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Abstract  Small Area Estimation is important in survey analysis when domain (subpopulation) sample sizes are too small 
to provide adequate precision for direct domain estimators. Small Area Estimation (SAE) is a mathematical technique for 
extracting more detailed information from existing data sources by statistical modeling. The estimates are often mapped, so 
the technique is often generically called mapping. These maps and estimates (together with estimates of accuracy) are key 
information in aid allocation within a country. They are also increasingly important inputs to negotiations on allocation of 
international aid to particular countries. This paper provides a critical review of the main advances in small area estimation 
(SAE) methods in recent years with application to disease mapping. The review discusses in detail earlier developments of 
small area estimation methods in the field of disease mapping which serve as a necessary background for the new studies in 
disease mapping of small areas which we termed “Extensions”. Illustrative examples of the application of Small Area 
Estimation (SAE) to disease mapping are presented. 
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1. Introduction  
As with the analysis of any data set, it is always good 

practice to begin by producing and inspecting graphs. A feel 
for the data can then be obtained and any outstanding 
features identified. In spatial epidemiology this is called 
disease mapping. 

Disease mapping is considered as exploratory analysis 
used to get an impression of the geographical or spatial 
distribution of disease or the corresponding risk. Disease 
mapping is an epidemiological technique used to describe 
the geographic variation of disease and to generate 
etiological hypotheses about the possible causes for apparent 
differences in risks. A disease map is used for reporting the 
results of a geographical correlation study or to highlight 
geographical areas with high and low incidence, prevalence 
and mortality rates of specific disease and the variability of 
such rates over a spatial domain (small area). They can also 
be used to detect spatial clusters which may be due to 
common environmental, demographical, or cultural effects 
shared by neighbouring regions. The correct geographical 
allocation of health care resources would be greatly 
enhanced by the development of statistical models that allow 
a more accurate depiction of “true” disease occurrence and  
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prevalence. 
The Millennium Development Goals (MDGs) provide a 

context for small area estimation, since local estimates 
(small area estimates) of disease rates and their updates have 
potential to provide fine-detailed national monitoring 
information against which progress can be measured. Small 
Area Estimation is a statistical technique involving the 
estimation of parameters for small sub-populations (small 
areas) where a sample has insufficient or no sample for the 
sub-population (small area) to be able to make accurate 
estimates for them. The term “small area” may refer strictly 
to a small geographical area such as a county, but may also 
refer to a “small domain”, that is, a particular demographic 
within an area. Small area estimation methods use models 
and additional data sources (such as census data) that exist 
for these small areas in order to improve estimates’ for them. 

Small area estimation is important in survey analysis when 
domain (sub-population or small area) sample sizes are too 
small to provide adequate precision for direct domain 
estimators. It is a mathematical technique for extracting 
more detailed information from existing data sources by 
statistical modeling. The estimates are often mapped to 
obtain and identify any outstanding features, so the 
technique is often generically called mapping. These maps 
and estimates (together with estimates of accuracy) are key 
information in aid allocation within a country. They are also 
increasingly important inputs to negotiations on allocation of 
international aid to particular countries by the World Health 
Organization (WHO) and other International Aid Agencies 
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(IAA). 
The purpose of this paper is to provide a critical review of 

the main advances in small area estimation with application 
to Health surveys in general and disease mapping in 
particular. Four statistical models: Poisson-gamma, 
log-normal, conditional autoregression normal 
(CAR-normal) and two-level models are discussed. The 
empirical bayes (EB) and the hierarchical bayes (HB) 
models are also discussed as extensions to the four basic 
models. The review discusses in detail earlier developments 
of small area estimation (SAE) methods in the field of 
disease mapping which serve as a necessary background for 
the various extensions of the disease mapping models 
proposed in recent literature. Illustrative examples of studies 
so far proposed are presented. The paper ends with a brief 
summary and some concluding remarks. 

2. Application of Small Area Estimation 
to Health  

Small area estimation of health related characteristics has 
attracted a lot of attention in the Western countries like the 
U.S, Britain, U. K and Canada because of a continuing need 
to assess health status, health practices and health resources 
at both the national and sub-national levels. Reliable 
estimates of health-related characteristics help in evaluating 
the demand for health care and the access individuals have to 
it. Health care planning often takes place at the state and 
sub-state levels because health characteristics are known to 
vary geographically. 

Health System Agencies in the United States, mandated 
by the National Health Planning Resource Development Act 
of 1994, are required to collect and analyse data related to the 
health status of the residents and to the health delivery 
systems in their health service area [1]. 

The U.S. National Centre for Health Statistics pioneered 
the use of synthetic estimation, based on implicit linking 
models, developing state estimates of disability and other 
health characteristics for different groups from the National 
Health Interview Survey (NHIS) [2]. [3] studied HB 
estimation of overweight prevalence for adults by states, 
using data from NHANES III, [4] produced survey-weighted 
HB estimates of small area prevalence rates for states and 
age groups, for up to 20 binary variables related to drug use, 
using data from pooled National Household Surveys on Drug 
Abuse. [5] studied EB estimates of state-wide prevalence of 
the use of alcohol and drugs (e.g. Marijuana) among civilian 
non-institutionalized adults and adolescents in the United 
States. These estimates are used for planning and resource 
allocation, and to project the treatment needs of dependent 
users. 

Direct (or crude) estimates of rates, called standardized 
mortality ratios (SMRs) can be very unreliable, and a map of 
crude rates can badly distort the geographical distribution of 
disease incidence or mortality because the map tends to be 
dominated by areas of low population. Disease mapping, 

using model-based estimators, has received increased 
attention in recent years. Typically, sampling is not involved 
in disease mapping applications. 

3. Mortality and Disease Rates Models   
Mortality and disease rates of small area in a region or a 

county are often used to construct disease maps such as 
cancer atlases. Such maps are used to display geographical 
variability of a disease and identify high-rate areas 
warranting intervention. A simple small area model is 
obtained by assuming that the observed small area counts 𝑦𝑦𝑖𝑖  
are independent Poisson variables with conditional mean 

𝐸𝐸(𝑦𝑦𝑖𝑖|𝜆𝜆𝑖𝑖) =  𝑛𝑛𝑖𝑖𝜆𝜆𝑖𝑖        (1) 
and that 𝜆𝜆𝑖𝑖  ~𝑖𝑖𝑖𝑖𝑖𝑖   𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (𝛼𝛼, 𝜏𝜏).  
where 𝜆𝜆𝑖𝑖  is the true rate, 𝑛𝑛𝑖𝑖  is the number exposed in the ith 
area, and (𝛼𝛼, 𝜏𝜏) are the scale and shape parameters of the 
gamma distribution under this model, smoothed estimates of 
𝜆𝜆𝑖𝑖  are obtained using EB or HB methods[6],[7]. 

If 𝐴𝐴𝑖𝑖  denotes a set of “neighbouring” areas of the ith area, 
then a conditional autoregression (CAR) spatial model 
assumes that the conditional distribution of 𝑏𝑏𝑖𝑖𝜈𝜈𝑖𝑖  given 
(𝜈𝜈𝑙𝑙 ∶  𝑙𝑙 ≠ 𝑖𝑖) is given by  

𝑏𝑏𝑖𝑖𝜈𝜈𝑖𝑖|{𝜈𝜈𝑙𝑙 : 𝑙𝑙 ≠ 𝑖𝑖} �~ 𝑁𝑁�𝜌𝜌∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑏𝑏𝑙𝑙𝜈𝜈𝑙𝑙𝑙𝑙𝑙𝑙𝐴𝐴𝑖𝑖 ,𝑏𝑏𝑖𝑖2𝜎𝜎𝑣𝑣2�   (2) 

where { 𝑞𝑞𝑖𝑖𝑖𝑖}  are known constants satisfying 𝑞𝑞𝑖𝑖𝑖𝑖𝑏𝑏ℓ2 =
𝑞𝑞𝑙𝑙𝑙𝑙𝑏𝑏𝑖𝑖2 (𝑖𝑖 < 𝑙𝑙), and 𝛿𝛿 = (𝜌𝜌,𝜎𝜎𝑣𝑣2)𝑇𝑇  is the unknown parameter 
vector. 

