
International Journal of Probability and Statistics 2015, 4(2): 37-41 
DOI: 10.5923/j.ijps.20150402.01 

Estimation of the Mean and Variance of a Univariate 
Normal Distribution Using Least-Squares via the 

Differential and Integral Techniques 

C. R. Kikawa*, M. Y. Shatalov, P. H. Kloppers 

Department of Mathematics and Statistics, Tshwane University of Technology, Pretoria, South Africa 

 

Abstract  Two new approaches (method I and II) for estimating parameters of a univariate normal probability density 
function are proposed. We evaluate their performance using two simulated normally distributed univariate datasets and their 
results compared with those obtained from the maximum likelihood (ML) and the method of moments (MM) approaches on 
the same samples, small n = 24 and large n = 1200 datasets. The proposed methods, I and II have shown to give significantly 
good results that are comparable to those from the standard methods in a real practical setting. The proposed methods have 
performed equally well as the ML method on large samples. The major advantage of the proposed methods over the ML 
method is that they do not require initial approximations for the unknown parameters. We therefore propose that in the 
practical setting, the proposed methods be used symbiotically with the standard methods to estimate initial approximations at 
the appropriate step of their algorithms. 
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1. Introduction 
Statistical inference is largely concerned with making 

logical conclusions about a population using an observed 
section or part of the entire population referred to as the 
sample [1]. The reference population can always be 
represented using an appropriate probability framework 
which is usually written in terms of unknown parameters. 
For instance the crop yield obtained when a certain fertilizer 
is applied can be assumed to follow a normal distribution 
with mean μ, and standard deviation ,𝜎𝜎;  it is thereafter 
required to make inferences about the parameters, μ and 𝜎𝜎 
using the statistics 𝑥𝑥 �  and 𝑠𝑠  that are estimated based on the 
sample of crop yield and then inferences made on the total 
crop yield. Note that in this work we only deal with one 
aspect of statistical inference that is estimation and two 
novel approaches are discussed in this case. 

Let 𝑥𝑥  be a single realisation from a univariate normal 
density function with mean μ, and standard deviation  𝜎𝜎, 
which implies that 𝑥𝑥~N(μ, 𝜎𝜎) with −∞< μ <∞, 𝜎𝜎> 0. In this 
paper, simple and computationally attractive methods for 
estimating both μ and 𝜎𝜎 of a univariate normal 
distributionfunction are proposed. However, methods for 
estimating the sufficient parameters of a univariate normal 
density function are well known such as the method of  
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moments and the maximum likelihood method [2, 3], but all 
these are computationally intensive. Again, much as the 
maximum likelihood estimators have higher probability of 
being in the neighbourhood of the parameters to be 
computed, in some instances the likelihood equations are 
intractable in the absence of high computing gadgets like 
computers. Though the method of moments could quickly be 
computed manually by hand, its estimators are usually far 
from the required quantities and for small samples the 
estimates are often times outside the parameter space [4, 5]. 
In all it is not worthwhile to rely on the estimates from the 
method of moments. 

1.1. Generalized Probability Density Function 

When a dataset is presented and critically observed for 
any characteristics that it may exhibit; statistically called 
exploratory data analysis, we usually want to study its 
pattern that can vaguely lead us to a possible probability 
density function (pdf) that can be taken as its probability 
frame-work for those data. However, if it requires one to 
build a whole new frame-work or model, then a lot of work 
has to be done which is quite demanding. In this section we 
present a frame-work that nearly suits all the pdfs of 
continuous random variables 

𝟏𝟏
∧𝒓𝒓(𝒔𝒔)

∅𝒔𝒔 �
𝒙𝒙−𝒍𝒍
ℶ
�, 𝑳𝑳𝒃𝒃 ≤ 𝒙𝒙 ≤ 𝑳𝑳𝒄𝒄         (1.1) 

where 𝐿𝐿𝑏𝑏  and 𝐿𝐿𝑐𝑐  indicate the domain of applicability: 
often times from −∞to ∞ or from 0 to ∞ depending on 
the framework under consideration. ∅𝒔𝒔, is the actual shape 
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function of the pdf; ∧𝒓𝒓 (the area under the function) is 
necessary to normalise the integral of the respective 
function, over the stated to one, 𝑠𝑠 is the shape parameter, 𝑙𝑙 
and ℶ are the location and scaleparameters respectively. 

