𝛽𝑇, 𝑣𝑇)𝑇  and 𝜏𝑇  = 𝜏𝑇  (θ) = 
((𝛽̂𝑇 (θ),  𝑣�𝑇 (θ))𝑇 . By solving the score equations 
∂pτ(hp)/∂θ = 0 as in Ha et al. (2013), the estimates of θ are 
found. Consequently, we observe that the projected process 
is easily implemented by a little change to the already 
existing h-likelihood process (Ha and Lee, 2003; Ha et al., 
2011, 2013).  

4. Results 
4.1. Simulation Analysis 

In this section, the performance of the HL method is 
examined through simulated data, and compared to the 
LASSO and SCAD. For each method we select optimal 
tuning parameters that maximize the log-likelihood obtained 
from an independent validation dataset of size n /2, where n 
is the size of the training set. We varied the number of 
covariates (p) and fixed coefficients (q) in two simulations. 
In one simulation we use n = 200 while in the other n = 100. 

For the simulation studies, we consider the following 
GLM: 

y/x~N(μ(𝑋′β), 2) 

with linear link function µ(𝑋′β) = 𝑋′β where the linear 
predictor 𝑋′β = ∑ 𝑥𝑗𝑘β𝑗𝑘

−𝑝𝑘
𝑗=1  consist of p covariates. To 

generate covariate 𝑋𝑗𝑘′ s, we first generate p = ∑ 𝑝𝑘𝑘
𝑗=1  

random variables 𝑋𝑗𝑘′ s independently from the standard 
normal distribution. Then 𝑧𝑘′ s are simulated with a 
multivariate normal distribution. The covariate 𝑋𝑗𝑘′ s are 
generated from 

𝑋𝑘𝑗 = (𝑧𝑘 + 𝜀𝑘𝑗)/√2k = 1,…, 𝑝𝑘        (21) 

where z =   (𝑧1, . . . , 𝑧𝑘)𝑇  ∼ N(0, ∑  ) with covariance 
structure ∑   

𝑘𝑙  = cov(𝑧𝑘, 𝑧𝑙) = 0.5|𝑘−𝑙| and εkj ∼ N(0, Ip) that 
of independent of z. The true non-zero coefficients are 

βkj = c/ j, j = 1, . . . , qk, k ≠ A 
where qk is the number of non-zero coefficients in the kth 
group, and A is the set of the non-null groups.  

A group is said to be non-null if at least one coefficient in 
the group is estimated to be non-zero. The constant c is 
chosen so that the signal-to-noise ratio is equal to 5 in the 
linear model. For each model setting we consider one 
dimensionality level only, the one with p < n. So, overall we 
have 4 simulation scenarios, where each is replicated 100 
times with sample size n = 200 and n = 100. The cross 
validation errors which are defined based on independent test 
sample of size N = 5000 forms the basis for performance 
comparison. For variable selection quality, cross validation 
errors for the three methods are compared and the method 
with the smallest penalized cross validation errors is 
preferred. The results are shown in table below. The HL 
estimator performs better than the other methods for 
prediction accuracy as evident by its smallest cv errors 
comparative to the other methods.  

Table 1.  Comparative simulation results for penalized variable selection methods 