CAR spatial models of the form (2) on log rates 
 𝜃𝜃𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆𝑖𝑖)                    (3) 

have also been proposed by[6]. 
The model on 𝜆𝜆𝑖𝑖  can be extended to incorporate area level 

covariates 𝑧𝑧𝑖𝑖 , for example: 
  𝜃𝜃𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑇𝑇𝛽𝛽 + 𝜈𝜈𝑖𝑖   with  𝑣𝑣𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖  𝑁𝑁(𝑂𝑂,𝜎𝜎𝑣𝑣2)    (4) 

[8] studied regression models on age-specific log rates 
𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆𝑖𝑖𝑖𝑖          (5) 

involving random slopes, where j denotes age. 
Joint mortality rates (𝑦𝑦1𝑖𝑖 ,𝑦𝑦2𝑖𝑖)  can also be modeled if 

( 𝑦𝑦1𝑖𝑖 ,𝑦𝑦2𝑖𝑖)  are asummed independently distributed 
conditional on (𝜆𝜆1𝑖𝑖 , 𝜆𝜆2𝑖𝑖) and 

𝜃𝜃𝑖𝑖 = (𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆1𝑖𝑖 , 𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆2𝑖𝑖)𝑇𝑇  ~𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁2(𝜇𝜇,𝛴𝛴)     (6) 
Further, 𝑦𝑦1𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎  𝑦𝑦2𝑖𝑖  are assumed to be conditionally 

independent Poisson variables with  
E(𝑦𝑦1𝑖𝑖| ℷ1𝑖𝑖) = 𝑛𝑛1𝑖𝑖𝜆𝜆1𝑖𝑖                (7) 

and E(𝑦𝑦2𝑖𝑖| 𝜆𝜆2𝑖𝑖) = 𝑛𝑛2𝑖𝑖𝜆𝜆2𝑖𝑖  
where 𝑦𝑦1𝑖𝑖  and 𝑛𝑛1𝑖𝑖  denote the number of deaths due to a 
disease (say malaria) and the population at risk at site (or 
area) 1 respectively and 𝑦𝑦2𝑖𝑖  and 𝑛𝑛2𝑖𝑖  denote the number of 
deaths due to the same disease and the population at risk at 
site (or area) 2 respectively. [9] showed that the bivariate 
model leads to improved estimates of the rate (𝜆𝜆1𝑖𝑖 , 𝜆𝜆2𝑖𝑖 ) 
compared to estimates based on separate univariate models. 
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4. Disease Mapping  
Mapping of small area mortality (or incidence) rates of 

disease such as cancer, malaria is a widely used tool in Public 
Health research. Such maps permit the analysis of 
geographical variation in rates of diseases which may be 
useful in formulating and assessing etiological hypotheses, 
resource allocation, and identifying areas of unusually high 
risk warranting intervention. 

The following are examples of studies of disease rates in 
the literature: [6] studied lip cancer rates in the 56 counties 
(small areas) of Scotland; [7] studied the incidence of 
leukemia in 281 census tracts (small areas) of upstate, New 
York. [8] studied all cancer mortality rates for white males in 
health service areas (small areas) of the United States; [10] 
studied prostrate cancer rates in Scottish counties; and [11] 
studied infant mortality rates for local health areas (small 
areas) in British Columbia, Canada. 

Worthy of note is the fact that sampling is not used in 
disease mapping only administrative data on event counts 
and related auxiliary variables are used in disease mapping. 

4.1. Disease Mapping Models  
Suppose that the country (or the region) used for disease 

mapping is divided into m non-overlapping small areas. 
Let 𝜃𝜃𝑖𝑖  be the unknown relative risk (RR) in the ith area. A 
direct (or crude) estimator of 𝜃𝜃𝑖𝑖  is given by the standardized 
mortality ratio (SMR) 

 𝜃𝜃𝑖𝑖� = 𝑦𝑦𝑖𝑖 𝑒𝑒𝑖𝑖⁄                      (8) 
where 𝑦𝑦𝑖𝑖  and 𝑒𝑒𝑖𝑖  denote the observed and expected number 
of deaths (cases) over a given period (𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 = 1,2, … ,𝑚𝑚) 
respectively. 

Where: 
𝑒𝑒𝑖𝑖 = 𝑛𝑛𝑖𝑖(∑ 𝑦𝑦𝑖𝑖𝑖𝑖 ∑ 𝑛𝑛𝑖𝑖𝑖𝑖⁄ )                (9) 

where is the number of person – years at risk in the ith area, 
and then treated as fixed. Some authors use mortality (event) 
rates 𝜏𝜏𝑖𝑖   as parameters instead of relative risks, and a crude 
estimator of 𝜏𝜏𝑖𝑖  is then given by 𝜏̂𝜏𝑖𝑖 = 𝑦𝑦𝑖𝑖 𝑛𝑛𝑖𝑖⁄  . However, the 
two approaches are equivalent since ∑ 𝑦𝑦𝑖𝑖𝑖𝑖 ∑ 𝑛𝑛𝑖𝑖𝑖𝑖⁄  is treated as 
a constant. 

A common assumption in disease mapping is that 𝑦𝑦𝑖𝑖  |𝜃𝜃𝑖𝑖  
~𝑖𝑖𝑖𝑖𝑖𝑖  Poisson (𝑒𝑒𝑖𝑖𝜃𝜃𝑖𝑖). Under this assumption, the maximum 
likelihood (ML) estimator of 𝜃𝜃𝑖𝑖  is the SMR, 𝜃𝜃𝑖𝑖� = 𝑦𝑦𝑖𝑖 𝑒𝑒𝑖𝑖⁄  

However, a map of crude rates {𝜃𝜃�𝑖𝑖} can badly distort the 
geographical distribution of disease incidence or mortality 
because it tends to be dominated by areas of low population, 
𝑒𝑒𝑖𝑖  exhibiting extreme SMR’s that are least reliable. 

 𝑉𝑉𝑉𝑉𝑉𝑉 (𝜃𝜃𝑖𝑖� ) = 𝜃𝜃𝑖𝑖 𝑒𝑒𝑖𝑖⁄                (10) 
is large if is small. 

Empirical Bayes (EB) or hierarchal bayes (HB) methods 
provide reliable estimators of relative risk (RR) by 
borrowing strength across areas. As a result, maps based on 
empirical Bayes (EB) or hierarchical bayes (HB) estimates 
are more reliable compared to crude maps. We will give 
account of empirical Bayes (EB) and hierarchical bayes (HB) 

methods for each of the disease model discussed based on 
simple linking models. 

4.1.1. Poisson-Gamma Model 
Given a two-stage model, at the first stage, assume 

𝑦𝑦𝑖𝑖  ~𝑖𝑖𝑖𝑖𝑖𝑖   Poisson (𝑒𝑒𝑖𝑖𝜃𝜃𝑖𝑖), 𝑖𝑖 = 1, 2,…, m. A conjugate model 
linking the relative risks 𝜃𝜃𝑖𝑖  is assumed in the second stage: 
𝜃𝜃𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖  gamma (𝜈𝜈,𝛼𝛼) denotes the gamma distribution with 
shape parameter 𝜈𝜈(> 0)  and scale parameter 𝛼𝛼( > 0) . 
Then we have  

f(𝜃𝜃𝑖𝑖  | 𝛼𝛼,𝜈𝜈) = 𝛼𝛼𝜈𝜈

𝛤𝛤(𝜐𝜐)
 𝑒𝑒−𝛼𝛼𝜃𝜃𝑖𝑖   𝜃𝜃𝑖𝑖𝜈𝜈−1     (11) 

and 
 𝐸𝐸(𝜃𝜃𝑖𝑖) = 𝜐𝜐 𝛼𝛼⁄ =  𝜇𝜇,      𝑉𝑉𝑉𝑉𝑉𝑉 (𝜃𝜃𝑖𝑖) = 𝜈𝜈 𝛼𝛼2⁄      (12) 

where:  
𝜃𝜃𝑖𝑖|𝑦𝑦𝑖𝑖 ,𝛼𝛼, 𝜈𝜈 ~𝑖𝑖𝑖𝑖𝑖𝑖  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑦𝑦𝑖𝑖 + 𝜈𝜈, 𝑒𝑒𝑖𝑖 + 𝛼𝛼)� , the bayes 

estimators of 𝜃𝜃𝑖𝑖  and posterior variance of 𝜃𝜃𝑖𝑖  are obtained 
from (3) by changing 𝛼𝛼  to 𝑒𝑒𝑖𝑖 + 𝛼𝛼  and 𝜈𝜈  to 𝑦𝑦𝑖𝑖 + 𝜈𝜈  such 
that: 