On examining Eq. (1.1), we present the normal 
distribution function as 

𝒇𝒇𝑿𝑿𝒊𝒊(𝒙𝒙𝒊𝒊;𝜽𝜽) = 𝟏𝟏
𝜽𝜽𝟐𝟐√𝟐𝟐𝝅𝝅

exp�− 𝟏𝟏
𝟐𝟐
�𝒙𝒙𝒊𝒊−𝜽𝜽𝟏𝟏

𝜽𝜽𝟐𝟐
�
𝟐𝟐
�      (1.2) 

Eq. (1.2) represents a normal probability density function 
with mean 𝜃𝜃1  andstandard deviation  𝜃𝜃2 , where X𝒊𝒊  is a 
univariate random variable and 𝜃𝜃 is avector of length, say 
𝑀𝑀 comprising the unknown sufficient parameters [6]. The 
study presents descriptions and numerical evaluations of 
two proposed methods intended to estimate the unknown 
parameters of univariate normal density functions. The 
proposed methods are compared with two methods in 
current use, that is the maximum likelihood and method of 
moments. 

These are preferred due to their robustness and it is also 
known that they are symbiotic in that; estimates by the 
method of moments may be used as the initial 
approximations to the solutions of the formulated likelihood 
equations, and successive improved approximations are 
found using the well-known numerical methods like the 
Newton-Raphson, Levenberg-Marquardt etc. [7]. 

2. Method Formulations 
It is well known that parameter estimation is an integral 

part of statistical modelling [8]. In this section we describe 
two formulations of estimating the univariate normal 
distribution based on the least-squares method. 
Linearization of the transcendental model is performed via 
differentiation and integration methods. 

2.1. Theoretical Approach 

The main idea is to transform the original problem into a 
new problem which is linear with respect to a part of the 
original unknown parameters or their combinations. For 
instance in the case of the Gaussian density or commonly 
known as the normal pdf, the transformation is done as in 
the corresponding system in the following section 2.2. On 
formulation of a linear system through differential and 
integral techniques, we finally identify the formulated linear 
system using ordinary least squares method [9]. 

2.2. Method I 

Considering Eq. (1.2) and taking its first derivative 

𝒇𝒇′(𝒙𝒙,𝜽𝜽) = −𝟏𝟏
𝟐𝟐

√𝟐𝟐
𝜽𝜽𝟐𝟐
𝟑𝟑√𝝅𝝅

𝐞𝐞𝐞𝐞𝐞𝐞 �− (𝒙𝒙−𝜽𝜽𝟏𝟏)𝟐𝟐

𝟐𝟐𝜽𝜽𝟐𝟐
𝟐𝟐 � (𝒙𝒙 − 𝜽𝜽𝟏𝟏)    (2.1) 

 = − 𝟏𝟏
𝜽𝜽𝟐𝟐
𝟐𝟐

√𝟐𝟐
𝜽𝜽𝟐𝟐√𝝅𝝅

𝐞𝐞𝐞𝐞𝐞𝐞 �− (𝒙𝒙−𝜽𝜽𝟏𝟏)𝟐𝟐

𝟐𝟐𝜽𝜽𝟐𝟐
𝟐𝟐 � (𝒙𝒙 − 𝜽𝜽𝟏𝟏) (2.2) 

From Eq. (2.3), let ∅ = �− (𝒙𝒙−𝜽𝜽𝟏𝟏)𝟐𝟐

𝟐𝟐𝜽𝜽𝟐𝟐
𝟐𝟐 � then, 

𝒇𝒇′(𝒙𝒙,𝜽𝜽) = − 𝒙𝒙
𝜽𝜽𝟐𝟐
𝟐𝟐

𝟏𝟏
𝜽𝜽𝟐𝟐√𝟐𝟐𝝅𝝅

𝐞𝐞𝐞𝐞𝐞𝐞(∅) + 𝜽𝜽𝟏𝟏
𝜽𝜽𝟐𝟐
𝟐𝟐

𝟏𝟏
𝜽𝜽𝟐𝟐√𝟐𝟐𝝅𝝅

𝐞𝐞𝐞𝐞𝐞𝐞(∅) (2.3) 