N=100 P= 10 Q =3 

Method sim 1 sim 2 sim 3 sim 4 sim 5 sim 6 sim 7 sim 8 sim 9 sim 10 

LASSO 12.078814 9.154382 8.09983 8.075933 11.001972 11.456325 13.042181 12.49598 8.606529 10.729943 

SCAD 12.161675 9.304411 8.193715 8.134833 11.079497 11.558803 13.031146 12.53982 8.662975 11.357576 

H-L 11.424703 8.989876 7.700814 9.586048 11.239171 10.810527 12.891827 10.58886 8.532304 10.799194 

N=200 P= 10 Q = 3 

LASSO 16.08259 23.72576 18.89797 25.91064 18.28419 22.8221 21.5849 18.24477 24.7486 19.22165 

SCAD 16.12418 23.67929 18.88515 25.92822 18.22037 22.82895 21.63649 18.31884 24.75796 19.19523 

H-L 15.86426 22.57885 18.33407 23.89222 18.02888 21.61746 20.70557 18.04133 25.58047 18.44424 

N=100 P= 8 Q =5 

LASSO 12.477717 9.976822 9.567962 7.672933 11.656413 13.577737 10.798311 16.09166 14.212732 12.474876 

SCAD 12.664895 10.003768 9.849049 7.660239 11.845172 13.811124 10.989915 17.00159 14.318873 12.343221 

H-L 11.912251 9.440881 9.317837 7.763213 11.043935 16.451458 10.599491 13.9028 13.701678 11.351132 

N=200 P= 8 Q =5 

LASSO 23.62724 21.68409 22.38465 20.89009 17.62312 18.37307 22.97981 21.5812 26.90833 25.05369 

SCAD 23.64128 21.64646 22.44532 20.86011 17.91219 18.43819 22.95806 21.53924 27.03923 25.16297 

H-L 22.78054 21.70741 22.26482 20.29142 17.29375 18.20228 21.64576 21.33577 25.43343 24.61937 
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4.2. Real Data Analysis (Crop yield data) 

We analyze the crop yield datasets obtained from 2013 
main season yield measured in kilograms. The data consists 
of a numeric response variable (yield) and 9 covariates 
obtained from 790 farmer based organizations in the three 
northern regions of Ghana. We excluded 10 observations 
(FBO’s) due to missing values. The dataset has 7 categorical 
covariates crop type (Maize or Soybean), Financial Credit 
(Acquired or Not), Training (Acquired or Not), Study tour 
(Acquired or Not), Demonstrative Practical (Acquired or 
Not), Networking Events (Acquired or Not), Post-harvest 
Equipment (Acquired or Not)) and 2 continuous variables, 
including plot size in acres and number of farmers. Beside 
these 9 fixed effects, 36 two-way interaction terms are also 
generated as fixed interaction terms. This brings the total 

number of fixed covariates to 45. To allow possible 
non-linear effects, a third-degree polynomial is used for each 
continuous covariate, and dummy variables are used for 
categorical variables. 

The results are obtained by 100 random segments of the 
data set divide into training (70 percent) and test sets (30 
percent). For each random segment, the tuning parameters 
are chosen by the 10-fold cross validation in the training set, 
and the prediction errors are calculated on the test set. Table 
3 presents averages of cv errors, the number of significant 
variables and number of insignificant variables. 

The HL estimator performs better than the other methods 
for prediction accuracy as evident by its smallest cv errors 
comparative to the other methods. 

Table 2.  Standardized Penalized Coefficients of Crop Yield Data 

Selected Variables LASSO SCAD H-L 

Crop -1.39 -2.38 -0.74 
Credit   1.23 

Training 0.82 1.91 2.29 
Study Tour    

Demo. Practical 3.65 5.14 5.04 
Networking Events   0.69 

Post harvest Equipment -5.56 -7.21 -7.21 
No. of farmers 0.29  1.88 

plot size 11.53 12.42 12.83 
Crop*Credit -1.72 -2.41 -2.74 

Crop*Training   -0.67 
Crop*Study Tour 0.86 1.47 1.53 

Crop*Demo. Practical -1.68 -2.76 -2.63 
Crop*Networking Events    

Crop*Post-harvest Equipment 2.74 4.60 4.50 
Crop*No. of farmers -0.96  -2.11 

Crop*plot size    
Credit*Training    

Credit*Study Tour -0.963 -1.14 -1.23 
Credit*Demo. Practical 0.20   

Credit*Networking Events 0.89 1.37 1.34 
Credit*Post-harvest Equipment    

Credit*No. of farmers -0.74  -1.5 
Credit*plot size 2.80 2.30 2.86 

Training*Study Tour 0.81 0.62 0.11 
Training*Demo. Practical -1.10 -1.41 -1.33 

Training*Networking Events -0.06  -0.69 
Training*Post-harvest Equipment 0.32  0.48 