𝜃𝜃�𝑖𝑖𝐵𝐵(𝛼𝛼, 𝜈𝜈) = 𝐸𝐸(𝜃𝜃𝑖𝑖𝑦𝑦𝑖𝑖 ,𝛼𝛼, 𝜈𝜈) = (𝑦𝑦𝑖𝑖 + 𝜈𝜈) (𝑒𝑒𝑖𝑖 + 𝛼𝛼)⁄   (13) 
and  

𝑉𝑉𝑉𝑉𝑉𝑉 (𝜃𝜃𝑖𝑖𝑦𝑦𝑖𝑖 ,𝛼𝛼, 𝜈𝜈) = 𝑔𝑔1𝑖𝑖(𝛼𝛼, 𝜈𝜈,𝑦𝑦𝑖𝑖) = (𝑦𝑦𝑖𝑖 + 𝜈𝜈)/(𝑒𝑒𝑖𝑖 + 𝛼𝛼)2 (14) 
The maximum likelihood (ML) estimator of 𝛼𝛼  and 𝜈𝜈 

from the marginal distribution, 𝑦𝑦𝑖𝑖𝛼𝛼, 𝜈𝜈 ~𝑖𝑖𝑖𝑖𝑖𝑖  negative 
binomial, using the log likelihood is: 
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Closed form expressions for 𝛼𝛼�𝑀𝑀𝑀𝑀  and 𝜈̂𝜈𝑀𝑀𝑀𝑀  do not exist. 
However, [12] obtained simple moment estimators by 
equating the weighted sample mean 𝜃𝜃�𝑒𝑒 . = 1

𝑚𝑚
∑ (𝑒𝑒𝜄𝜄 𝑒𝑒.⁄ )𝜄𝜄 𝜃𝜃�𝜄𝜄  

and the weighted sample variance 𝑆𝑆𝑒𝑒2 = 1
𝑚𝑚 ∑ (𝑒𝑒𝑖𝑖 𝑒𝑒.⁄ )𝑖𝑖 �𝜃𝜃�𝑖𝑖 −

𝜃𝜃𝑒𝑒.2 to their expected values and then solving the resulting 
moment equations for 𝛼𝛼 and 𝜈𝜈, where 𝑒𝑒. = ∑ (𝑒𝑒𝑖𝑖 𝑚𝑚⁄ )𝑖𝑖 . This 
leads to moment estimators, 𝛼𝛼� and 𝜈̂𝜈, given by: 

𝜈𝜈
𝛼𝛼�
� = 𝜃𝜃�𝑒𝑒 .            (16) 

𝜈𝜈
𝛼𝛼�2
� = 𝑠𝑠𝑒𝑒2 − �𝜃𝜃�𝑒𝑒 . 𝑒𝑒 .⁄ �          (17) 

[13] provided more efficient movement estimators. The 
moment estimators may also be used as starting values for 
maximum likelihood (ML) iterations. 

Substituting the moment estimators 𝛼𝛼� and 𝜈̂𝜈 into (13) we 
get the empirical Bayes (EB) estimator of 𝜃𝜃𝑖𝑖  as  

𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸 = 𝜃𝜃�𝑖𝑖𝐵𝐵(𝛼𝛼�, 𝜈̂𝜈) = 𝛾𝛾�𝑖𝑖𝜃𝜃𝑖𝑖� + (1 − 𝛾𝛾�𝑖𝑖)𝜃𝜃�𝑒𝑒 . ,   (18) 

where 𝛾𝛾�𝑖𝑖 = 𝑒𝑒𝑖𝑖/(𝑒𝑒𝑖𝑖 + 𝛼𝛼�). It should be noted that 𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸  is a 
weighted average of the direct estimator (SMR) 𝜃𝜃𝑖𝑖�  and the 
synthetic estimator 𝜃𝜃�𝑒𝑒 ., and more weight is given to 𝜃𝜃𝑖𝑖�  as the 
area expected deaths,  𝑒𝑒𝑖𝑖 , increase. If 𝑆𝑆𝑒𝑒2 < �𝜃𝜃�𝑒𝑒 . 𝑒𝑒.⁄ �  then 
𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸  is taken as the synthetic estimator 𝜃𝜃�𝑒𝑒 .  . The empirical 
bayes (EB) estimator is nearly unbiased for 𝜃𝜃𝑖𝑖  in the sense 
that its bias is of order  𝑚𝑚−1, for large 𝑚𝑚.  
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The Jackknife method may be used to obtain a nearly 
unbiased estimator of MSE �𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸�. The jackknife estimator 
is given by 

𝑀𝑀𝑀𝑀𝑀𝑀𝐽𝐽�𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸� = 𝑚𝑚�1𝑖𝑖 + 𝑚𝑚�2𝑖𝑖      (19) 

where  

𝑚𝑚�1𝑖𝑖 = 𝑔𝑔1𝑖𝑖(𝛼𝛼� ,𝜈𝜈�,𝑦𝑦𝑖𝑖) −
𝑚𝑚−1
𝑚𝑚 �[𝑔𝑔1𝑖𝑖(𝛼𝛼�−𝑙𝑙 , 𝜈̂𝜈−𝑙𝑙 ,𝑦𝑦𝑖𝑖)

𝑚𝑚

𝑙𝑙=1
− 𝑔𝑔1𝑖𝑖(𝛼𝛼�, 𝜈̂𝜈,𝑦𝑦𝑖𝑖)]  

𝑚𝑚�2𝑖𝑖 = 𝑚𝑚−1
𝑚𝑚 ��𝜃𝜃�𝑖𝑖 ,−𝑙𝑙𝐸𝐸𝐸𝐸 − 𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸�

2
𝑚𝑚

𝑙𝑙=1

  

𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸 = 𝑘𝑘𝑖𝑖(𝑦𝑦𝑖𝑖 ,𝛼𝛼�, 𝜈̂𝜈 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃�𝑖𝑖 ,−𝑙𝑙𝐸𝐸𝐸𝐸 = 𝑘𝑘𝑖𝑖(𝑦𝑦𝑖𝑖 ,𝛼𝛼�−𝑙𝑙 , 𝜈̂𝜈−𝑙𝑙) 

where 𝛼𝛼�−𝑙𝑙  𝑎𝑎𝑎𝑎𝑎𝑎 𝜈̂𝜈−𝑙𝑙  are the delete – 𝑙𝑙  moment estimators 
obtained from {(𝑦𝑦𝑖𝑖 , 𝑒𝑒𝑖𝑖), 𝑖𝑖 ≠ 1,2, …𝑚𝑚} . Note that 
𝑀𝑀𝑀𝑀𝑀𝑀𝐽𝐽�𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸� is area-specific in the sense that it depends on 
𝑦𝑦𝑖𝑖 . [13] obtained a Taylor expansion estimator of MSE, 
using a parametric bootstrap to estimate the covariance 
matrix of (𝛼𝛼�, 𝜈̂𝜈). 