𝒇𝒇′(𝒙𝒙,𝜽𝜽) = 𝜽𝜽𝟏𝟏
𝜽𝜽𝟐𝟐
𝟐𝟐

𝟏𝟏
𝜽𝜽𝟐𝟐√𝟐𝟐𝝅𝝅

𝐞𝐞𝐞𝐞𝐞𝐞(∅) − 𝒙𝒙
𝜽𝜽𝟐𝟐
𝟐𝟐

𝟏𝟏
𝜽𝜽𝟐𝟐√𝟐𝟐𝝅𝝅

𝐞𝐞𝐞𝐞𝐞𝐞(∅)  (2.4) 

Hence Eq (2.4) now becomes, 

𝒇𝒇′(𝒙𝒙,𝜽𝜽) = 𝜽𝜽𝟏𝟏
𝜽𝜽𝟐𝟐
𝟐𝟐 𝒇𝒇(𝒙𝒙) − 𝒙𝒙

𝜽𝜽𝟐𝟐
𝟐𝟐 𝒇𝒇(𝒙𝒙)         (2.5) 

𝒇𝒇′(𝒙𝒙,𝜽𝜽) = 𝑲𝑲𝟏𝟏𝒇𝒇(𝒙𝒙) −𝑲𝑲𝟐𝟐𝒙𝒙𝒙𝒙(𝒙𝒙)        (2.6) 
where, 
𝑲𝑲𝟏𝟏 = 𝜽𝜽𝟏𝟏(𝜽𝜽𝟐𝟐𝟐𝟐)−𝟏𝟏 , 𝑲𝑲𝟐𝟐 = (𝜽𝜽𝟐𝟐𝟐𝟐)−𝟏𝟏  and 𝒇𝒇(𝒙𝒙) =
𝟏𝟏

𝜽𝜽𝟐𝟐√𝟐𝟐𝝅𝝅
𝐞𝐞𝐞𝐞𝐞𝐞(∅) 

Numerical integral methods [10] are now used to integrate 
Eq. (2.6) over an interval [𝒙𝒙𝟎𝟎,𝒙𝒙] 

∫ 𝒇𝒇′(𝒙𝒙)𝒅𝒅𝒅𝒅 = 𝑲𝑲𝟏𝟏 ∫ 𝒇𝒇(𝒙𝒙)𝒅𝒅𝒅𝒅 − 𝑲𝑲𝟐𝟐 ∫ 𝒙𝒙𝒙𝒙(𝒙𝒙)𝒅𝒅𝒅𝒅𝒙𝒙
𝒙𝒙𝟎𝟎

𝒙𝒙
𝒙𝒙𝟎𝟎

𝒙𝒙
𝒙𝒙𝟎𝟎

  (2.7) 

= 𝑲𝑲𝟏𝟏𝑰𝑰𝟏𝟏(𝒙𝒙) −𝑲𝑲𝟐𝟐𝑰𝑰𝟐𝟐(𝒙𝒙)             (2.8) 
where, 

𝑰𝑰𝟏𝟏(𝒙𝒙) = ∫ 𝒇𝒇(𝒙𝒙)𝒅𝒅𝒅𝒅𝒙𝒙
𝒙𝒙𝟎𝟎

 and 𝑰𝑰𝟐𝟐(𝒙𝒙) = ∫ 𝒙𝒙𝒙𝒙(𝒙𝒙)𝒅𝒅𝒅𝒅𝒙𝒙
𝒙𝒙𝟎𝟎

 . 

Care should be taken on the numerical procedure for Eq. 
(2.7) as it is somewhat involved and requires a step by step 
approach before implementation in any suitable programing 
language. 

We now write a complete linear regression function as 
𝒇𝒇(𝒙𝒙) = 𝑲𝑲𝟏𝟏𝑰𝑰𝟏𝟏(𝒙𝒙) + 𝑲𝑲𝟐𝟐𝑰𝑰𝟐𝟐(𝒙𝒙) + 𝒇𝒇(𝒙𝒙𝟎𝟎)      (2.9) 