Training*No. of farmers -1.91 -3.11 -1.97 
Training*plot size -0.53  -0.82 

Study Tour*Demo. Practical 0.14  0.13 
Study Tour*Networking Events    

Study Tour*Post-harvest Equipment -1.38 -1.27 -1.22 
Study Tour*No. of farmers 0.46 0.02 1.08 

Study Tour*plot size -0.14  -0.74 
Demo. Practical*Networking Events -0.29  -0.46 

Demo. Practical*Post-harvest Equipment 1.65 1.68 1.69 
Demo. Practical*No. of farmers    

Demo. Practical*plot size -3.53 -3.89 -3.58 
Networking Events*Post-harvest Equipment    

Networking Events*No. of farmers    
Networking Events*plot size -1.04 -2.04 -2.09 

Post-harvest Equipment*No. of farmers   -0.38 
Post-harvest Equipment*plot size 4.43 4.59 5.06 

No. of farmers*plot size   -0.67 
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Table 3.  Performance of Penalized methods on Crop Yield Data 

Method LASSO SCAD H-L 

No. of Significant Variables Selected 31 21 35 

No. of Variables Ignored 14 24 10 

Cross validated Errors 24.097 24.043 23.543 

 

5. Discussion 
In section 4.2, we sort to select significant variables 

amongst a number of latent ones to be included in the model 
through penalized methods. We have compare the sparsity 
and number of significant crop yield variables selected by 
the three penalized methods; LASSO, SCAD, and 
H-likelihood both through simulation studies and by the real 
data (See Table 1 and 2). These techniques have common 
benefits over the classical selection procedures; they are 
computationally easy, deriving sparse estimators that are 
stable, and they aid higher prediction accuracies. We have 
shown how to choose significant variables amongst common 
semi-parametric models via penalized methods. We have 
also shown through numerical studies and data analysis that 
the projected process with H-Likelihood performs best 
followed by SCAD, with LASSO coming last (See Table 1 
and Table 3). 

There has been a number of criticisms against LASSO 
with some reasons being that a single tuning parameter 𝜆 is 
utilized for variable selection and shrinkage. A model with 
too many variables is usually chosen to prevent over 
shrinkage of the regression coefficients (Radchenko and 
James, 2008); otherwise, regression coefficients of selected 
variables are often over-shrunken. This assertion is highly 
confirmed by the results of this in table 1. 

To overcome this problem, a method known as the 
smoothly clipped absolute deviation (SCAD) penalty for 
oracle variable selection was proposed by Fan and Li (2001). 
More recently, Zou (2006) showed that LASSO does not 
satisfy Fan and Li’s (2001) oracle property, and proposed the 
adaptive LASSO. Based on the findings of this study, we 
also propose the H-likelihood approach by Lee and Nelder 
(2009), as the best in crop yield variable selection and we do 
so on the basis that, compared to other forms of penalized 
methods ie. LASSO and SCAD, the H-likelihood approach 
(Lee and Nelder 2009) facilitates higher prediction accuracy 
since it has least estimated penalized cross validated errors 
(see table 2). 

6. Conclusions 
H-Likelihood method of penalized variable selection 

performs best followed by SCAD, with LASSO coming last. 
It does both selection of significant variables and estimation 
of their coefficients simultaneously with the least penalize 
cross-validated errors compared to the SCAD and the 
LASSO. We recommend that a deliberate effort be put into 

strengthening the Agricultural support systems as a form of 
strategy for increasing crop production in Northern Ghana. 
Access to credit, training, access to post harvest equipments, 
access to demonstrative practicals and access to large plot 
size are the physical support services highly recommended 
by this study. 
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