The linking gamma model on the 𝜃𝜃𝑖𝑖′ 𝑠𝑠 can be extended to 
allow for area -level covariates 𝑧𝑧𝑖𝑖 , such as degree of relative 
risk (𝑅𝑅𝑅𝑅). [6] allowed varying scale parameters, 𝛼𝛼𝑖𝑖 , and 
assumed a loglinear model on 

𝐸𝐸(𝜃𝜃𝑖𝑖) = 𝜈𝜈 𝛼𝛼𝑖𝑖⁄ : 𝑙𝑙𝑙𝑙𝑙𝑙�𝐸𝐸(𝜃𝜃𝑖𝑖)� = 𝑧𝑧𝑖𝑖𝑇𝑇𝛽𝛽     (20) 

Empirical bayes (EB) estimators for this extension are 
given by: 

 𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸(𝛼𝛼,𝛽𝛽) = 𝐸𝐸[ �𝜃𝜃𝑖𝑖|𝑦𝑦𝑖𝑖 ,𝛼𝛼, �𝛽𝛽] = [(𝑦𝑦𝑖𝑖 �� + 𝛽𝛽)/(𝑒𝑒𝑖𝑖 + 𝛼𝛼𝑖𝑖)] (21) 
and  

𝑉𝑉𝑉𝑉𝑉𝑉(�𝜃𝜃𝑖𝑖|𝑦𝑦𝑖𝑖 ,𝛼𝛼𝑖𝑖 ,𝛽𝛽) = 𝑔𝑔1𝑖𝑖(𝛼𝛼𝑖𝑖 ,𝛽𝛽,𝑦𝑦𝑖𝑖) = (𝑦𝑦𝑖𝑖 + 𝛽𝛽)/(𝑒𝑒𝑖𝑖 + 𝛼𝛼𝑖𝑖)2 (22) 
[14] studied the Poisson-gamma regression model in 

detail and proposed accurate approximations to the posterior 
mean and the posterior variance of 𝜃𝜃𝑖𝑖 . The posterior mean 
approximation is used as the empirical bayes (EB) estimator 
and the posterior variance approximation as a measure of its 
variability.  

(a) Hierarchical Bayes (HB) Estimation  
Let 𝜃𝜃𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑖𝑖  respectively denote the relative risk (RR), 

observed and expected number of cases (deaths) over a given 
period in the ith area (𝑖𝑖 = 1,2, …𝑚𝑚). A hierarchical bayes 
(HB) estimation of the Poisson-gamma model, is given by: 

(i) 𝑦𝑦𝑖𝑖|𝜃𝜃𝑖𝑖 � ~𝑖𝑖𝑖𝑖𝑖𝑖   𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  (𝑒𝑒𝑖𝑖𝜃𝜃𝑖𝑖) 
(ii) �𝜃𝜃𝑖𝑖|𝛼𝛼, 𝑣𝑣 ~𝑖𝑖𝑖𝑖𝑖𝑖  𝐺𝐺(𝜈𝜈,𝛼𝛼) 
(iii) 𝑓𝑓(𝛼𝛼, 𝜈𝜈) ∝ 𝑓𝑓(𝛼𝛼)𝑓𝑓(𝜈𝜈)            (23) 

with 𝑓𝑓(𝛼𝛼) ∝  1
𝛼𝛼

; 𝜈𝜈 ~ 𝐺𝐺 �𝑎𝑎 = 1
2

, 𝑏𝑏� 𝑏𝑏 > 0 

See [7]. 
The joint posterior 𝑓𝑓(𝜃𝜃,𝛼𝛼, 𝜈𝜈|𝑦𝑦�) is proper if at least one 𝑦𝑦𝑖𝑖  

is greater than zero. The Gibbs conditionals are given by:  
(i)    [�𝜃𝜃𝑖𝑖|𝛼𝛼, 𝑣𝑣,𝑦𝑦] ~𝑖𝑖𝑖𝑖𝑖𝑖 𝐺𝐺(𝑦𝑦𝑖𝑖 + 𝑣𝑣, 𝑒𝑒𝑖𝑖 + 𝛼𝛼)  
(ii)  [�𝛼𝛼|𝜃𝜃, 𝑣𝑣, �𝑦𝑦] ~𝐺𝐺(𝑚𝑚𝑚𝑚,∑ 𝜃𝜃𝑖𝑖𝑖𝑖 )  
(iii)  𝑓𝑓(�𝜈𝜈|𝜃𝜃,𝛼𝛼,𝑦𝑦) ∝ (∏𝜃𝜃𝑖𝑖𝜈𝜈−1)𝑖𝑖  𝑒𝑒𝑒𝑒𝑒𝑒(−𝑏𝑏𝑏𝑏)𝛼𝛼𝑣𝑣𝑣𝑣/𝛤𝛤𝑚𝑚(𝜈𝜈)   (24) 

Monte Carlo Markov Chain (MCMC) samples can be 

generated directly from (i) and (ii) of (24), but we need to 
use the Metropolis-Hastings (M-H) algorithm to generate 
samples from (iii) of (24). Using the Monte Carlo Markov 
Chain (MCMC) samples  �𝜃𝜃𝑖𝑖

(𝑘𝑘), … ,𝜃𝜃𝑚𝑚
(𝑘𝑘),𝑣𝑣(𝑘𝑘),𝛼𝛼𝑘𝑘 ; 𝑘𝑘 = 𝑑𝑑 +

1, … ,𝑑𝑑 + 𝐷𝐷� , posterior quantities of interest may be 
computed, in particular, the posterior mean    𝐸𝐸[𝜃𝜃𝑖𝑖|𝑦𝑦�]  and 
posterior variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜃𝜃𝑖𝑖|𝑦𝑦) for each area  𝑖𝑖 = 1,2, … ,𝑚𝑚. 

4.1.2. Log-Normal Model 
Log-normal two-stage models have also been proposed. 

The first-stage model is not changed, but the second-stage 
linking model is changed to 𝜉𝜉𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃𝑖𝑖) ~𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁(𝜇𝜇,𝜎𝜎2), 𝑖𝑖 =
1,2, … ,𝑚𝑚. 

As in the case of logit-normal models, implementation of 
empirical bayes (EB) is more complicated for the log-normal 
model because no closed-form expression for the bayes 
estimator, 𝜃𝜃�𝑖𝑖𝐵𝐵(𝜇𝜇,𝜎𝜎2) , and the posterior variance, 
𝑉𝑉𝑉𝑉𝑉𝑉(�𝜃𝜃𝑖𝑖|𝑦𝑦𝑖𝑖 , 𝜇𝜇,𝜎𝜎2)  exist. [6] approximated the posterior 
density, 𝑓𝑓( �𝜉𝜉|𝑦𝑦, 𝜇𝜇,𝜎𝜎2), by a multivariate normal which gives 
an explicit approximation to 𝜉𝜉𝑖𝑖𝐵𝐵 , where 𝜉𝜉 = (𝜉𝜉𝑖𝑖 , … , 𝜉𝜉𝑚𝑚 )𝑇𝑇  
and 𝑦𝑦 = (𝑦𝑦1, … ,𝑦𝑦𝑚𝑚)𝑇𝑇 . Maximum likelihood estimators of 
model parameters 𝜇𝜇 and 𝜎𝜎2  were obtained using the EM 
algorithm and then used in the approximate formula for 𝜉𝜉𝑖𝑖𝐵𝐵 
to get EB estimators 𝜉𝜉𝑖𝑖𝐸𝐸𝐸𝐸  of 𝜉𝜉𝑖𝑖  and 𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜉𝜉𝑖𝑖𝐸𝐸𝐸𝐸) of 𝜃𝜃𝑖𝑖 . 

The empirical bayes (EB) estimator 𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸 , however, is not 
nearly unbiased for 𝜃𝜃𝑖𝑖 . Moment estimators of 𝜇𝜇  and 𝜎𝜎 
proposed by [15] may be used to simplify the calculation of 
Jackknife estimator of 𝑀𝑀𝑀𝑀𝑀𝑀�𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸�. 

The basic log-normal model readily extends to the case of 
covariates 𝑧𝑧𝑖𝑖 : 𝜉𝜉𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(𝑧𝑧𝑖𝑖𝑇𝑇𝛽𝛽,𝜎𝜎2). 