Where, 𝒇𝒇(𝒙𝒙𝟎𝟎)  is a regression constant while 𝑲𝑲𝟏𝟏  and 
𝑲𝑲𝟐𝟐,  are the regression coefficients. It has been assume 
that  𝑰𝑰𝟏𝟏(𝒙𝒙𝟎𝟎) = 𝟎𝟎  and  𝑰𝑰𝟐𝟐(𝒙𝒙𝟎𝟎) = 𝟎𝟎  for the analytical 
illustration otherwise these could be included in Eq. (2.9). 
However, in real practise this assumption could be violated 
without compromising the accuracy of the method. There 
are a variety of methods for solving linear regression 
models of the form presented in Eq. (2.9), such as 
Gauss-elimination, QR-decomposition, least-squares and 
total least-squares [11]. In this work, the ordinary 
least-squares (OLS) method is preferred for its simplicity 
and it is applied to estimate the parameter coefficients 𝑲𝑲𝟏𝟏 
and 𝑲𝑲𝟐𝟐. The OLS method is well known and available in a 
number of statistical literature, for the estimation procedure 
using OLS the reader is referred to [9]. The parameters of 
the univariate normal density function can then be 
computed by applying straight forward algebra, hence 

𝜇̂𝜇 =
𝐾𝐾1

𝐾𝐾2
 

and 

𝜎𝜎� =
1

�−𝐾𝐾2
 . 

Using an appropriate univariate dataset, the computed 
estimates can now be compared with those from the method 
of moments and maximum likelihood methods, and 
standard statistical measures applied to ascertain the 
accuracy of the proposed method. 
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2.3. Method II 

The main difference between this method and that 
formulated in the preceding section 2.3, is that numerical 
integration techniques were applied on 
𝐼𝐼2(𝑥𝑥) = ∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥

𝑥𝑥0
 Eq.(2.8). However, for the current 

method II, the well-known method of integration by parts 
[12] is applied at the same stage, to obtain, 

∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥
𝑥𝑥0

= 𝑥𝑥𝑥𝑥(𝑥𝑥) − 𝑥𝑥0𝐼𝐼(𝑥𝑥0) + 𝐼𝐼∗(𝑥𝑥) + 𝐼𝐼(𝑥𝑥0) (2.10) 

where, 

𝐼𝐼(𝑥𝑥) = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥
𝑥𝑥0

 and 𝐼𝐼∗(𝑥𝑥) = ∫ [∫𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥
𝑥𝑥0

]𝑑𝑑𝑑𝑑 

From method I, Eq. (2.7) can now be written as 
 (2.11) 

𝑓𝑓(𝑥𝑥) = 𝐾𝐾1∗𝐼𝐼𝑥𝑥 − 𝐾𝐾2∗[𝑥𝑥𝑥𝑥(𝑥𝑥) − 𝐼𝐼∗(𝑥𝑥)] + 𝜀𝜀      (2.12) 
Where, 
𝜀𝜀 = 𝐾𝐾2∗𝑥𝑥0𝐼𝐼(𝑥𝑥0) − 𝐾𝐾2∗(𝑥𝑥0) + 𝑓𝑓(𝑥𝑥0).  Note, that 

numerical integration is required at appropriate steps for this 
second method as well. Eq. (2.13) is then estimated using 
standard OLS method [9] and the required parameters 
estimated as 

𝜇̂𝜇∗ =
𝐾𝐾1∗

𝐾𝐾2∗
 

and 

𝜎𝜎�∗ =
1

�−𝐾𝐾2∗
 

The main difference between these two approaches is that, 
in method I, we considered use of numerical integration at 
an earlier step, Eq. (2.7), but in method II, the conventional 
method of integration by parts is considered and numerical 
integration on Eq. (2.12). It is noticed that the application of 
the different approaches of integration at the relevant stages 
causes a significant difference in the accuracy of estimates 
from the two estimation methods. Two Monte Carlo 
numerical simulations are performed using Mathematica 
software. Mathematica provides an environment in which 
programming of the proposed approaches is performed and 
application of the maximum likelihood and the method of 
moments on the simulated datasets. 

3. Simulations 
To evaluate empirically the performance of the proposed 

methods, two normally distributed datasets were simulated 
with known μ and 𝜎𝜎. These datasetsare considered to be 
random samples of some infinite hypothetical population of 
possible values. It was necessary to consider both the large 
(𝑛𝑛 > 30) and small (𝑛𝑛 < 30) samples as this could 
probably give a clue on the performance of the proposed 
methods when applied to samples of varying sizes. 

It is known that the principal qualifications of acceptable 
statistics may most readily be seen by their behaviour when 
derived from large samples [13]. The aim was to ascertain 

how these different methods reproduced the known 
parameter estimates (i.e. 𝜇𝜇 �  and 𝜎𝜎�) and also provide base 
of supportto the proposed methods especially when used on 
large samples. It is stated that “a statistic is said to be a 
consistent estimate of any parameter, if when calculated 
from an indefinitely larges ample it tends to be accurately 
equal to that parameter” [13]. For our work the results from 
the large sample undoubtedly give a hint on the consistence 
of the estimates computed from the proposed methods see 
also Table 6. 

We have considered the performance of the proposed 
methods I and II, see sections 2.2 and 2.3, by applying the 
maximum likelihood (ML) and the method of moments 
(MM) using two simulated datasets. The small sample 
(𝑛𝑛 = 24)  and the large sample (𝑛𝑛 = 1200) 
methodological evaluations are as presented in the 
subsequent tables. 

4. Results 
Table 1.  Performance of proposed methods I, II, the maximum likelihood 
and method of moments, n=24 

Parameter Exact 
values 

Method 
I 

Method 
II MM ML 

𝜇̂𝜇 40.0000 39.4575 39.8927 39.4544 39.4544 

𝜎𝜎� 1.20000 1.05777 1.19526 1.04627 1.04627 

Table 2.  Performance of proposed methods I, II, the maximum likelihood 
and method of moments, n=1200 

Parameter Exact 
values 

Method 
I 

Method 
II MM ML 

𝜇̂𝜇 40.0000 40.0456 40.0013 40.0456 40.0456 

𝜎𝜎� 1.20000 1.20688 1.20001 1.20633 1.20633 

From Tables 1 and 2, we observe that the evaluated 
methods produce good and acceptable results when 
compared with the actual or “true” parameters i.e. μ = 40 
and 𝜎𝜎 = 1.2 in both large and small samples. However, we 
haveto understand that these proposed methods cannot be 
very useful without quantitative statements about their 
accuracy; in this way it is imperative to evaluate their 
success. The simplest method of accuracy assessment is 
based on the confidence intervals of the parameters in 
question. Confidence intervals can be computed for the 
accuracy of the point estimate in this case for the mean 
values presented in Tables 1 and 2. When we require to 
measure accuracy based on the 95% confidence level, then 
the interval will be computed as 

𝜇𝜇 � ± 1.96𝜎𝜎�, 
where 𝜇𝜇 �   𝑖𝑖𝑖𝑖 the estimated mean and 𝜎𝜎�  is the estimated 
standard deviation. Tables 3 and 4 show the confidence 
intervals of the estimated mean from both the small and 
large samples of the estimates computed from methods I 
and II and the maximum likelihood. It should be noted that 
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we have only considered the estimates from ML method 
and not MM, since from the latest version of Mathematica 
(i.e. Mathematica 9), the results from ML and MM are 
virtually the same in all our computations. In Tables 5 and 6, 
we presented several results of 𝜇𝜇 �  and 𝜎𝜎�  respectively, 
computed bybootstrapping from the parent sample or 
re-sampling. This was aimed at giving a visual analysis on 
which methods could be better preferred and the sample 
size on which we could consider using the proposed method 
for acceptable results. 

Table 3.  The 95% confidence interval of the estimates from the evaluated 
methods, n=24 

Method Estimates Confidence intervals 

I 39.4575 37.3843;41.5307 

II 39.8927 37.5500;42.2354 

Maximum likelihood 39.4544 37.4037;41.5051 

Table 4.  The 95% confidence interval of the estimates from the evaluated 
methods, n=1200 

Method Estimates Confidence intervals 

I 40.0456 37.6801;42.5307 

II 40.0013 37.6493;42.3533 
Maximum likelihood 40.0456 37.6812;42.4100 

Table 5.  Performance of ML, I and II methods on various test bootstrap 
samples, n=24 

Maximum 
likelihood 

(𝝁𝝁 � ,𝝈𝝈�) 

Method I 

(𝝁𝝁 � ,𝝈𝝈�) 

Method II 

(𝝁𝝁 � ,𝝈𝝈�) 

40.2391 1.18817 
40.1509 0.87617 
40.1939 1.15810 
39.6678 1.21087 
39.6678 1.16358 
40.0976 1.20060 
40.3297 1.05846 
40.2005 1.29045 
40.2820 0.98208 
39.9402 1.40495 
39.6930 1.18872 
39.6399 1.27985 
40.0148 1.45176 
40.1256 1.19554 
40.1411 1.28769 