(a) Hierarchical Bayes Estimation  
A hierarchical bayes (HB) estimator of the basic 

log-normal model is given by:  
(i) �𝑦𝑦𝑖𝑖|𝜃𝜃𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑒𝑒𝑖𝑖𝜃𝜃𝑖𝑖)  
(ii) 𝜉𝜉𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃𝑖𝑖)|𝜇𝜇�,𝜎𝜎2~𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁(𝜇𝜇,𝜎𝜎2) 
(iii) 𝑓𝑓(𝜇𝜇,𝜎𝜎2) ∝ 𝑓𝑓(𝜇𝜇)𝑓𝑓(𝜎𝜎2)             (25) 

with 𝑓𝑓(𝜇𝜇) ∝ 1;𝜎𝜎−2~𝐺𝐺(𝑎𝑎, 𝑏𝑏);𝑎𝑎 ≥ 0, 𝑏𝑏 > 0 
The joint posterior 𝑓𝑓(𝜃𝜃, 𝜇𝜇, �𝜎𝜎2|𝑦𝑦) is proper if at least one 

𝑦𝑦𝑖𝑖  is greater than zero, it is easy according to[2] to verify that 
the Gibbs conditionals are given by:  

(i) 𝑓𝑓(�𝜃𝜃𝑖𝑖|𝜇𝜇,𝜎𝜎2,𝑦𝑦) ∝ 𝜃𝜃𝑖𝑖
𝑦𝑦𝑖𝑖−1𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑒𝑒𝑖𝑖𝜃𝜃𝑖𝑖 −

1
2𝜎𝜎2 (𝜉𝜉𝑖𝑖 − 𝜇𝜇)2� 

(ii) [�𝜇𝜇|𝜃𝜃,𝜎𝜎2,𝑦𝑦]~𝑁𝑁 � 1
𝑚𝑚
∑ 𝜉𝜉𝑖𝑖𝑖𝑖 , 𝜎𝜎

2

𝑚𝑚
� 

(iii) [�𝜎𝜎2|𝜃𝜃, 𝜇𝜇,𝑦𝑦]~𝐺𝐺(𝑚𝑚
2

+ 𝑎𝑎, 1
2
∑ (𝜉𝜉𝑖𝑖 − 𝜇𝜇)2 + 𝑏𝑏)𝑖𝑖      (26) 

See [16] 
Monte Carlo Markov Chain (MCMC) samples can be 

generated directly from (ii) and (iii) of (26), but we need to 
use Metropolis-Hastings (M-H) algorithm to generate 
samples from (i) of (26). We can express (i) as:  

           𝑓𝑓(�𝜃𝜃𝑖𝑖|𝜇𝜇,𝜎𝜎2,𝑦𝑦) ∝ 𝑘𝑘(𝜃𝜃𝑖𝑖)ℎ(𝜃𝜃𝑖𝑖|𝜇𝜇�,𝜎𝜎2) 

Where 𝑘𝑘(𝜃𝜃𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑒𝑒(− 𝑒𝑒𝑖𝑖𝜃𝜃𝑖𝑖)𝜃𝜃𝑖𝑖
𝑦𝑦𝑖𝑖  

and     ℎ�(�𝜃𝜃𝑖𝑖|𝜇𝜇,𝜎𝜎2) ∝ 𝑔𝑔ı(𝜃𝜃𝑖𝑖)𝑒𝑒𝑒𝑒𝑒𝑒{−(𝜉𝜉𝑖𝑖 − 𝜇𝜇)2/2𝜎𝜎2}� 
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with 𝑔𝑔ı(𝜃𝜃𝑖𝑖) = 𝜕𝜕𝜕𝜕(𝜃𝜃𝑖𝑖)/𝜕𝜕𝜃𝜃𝑖𝑖  and 𝑔𝑔(𝜃𝜃𝑖𝑖) = 𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃𝑖𝑖) 
We can use 𝑘𝑘(𝜃𝜃𝑖𝑖|𝜇𝜇�,𝜎𝜎2) to draw the candidate, 𝜃𝜃𝑖𝑖∗, noting 

that 𝜃𝜃𝑖𝑖 = 𝑔𝑔−1(𝜉𝜉𝑖𝑖) and �𝜉𝜉𝑖𝑖|𝜇𝜇,𝜎𝜎2~𝑁𝑁(𝜇𝜇,𝜎𝜎2). The acceptance 
probability used in the M-H algorithm is then given by 
𝑎𝑎�𝜃𝜃(𝑘𝑘),𝜃𝜃𝑖𝑖∗� = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑘𝑘(𝜃𝜃𝑖𝑖∗)/𝑘𝑘�𝜃𝜃𝑖𝑖

(𝑘𝑘), 1�� . The basic 
log-normal model with Poisson counts 𝑦𝑦𝑖𝑖  as noted earlier, 
readily extends to the case of covariates 𝑧𝑧𝑖𝑖 where (ii) and (iii) 
of (25) become respectively:  

(i) 𝜉𝜉𝑖𝑖  = �𝜉𝜉𝑖𝑖|𝛽𝛽,𝜎𝜎2~𝑁𝑁(𝑍𝑍𝑖𝑖𝑇𝑇𝛽𝛽,𝜎𝜎2) 
(ii) 𝑓𝑓(𝛽𝛽,𝜎𝜎2) ∝ 𝑓𝑓(𝛽𝛽)𝑓𝑓(𝜎𝜎2)            (27) 

With 𝑓𝑓(𝛽𝛽) ∝ 1,𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎−2~𝐺𝐺(𝑎𝑎, 𝑏𝑏) 

4.1.3. Car-Normal Model  
The basic log-normal can be extended to allow spatial 

correlations; mortality data sets often exhibit significant 
spatial relationship between the log relative risks, 𝜉𝜉𝑖𝑖 =
𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃𝑖𝑖). A simple conditional autoregression (CAR)-normal 
model on 𝜉𝜉  assumes that 𝜉𝜉  is a multivariate normal 
specified by: 

         𝐸𝐸(�𝜉𝜉𝑖𝑖 |𝜉𝜉𝑙𝑙 , 𝑙𝑙 ≠ 𝑖𝑖) = 𝜇𝜇 + 𝜌𝜌∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑙𝑙(≠𝑖𝑖) (𝜉𝜉𝑙𝑙 − 𝜇𝜇)     (28) 

          𝑉𝑉𝑉𝑉𝑉𝑉(�𝜉𝜉𝑖𝑖 | �𝜉𝜉𝑙𝑙 , 𝑙𝑙 ≠ 𝑖𝑖) = 𝜎𝜎2            (29) 
where 𝜌𝜌 is the correlation parameter and 𝑄𝑄 = (𝑞𝑞𝑖𝑖𝑖𝑖) is the 
“adjacency” matrix of the map given by 𝑞𝑞𝑖𝑖𝑖𝑖 = 1 if 𝑖𝑖 and 𝑙𝑙 
are adjacent areas and 𝑞𝑞𝑖𝑖𝑖𝑖 = 0 otherwise. It follows from 
[17] that 𝜉𝜉 is multivariate normal with mean 𝜇𝜇 = 𝜇𝜇𝜇𝜇 and 
covariance matrix 𝛴𝛴 = 𝜎𝜎2(𝛪𝛪 − 𝜌𝜌𝑄𝑄−1), where 𝜌𝜌 is bounded 
above by the inverse of the largest eigenvalue of 𝑄𝑄 . [6] 
approximated the posterior density, 𝑓𝑓(𝜉𝜉|𝑦𝑦�, 𝜇𝜇,𝜎𝜎2,𝜌𝜌) similar 
to the log-normal case.  

The assumption of equation (29) of a constant conditional 
variance for the 𝜉𝜉𝑖𝑖′ 𝑠𝑠 results in the conditional mean of (28) 
proportional to the sum of the neighbouring 𝜉𝜉𝑖𝑖′ 𝑠𝑠 rather than 
the mean of the neighbouring 𝜉𝜉𝑖𝑖′ 𝑠𝑠  (local mean). [18] 
Proposed an alternative joint density of the 𝜉𝜉𝑖𝑖′ 𝑠𝑠 given by: 
𝑓𝑓(𝜉𝜉) ∝ (𝜎𝜎2)−𝑚𝑚 2⁄ 𝑒𝑒𝑒𝑒 𝑝𝑝  [−∑ ∑(𝜉𝜉𝑖𝑖 − 𝜉𝜉𝑙𝑙)2𝑞𝑞𝑖𝑖𝑖𝑖/(2𝜎𝜎2)𝑖𝑖≠𝑙𝑙 ] (30) 

This specification leads to:  
       𝐸𝐸(�𝜉𝜉𝑖𝑖 |𝜉𝜉𝑙𝑙 , 𝑙𝑙 ≠ 𝑖𝑖) = 𝛴𝛴𝑙𝑙𝑞𝑞𝑖𝑖𝑖𝑖𝜉𝜉𝑙𝑙/𝛴𝛴𝑙𝑙𝑞𝑞𝑖𝑖𝑖𝑖         (31) 

And  
  𝑉𝑉𝑉𝑉𝑉𝑉(�𝜉𝜉𝑖𝑖|𝜉𝜉𝑙𝑙 , 𝑙𝑙 ≠ 𝑖𝑖) = 𝜎𝜎2/∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑙𝑙       (32) 

Here the conditional variance is inversely proportional to 
𝛴𝛴𝑙𝑙𝑞𝑞𝑖𝑖𝑖𝑖 , the number of neighbours of area 𝑖𝑖 and the conditional 
mean is equal to the mean of the neighbouring values 𝜉𝜉𝑙𝑙 . In 
the context of disease mapping, the alternative specification 
may be more appropriate [2]. 

(a) Hierarchical Bayes Estimation  
As noted earlier, the basic log-normal can be extended to 

allow spatial covariates. A hierarchical bayes (HB) estimator 
of the spatial CAR-normal model is given by:  

(i) 𝑦𝑦𝑖𝑖|𝑒𝑒𝑖𝑖  �~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑒𝑒𝑖𝑖𝜃𝜃𝑖𝑖) 
(ii) �𝜉𝜉𝑖𝑖 |𝜉𝜉𝑗𝑗 (𝑗𝑗≠𝑖𝑖),𝜌𝜌,𝜎𝜎2~𝑁𝑁[𝜇𝜇 + 𝜌𝜌∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑙𝑙 (𝜉𝜉𝑙𝑙 − 𝜇𝜇),𝜎𝜎2] 
(iii) 𝑓𝑓(𝜇𝜇,𝜎𝜎2,𝜌𝜌) ∝ 𝑓𝑓(𝜇𝜇)𝑓𝑓(𝜎𝜎2)𝑓𝑓(𝜌𝜌)           (33) 

with 𝑓𝑓(𝜇𝜇) ∝ 1; 𝜎𝜎−2~ 𝐺𝐺(𝑎𝑎, 𝑏𝑏);𝑎𝑎 ≥ 0, 𝑏𝑏 > 0;𝜌𝜌~𝑈𝑈(0,𝜌𝜌0) 
where 𝜌𝜌0  denotes the maximum value of 𝜌𝜌  in the 
CAR-model, and 𝑄𝑄 = (𝑞𝑞𝑖𝑖𝑖𝑖) is the “adjacency” matrix of the 
map with 𝑞𝑞𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑙𝑙𝑙𝑙 ,    𝑞𝑞𝑖𝑖𝑖𝑖 = 1 if 𝑖𝑖 and 𝑙𝑙 are adjacent areas 
and 𝑞𝑞𝑖𝑖𝑖𝑖 = 0 otherwise.  

[16] obtained the Gibbs conditionals. In particular, 
      [ �𝜇𝜇|𝜃𝜃,𝜎𝜎2,𝜌𝜌,𝑦𝑦]~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

                 [�𝜎𝜎−2|𝜃𝜃, 𝜇𝜇,𝜌𝜌,𝑦𝑦]~ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
                 [�𝜌𝜌|𝜃𝜃, 𝜇𝜇,𝜎𝜎2,𝑦𝑦]~ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
and ��𝜃𝜃𝑖𝑖|𝜃𝜃𝑗𝑗 (𝑗𝑗≠𝑖𝑖),𝜇𝜇,𝜎𝜎2,𝜌𝜌,𝑦𝑦� does not admit a closed form in 
the sense that the conditional is known only up to a 
multiplicative constant. Monte Carlo Markov Chain (MCMC) 
samples can be generated directly from the three conditionals, 
but we need to use the M-H algorithm to generate samples 
from the conditionals ��𝜃𝜃𝑖𝑖|𝜃𝜃𝑗𝑗 (𝑗𝑗≠𝑖𝑖),𝜇𝜇,𝜎𝜎2,𝜌𝜌,𝑦𝑦� , 𝑖𝑖 = 1,2, …𝑚𝑚 
[2]. 

4.2. Two-Level Models 
Let 𝑦𝑦𝑖𝑖𝑖𝑖  and 𝑛𝑛𝑖𝑖𝑖𝑖  denote the number of cases (deaths) and 

the population at risk in the 𝑗𝑗𝑗𝑗ℎ   age class in the 𝑖𝑖𝑖𝑖ℎ area 
(𝑗𝑗 = 1, … , 𝐽𝐽; 𝑖𝑖 = 1, … ,𝑚𝑚)  respectively. Using the data 
�𝑦𝑦𝑖𝑖𝑖𝑖 ,𝑛𝑛𝑖𝑖𝑖𝑖 �  it is of interest to estimate the age-specific 
mortality rates 𝜏𝜏𝑖𝑖𝑖𝑖  and the age-adjusted rates ∑ 𝑎𝑎𝑗𝑗 𝜏𝜏𝑖𝑖𝑖𝑖𝑗𝑗  
where the 𝑎𝑎𝑗𝑗′𝑠𝑠 are specified constant.  

The basic assumption is  
�𝑦𝑦𝑖𝑖𝑖𝑖 �𝜏𝜏𝑖𝑖𝑖𝑖  ~𝑖𝑖𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑛𝑛𝑖𝑖𝑖𝑖 𝜏𝜏𝑖𝑖𝑖𝑖 )       (34) 

[8] studied HB estimation under different linking models.  
𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑖𝑖𝑖𝑖 ) = 𝑧𝑧𝑖𝑖𝑖𝑖𝑇𝑇 𝛽𝛽 + 𝑣𝑣𝑖𝑖 , �∨𝑖𝑖|𝜎𝜎𝑖𝑖𝑖𝑖2 ∼𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0,𝜎𝜎𝑣𝑣2    (35) 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑖𝑖𝑖𝑖 ) = 𝑧𝑧𝑗𝑗𝑇𝑇𝛽𝛽𝑖𝑖 ,𝛽𝛽𝑖𝑖|𝛽𝛽�,∆~𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑝𝑝(𝛽𝛽,∆)       (36) 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑖𝑖𝑖𝑖 ) = 𝑧𝑧𝑗𝑗𝑇𝑇𝛽𝛽𝑖𝑖 + 𝛿𝛿𝑗𝑗 , �𝛽𝛽𝑖𝑖 |𝛽𝛽, 

∆ ~𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑝𝑝(𝛽𝛽,∆), 𝛿𝛿𝑗𝑗~𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁(0,𝜎𝜎2)         (37) 

where 𝑧𝑧𝑗𝑗  is a 𝑝𝑝 × 1  vector of covariance and 𝛿𝛿𝑗𝑗  is an 
“offset” corresponding to age class 𝑗𝑗. [1] assumed that flat 
prior 𝑓𝑓(𝛽𝛽) ∝ 1 and proper diffuse (that is, proper with very 
large variance) priors for 𝜎𝜎𝑣𝑣2,∆ and  𝜎𝜎2. For model selection, 
they used the posterior expected predictive deviance, the 
posterior predictive value and measures based on the 
cross-validation productive densities. 

5. Examples  
We now present some illustrative examples of the 

application of Small Area Estimation (SAE) in health – 
disease mapping. 

(i) Lip Cancer 
[16] modeled 𝜃𝜃𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆𝑖𝑖  as 𝑁𝑁(𝜇𝜇,𝜎𝜎2) . He also 

considered a CAR spatial model on the  𝜃𝜃𝑖𝑖′ 𝑠𝑠  which relates 
each 𝜃𝜃𝑖𝑖  to a set of neighbourhood areas of area  𝑖𝑖 . He 
developed model-based estimates of lip cancer incidence in 
Scotland for each of 56 counties.  

[6] applied empirical bayes (EB) estimation to data on 
observed cases, 𝑦𝑦𝑖𝑖 , and expected cases, 𝑒𝑒𝑖𝑖 , of lip cancer 
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registered during the period 1975 – 1980 in each of 56 
counties (small area) of Scotland. They reported the SMR, 
the empirical bayes (EB) estimate of 𝜃𝜃𝑖𝑖  based on the 
Poisson-gamma model �𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸(1)�  and the approximate 
empirical bayes (EB) estimates of 𝜃𝜃𝑖𝑖  based on the 
log-normal model and the CAR-normal model (denoted 
𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸(2), 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸(3)) for each of the 56 counties (all values 
multiplied by 100). The SMR-values varied between 0 and 
652 while the empirical bayes (EB) estimates showed 
considerably less variability across counties as expected: 
𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸(1) varied between 31 and 422 (with cv = 0.78) and 
𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸(2) varied between 34 to 495 (with cv=0.85), suggesting 
little difference between the two sets of empirical bayes (EB)  
estimates. Ranks of empirical bayes (EB) estimates differed 
little from the corresponding ranks of the SMRs for most 
counties, despite less variability exhibited by the empirical 
bayes (EB) estimates.  