40.2313;1.19199 
40.1495;0.88872 
40.1801;1.15708 
39.6688;1.21866 
39.8248;1.15310 
40.0961;1.22095 
40.3332;1.07261 
40.1948;1.31052 
40.2800;0.99535 
39.9463;1.41680 
39.6947;1.20114 
39.6377;1.29467 
39.9892;1.45013 
40.1315;1.20011 
40.1398;1.29999 

40.2135;1.19824 
40.1383;0.89825 
40.1800;1.16231 
39.6789;1.29725 
39.8824;1.67242 
40.0722;1.21002 
40.3112;1.04562 
40.1892;1.24561 
40.27901;0.9872 
39.99231;1.4544 
39.69501;1.2015 
39.64772;1.2952 
39.99821;1.4541 
40.11245;1.2001 
40.12971;1.2778 

5. Discussion 
From the current work, conventional methods, i.e. 

maximum likelihood and the method of moments are 
compared with the proposed methods I and II. The 
comparison was aimed at visualising how best each of them 
reproduced the known parameters μ and  𝜎𝜎. In this case 
confidenceintervals were computed see Tables 3 and 4 for 
each of the point estimates (mean value) computed from 

either methods. 
The confidence intervals were interpreted to mean that if 

we had repeated the same sampling scheme a large number 
of times, we would have expected that in 95% of these 
experiments the observed accuracy see Tables 1 and 2 for 
the point estimates; would be somewhere between the 
respective confidence limits as presented in Tables 3 and 4 
in either methods. It should be noted here that we took a 
risk of 5% that the true means are either less than or greater 
than the lower and upper boundaries respectively. Therefore, 
we can narrow the confidence intervals at the expense of 
committing a greater risk of a Type I error [14]. From 
Tables 5 and 6, the results of 15 samples of sizes n = 24 and 
n = 1200 are presented respectively. This was intended to 
show the performance of either method on both the large 
and small samples. 

We cannot over state that, visual inspection is not the 
best method to ascertain whether or not a given method 
produces acceptable results and we reserve as future work 
for an analytical proof that the proposed methods are 
consistent. 

Table 6.  Performance of ML, I and II methods on various test bootstrap 
samples, n=1200 

Maximum 
likelihood 

(𝝁𝝁 � ,𝝈𝝈�) 

Method I 

(𝝁𝝁 � ,𝝈𝝈�) 

Method II 

(𝝁𝝁 � ,𝝈𝝈�) 

40.0357,1.18570 
40.0273,1.17764 
40.0160, 1.20916 
39.9988, 1.23107 
39.9997, 1.18629 
40.0084, 1.20564 
40.0336, 1.19816 
39.9651, 1.17556 
39.9619, 1.18619 
39.9670, 1.17614 
40.0251, 1.18668 
39.9515, 1.17922 
40.0551, 1.22794 
39.9891, 1.19764 
39.9540, 1.23894 

40.0357,1.18620 
40.0273,1.17813 
40.0160,1.20865 
39.9988,1.23159 
39.9997,1.18681 
40.0084,1.20614 
40.0336,1.19869 
39.9651,1.17600 
39.9614,1.18670 
39.9670,1.17664 
40.0251,1.18722 
39.9515,1.17972 
40.0551,1.22848 
39.9891,1.19817 
39.9540,1.23947 

40.0135;1.19924 
40.0121;1.99252 
40.0140;1.20414 
39.9998;1.22725 
39.9999;1.19724 
40.0062;1.20002 
40.0311;1.98845 
39.9792;1.18756 
39.9752;1.19877 
39.9723;1.17954 
40.0151;1.18845 
39.9575;1.17982 
40.02521;1.2211 
39.9981;1.19837 
39.9574;1.25787 

6. Conclusions 
Considering estimates obtained from the proposed 

methods and the maximum likelihood, on both the small 
and large samples, it can be observed that the proposed 
methods produced relatively acceptable estimates. For the 
large samples the mean values are the same for all the 
methods which shows that the proposed methods have the 
same accuracy as the more trusted and frequently applied 
maximum likelihood method also regarded as indispensable 
tool for many statistical modelling techniques [15]. 
However, the standard deviation estimates differ slightly in 
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each method. The strength of the proposed methods over 
the maximum likelihood is that the proposed methods do 
not require starting approximations for the unknown 
parameters while for the maximum likelihood, it is a 
requirement for the practitioner to provide starting 
approximations for the unknown parameters. These starting 
approximations may not guarantee convergence and may 
also result in longer computation time if they are far from 
the required minimum. 
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