For the CAR-normal model, the adjacency matrix, Q, was 
specified by listing adjacent counties for each county 𝑖𝑖. The 
maximum likelihood (ML) estimates of 𝜌𝜌  was 0.174 
compared to the upper bound of 1.175, suggesting a high 
degree of spatial relationship in the data set. Most of the 
CAR estimates, 𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸(3) , differed little from the 
corresponding estimates 𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸(1) and 𝜃𝜃�𝑖𝑖𝐸𝐸𝐸𝐸(2) based on the 
independence assumption. Counties with few cases, 𝑦𝑦𝑖𝑖  and 
SMRs differing appreciably from adjacent counties are the 
only counties affected substantially by spatial correlation. 
For instance, county number 24 with 𝑦𝑦24 = 7 is adjacent to 
several low-risk counties, and the CAR estimate 𝜃𝜃�24

𝐸𝐸𝐸𝐸(3) =
83.5  is substantially smaller than 𝜃𝜃�24

𝐸𝐸𝐸𝐸(1) = 127.7  and 
𝜃𝜃�24
𝐸𝐸𝐸𝐸(2) = 123.6 based on the independence assumption.  
[16] applied hierarchical bayes (HB) estimator to the same 

data using the log-normal and the CAR-normal models. The 
hierarchical bayes (HB) estimates 𝐸𝐸(𝜃𝜃𝑖𝑖|𝑦𝑦)  of lip cancer 
incidence are very similar for the two models, but the 
standard errors, �𝑉𝑉𝑉𝑉𝑉𝑉(𝜃𝜃𝑖𝑖|𝑦𝑦) , are smaller for the 
CAR-normal as it exploits the spatial structure of the data.  

[19] proposed a spatial log-normal model that allows 
covariates 𝑧𝑧𝑖𝑖 . It is given by: 

(i) �𝑦𝑦𝑖𝑖|𝑒𝑒𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑒𝑒𝑖𝑖𝜃𝜃𝑖𝑖) 
(ii) 𝜉𝜉𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑇𝑇𝛽𝛽 + 𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖               (38) 

where 𝑧𝑧𝑖𝑖𝑇𝑇𝛽𝛽 does not include an intercept term.  
𝑣𝑣𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁(0,𝜎𝜎𝑉𝑉2) and the 𝑢𝑢𝑖𝑖′ 𝑠𝑠 have joint density of (30): 
𝑓𝑓(𝑢𝑢) ∝ (𝜎𝜎𝑢𝑢2)−𝑚𝑚/2𝑒𝑒𝑒𝑒𝑒𝑒[−∑∑ (𝑖𝑖≠𝑙𝑙 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑙𝑙)2𝑞𝑞𝑖𝑖𝑖𝑖/(2𝜎𝜎2)] , 

where 𝑞𝑞𝑖𝑖𝑖𝑖 ≥ 0 for all 1 ≤ 𝑖𝑖 ≠ 𝑙𝑙 ≤ 𝑚𝑚. 
(iii) 𝛽𝛽,𝜎𝜎𝑢𝑢2  and 𝜎𝜎𝑉𝑉2  are mutually independents with  

𝑓𝑓(𝛽𝛽) ∝ 1 
                  𝜎𝜎𝑢𝑢−2~𝐺𝐺(𝑎𝑎𝑢𝑢 , 𝑏𝑏𝑢𝑢)  and    𝜎𝜎𝑉𝑉−2~𝐺𝐺(𝑎𝑎𝑣𝑣 , 𝑏𝑏𝑣𝑣)  (39) 
[19] showed that the Gibbs conditionals except 

 ��𝜃𝜃𝑖𝑖|𝜃𝜃𝑙𝑙(𝑙𝑙≠𝑖𝑖),𝛽𝛽, 𝜇𝜇,𝜎𝜎𝑢𝑢2,𝜎𝜎𝑉𝑉2,𝑦𝑦� , admit closed forms. They also 
established conditionals for the propriety of the joint 
posterior, in particular, we need  𝑏𝑏𝑢𝑢 > 0,𝑏𝑏𝑣𝑣 > 0. 

(ii) Leukemia Incidence  
[19] applied the HB method based on the model given in 

(39), to leukemia incidence estimation for m=281 census 
tracts (small area) in an eight-county region of upstate New 
York. Here 𝑞𝑞𝑖𝑖𝑖𝑖 = 1 if 𝑖𝑖 and 𝑙𝑙 are neighbours and 𝑞𝑞𝑖𝑖𝑖𝑖 = 0 
otherwise, and 𝑧𝑧𝑖𝑖  is a scalar (𝜌𝜌 = 1) variable 𝑧𝑧𝑖𝑖  denoting 
the inverse distance of the centroid of the ith census tract 
from the nearest hazardous waste site containing 
trichloroethylene (TCE), a common contaminant of ground 
water (See [19] for details). 

(iii) Mortality Rates  
[8] applied the hierarchical bayes (HB) method to estimate 

age-specific and age-adjusted mortality rates for U.S. Health 
Service Areas (HSAs). They studied one of the disease 
categories, all cancer for white males, presented in the 1996 
Atlas of United States Mortality. The number of HSAs 
(small areas), m, is 789 and the number of age categories, J, 
is 10:0-4, 5-14, …, 75 – 84, 85 and higher, coded as 0.25, 
1, …,9. The vector of auxiliary variables is given by 
𝑧𝑧𝑗𝑗 = [1, 𝑗𝑗 − 1, (𝑗𝑗 − 1)2, (𝑗𝑗 − 1)3,𝑚𝑚𝑚𝑚𝑚𝑚{0, ((𝑑𝑑 − 1) − 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)3}]𝑇𝑇 

for 𝑗𝑗 ≥ 2 and  

 
where the value of the “knot” was obtained by maximizing 
the likelihood based on marginal deaths 𝑦𝑦𝑖𝑖 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖  and 
population at risk, 𝑛𝑛𝑗𝑗 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 , where �𝑦𝑦𝑗𝑗 �𝑛𝑛𝑗𝑗 , 𝜏𝜏𝑗𝑗~𝑖𝑖𝑖𝑖𝑖𝑖  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑛𝑛𝑗𝑗 𝜏𝜏𝑗𝑗 ) with 𝑙𝑙𝑙𝑙𝑙𝑙𝜏𝜏𝑗𝑗 = 𝑧𝑧𝑖𝑖𝑇𝑇𝛽𝛽. The auxiliary vector 𝑧𝑧𝑗𝑗  
was used in the Atlas model based on a normal 
approximation to 𝑙𝑙𝑙𝑙𝑙𝑙(𝛾𝛾𝑖𝑖𝑖𝑖 )  with mean log ( 𝜏𝜏𝑖𝑖𝑖𝑖 )  and 
matching linking model given by (36) where 𝛾𝛾𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖 /𝑛𝑛𝑖𝑖𝑖𝑖  
is the crude rate.  

[8] used unmatched sampling linking model, based on the 
Poisson sampling model of (34) and the linking models of 
(35) – (37). We denote these models as models 1,2 and 3 
respectively. Also they used the Monte Carlo Markov Chain 
(MCMC) samples of generated from the three models to 
calculate the values of the posterior expected predictive 
deviance.  
𝐸𝐸{∆(𝑦𝑦;𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 )|𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 �}  using the chi-square measure 

∆(𝑦𝑦,𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 ) = ∑ ∑ (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖 ,𝑜𝑜𝑜𝑜𝑜𝑜 )2/(𝑦𝑦𝑖𝑖𝑖𝑖 + 0.5)𝑗𝑗𝑖𝑖 . They also 
calculated the posterior predictive p-values, using 𝑇𝑇(𝑦𝑦, 𝜏𝜏) =
∑ ∑ (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑖𝑖 𝜏𝜏𝑖𝑖𝑖𝑖 )2/(𝑛𝑛𝑖𝑖𝑖𝑖 𝜏𝜏𝑖𝑖𝑖𝑖 )𝑗𝑗𝑖𝑖 , the standardized 
cross-validation residuals  

𝑑𝑑2,𝑖𝑖𝑖𝑖
∗ =

𝜏𝜏𝑖𝑖𝑖𝑖 ,𝑜𝑜𝑜𝑜𝑜𝑜 −𝐸𝐸(�𝛾𝛾𝑖𝑖𝑖𝑖 �𝑦𝑦(𝑖𝑖𝑖𝑖 ),𝑜𝑜𝑜𝑜𝑜𝑜 )

�𝑉𝑉𝑉𝑉𝑉𝑉 �𝛾𝛾𝑖𝑖𝑖𝑖 �𝑦𝑦(𝑖𝑖𝑖𝑖 )𝑜𝑜𝑜𝑜𝑜𝑜 �
     (40) 

where 𝑦𝑦(𝑖𝑖𝑖𝑖 ),𝑜𝑜𝑜𝑜𝑜𝑜  denotes all elements of 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜  except 𝑦𝑦𝑖𝑖𝑖𝑖 ,𝑜𝑜𝑜𝑜𝑜𝑜  
(See [2]; section 10.2.28). The residuals 𝑑𝑑2,𝑖𝑖𝑖𝑖

∗  were 
summarized by counting: 

(a) the number of (𝑖𝑖, 𝑗𝑗)  such that |𝑑𝑑2,𝑖𝑖𝑖𝑖
∗ | ≥ 3 , called 

“outliers” , and  
(b) the number of HSAs is such that 𝑑𝑑2,𝑖𝑖𝑖𝑖

∗ ≥ 3 for at least 
one 𝑗𝑗, called “∥ of HSAs”. 

[20] used models and methods similar to those in[19] to 
estimate age-specific and age-adjusted mortality rates for 
chronic obstructive pulmonary disease for white males in 
HSAs.  
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6. Extensions  
Various extensions of the disease mapping models, 

studied so far have been proposed in recent literature. [9] 
proposed a two-stage, bivariate logit-normal model to study 
joint relative risks (or mortality rates), 𝜃𝜃1𝑖𝑖  and 𝜃𝜃2𝑖𝑖 , of two 
cancer sites (e.g. lung and large bowel cancers) or two 
groups (e.g. lung cancer in males and females) over several 
geographical areas. Denote the observed and expected 
number of deaths at the two sites as (𝑦𝑦1𝑖𝑖 ,𝑦𝑦2𝑖𝑖) and (𝑒𝑒1𝑖𝑖 , 𝑒𝑒2𝑖𝑖) 
respectively for the ith area (𝑖𝑖 = 1, … ,𝑚𝑚). The first stage 
assumes that ( 𝑦𝑦1𝑖𝑖 ,𝑦𝑦2𝑖𝑖)|(�𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖)~𝑖𝑖𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑒𝑒1𝑖𝑖𝜃𝜃1𝑖𝑖) ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑒𝑒2𝑖𝑖𝜃𝜃2𝑖𝑖), 𝑖𝑖 = 1, … ,𝑚𝑚 , where * denotes that 
𝑓𝑓(𝑦𝑦1𝑖𝑖 , �𝑦𝑦2𝑖𝑖|𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖) = 𝑓𝑓(𝑦𝑦1𝑖𝑖|𝜃𝜃1𝑖𝑖)(𝑦𝑦2𝑖𝑖|𝜃𝜃2𝑖𝑖) . The joint risks 
(𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖) are linked in the second stage by assuming that       
(logit (𝜃𝜃1𝑖𝑖), logit (𝜃𝜃2𝑖𝑖)) ~𝑖𝑖𝑖𝑖𝑖𝑖  bivariate normal with means 
𝜇𝜇1,𝜇𝜇2  , standard deviations 𝜎𝜎1  and 𝜎𝜎2  and correlation 𝜌𝜌, 
denoted 𝑁𝑁(𝜇𝜇1,𝜇𝜇2,𝜎𝜎1,𝜎𝜎2,𝜌𝜌) . Bayes estimators of 𝜃𝜃1𝑖𝑖  and 
𝜃𝜃2𝑖𝑖  involve double integrals which may be calculated 
numerically using Gauss-Hermite quadrature. Empirical 
bayes (EB) estimators are obtained by substituting maximum 
likelihood (ML) estimators of model parameters in the bayes 
estimators. [9] applied the bivariate empirical bayes (EB) 
method to two data sets consisting of cancer mortality rates 
in 115 counties of the State of Missouri during 1972 – 1981.  

(i) Lung and large bowel cancers  
(ii) Lung cancer in males and females  
The empirical bayes (EB) estimates based on the bivariate 

model lead to improved efficiency for each site (group) 
compared to the empirical bayes (EB) estimates based on the 
univariate logit-normal model, because of significant 
correlation: 𝜌𝜌� = 0.54 for data set (i) and 𝜌𝜌� = 0.76 for data 
set (ii). [21] first-order approximation to the posterior 
variance was used as a measure of variability of the empirical 
bayes (EB) estimates.  

[22] extended the bivariate model by introducing spatial 
correlations (via CAR) and covariates into the model. They 
used a hierarchical bayes (HB) approach instead of the 
empirical bayes (EB) approach. They applied the bivariate 
spatial model to male and female lung cancer mortality in the 
State of Missouri, and constructed disease maps of male and 
female lung cancer mortality rates by age group and time 
period.  

[11] extended the Poisson-gamma model to handle nested 
data structures, such as a hierarchical health administrative 
structure consisting of local health districts, 𝑖𝑖, in the first 
level and local health areas, 𝑗𝑗, within districts in the second 
level 𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖 , 𝑖𝑖 = 1, …𝑚𝑚) . The data consist of 
incidence or mortality counts 𝑦𝑦𝑖𝑖𝑖𝑖  and the corresponding 
population at risk counts, 𝑛𝑛𝑖𝑖𝑖𝑖 .[11] derived empirical bayes 
(EB) estimates of the local health area rates 𝜃𝜃𝑖𝑖𝑖𝑖 , using a 
nested error Poisson-gamma model. The bayes estimator of 
𝜃𝜃𝑖𝑖𝑖𝑖  is a weighted combination of the crude local area rate, 
𝑦𝑦𝑖𝑖𝑖𝑖 /𝑛𝑛𝑖𝑖𝑖𝑖 , the correspond crude district rate, 𝑦𝑦𝑖𝑖∙/𝑛𝑛𝑖𝑖∙ and the 
overall rate 𝑦𝑦∙∙/𝑛𝑛∙∙, where 𝑦𝑦𝑖𝑖∙ = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑗𝑗  and 𝑦𝑦∙∙ = ∑ 𝑦𝑦𝑖𝑖∙𝑖𝑖 , and 
𝑛𝑛𝑖𝑖∙,𝑛𝑛∙∙) similarly defined.  

[11] used the [21] first-order approximation to posterior 

variance as a measure of variability. They applied the nested 
error model to infant mortality data from the province of 
British Columbia, Canada.  

7. Concluding Remarks  
Small area estimation of health related characteristics has 

attracted a lot of attention in the Western countries like the 
U.S., U.K., and Canada because of a continuing need to 
assess health status, health practices and health resources at 
both the national and sub national levels. Reliable estimates 
of health related characteristics help in evaluating the 
demand for health care and the access individuals have to it. 
Mortality and disease rates of small area in a region or a 
county are often used to construct disease maps which are 
used to display geographical variability of a disease and 
identify high rate and, or high risk areas warranting 
interventions. This article attempts to overview the main 
advances in small area estimation methods in the field of 
disease mapping and some relevant statistical models in 
disease mapping. A critical review of earlier developments 
of small area estimation methods in the field of disease 
mapping which serve as a necessary background for the 
various extensions of disease mapping models proposed in 
recent literature with illustrative examples are presented.  

Two important issues not considered are model selection 
and model diagnostics. As mentioned earlier; small area 
estimation is one of the few fields in survey sampling, where 
it is widely recognized that the use of model dependent is 
often inevitable. Given the growing use of small area 
estimates and their immense importance, it is imperative to 
develop efficient tools for the selection of their goodness of 
fit.  

A further issue which certainly deserves consideration is 
the objective comparison of the different statistical models 
for disease mapping and an evaluation of the quality of their 
forecasts. These will be our focus in a forthcoming article. 
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