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Abstract  The aim of this paper is to build an exact formula for ruin probability of generalized risk processes under 
constant interest force with sequences of random variables such that these sequences are usually assumed to be positive 
integer – valued random variables. An exact formula for finite time ruin (non-ruin) probabilities are derive by using technique 
of classical probability. A numerical example is given to illustrate results. 
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1. Introduction 
Claude Lefèvre and Stéphane Loisel[1] studied the 

problem of ruin in the classical compound binomial and 
compound Poisson risk models. Their primary purpose is to 
extend those models which is an exact formula derived by 
Picard and Lefèvre[9] for the probability of (non-ruin) ruin 
within finite time. Hong N.T.T. (see [7]) recently built an 
exact formula for finite time ruin (non-ruin) probability for  
model: 

1 1= =
= + −∑ ∑

t t

t i i
i i

U u X Y  

With i iu,t , X ,Y  are positive integer number. 
However, Claude Lefèvre and Stéphane Loisel[1] did not 

provide an exact formula for ruin probability of generalized 
risk processes under constant interest force with sequences 
of random variables such that these sequences are usually 
assumed to be positive integer – valued random variables, 
with surplus process { } 1t tU ≥  written as 

1

1 1
(1 ) (1 ) (1 )

t t
t t i t i

t i i
i i

U u r X r Y r− + −

= =
= + + + − +∑ ∑ (1.1) 

where oU u=  is initial surplus ( 0u > ), r  is constant 
interest ( 0r > ), u  and t  are positive integer numbers, 

{ } 1i iX X
≥

= and { } 1j j
Y Y

≥
=  take values in a finite set 

of positive integer numbers; X and Y  are assumed to be 
independent. 

With these assumptions, the aim of this paper is to build an  
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exact formula for finite time ruin (non-ruin) probability of 
model (1.1). In our study, we extended the result of Hong N. 
T. T for model (1.1) with any r > 0. This is the first time that 
gives an exact formula for ruin (non-ruin) probability for  
model (1.1) whose exact formula for finite time ruin 
(non-ruin) probability are derived by using technique of 
classical probability. 

The paper is organized as follows; in Section 2, we build 
an exact formula for ruin (non-ruin) probability for model 

(1.1) with { } 1i iX X
≥

= and { } 1j j
Y Y

≥
= being 

independent and identically distributed positive integer – 
valued random variables, X  and Y are assumed to be 
independent. An extended result in Section 2 with X  and 
Y  being homogeneous Markov chains is given in Section 3. 
A numerical example is give to illustrate these results in 
Section 4. Finally, we conclude our paper in Section 5. 

2. Computing Ruin Probability of 
Generalized Risk Processes under 
Constant Interest Force with 
Sequences of Independent and 
Identically Distributed Random 
Variables 

Let model (1.1). We assume that: 
Assumption 2.1. u and t  are positive integer numbers. 

Assumption 2.2 { } 1n nX X
≥

=  is a sequence of 

independent and identically distributed random variables, 

nX  take values in a finite set of positive integer numbers 

{ }1,2,...,XE M=  with 1( ) ( )k Xp P X k k E= = ∈ , 

1
0 1, 1

M

k k
k

p p
=

≤ ≤ =∑ . 



36 Quang Phung Duy:  Computing Ruin Probability in Generalized Risk Processes under Constant Interest Force  
 

 

Assumption 2.3 { } 1n nY Y
≥

=  is a sequence of 
independent and identically distributed random variables, 

nY  take values in a finite set of positive integer numbers 

{ }1,2,...,YE N=  with 1( ) ( )k Yq P Y k k E= = ∈ , 

1
0 1, 1

N

k k
k

q q
=

≤ ≤ =∑ . 

Assumption 2.4 X and Y  are assumed to be 
independent. 

From (1.1), we have: 
1
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(1 ) (1 ) (1 )

t t
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− + −

= =
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(2.1) 
Supposing that the ruin time is defined by

{ }inf : 0u jT j U= < , where ∞=φinf . 

We define the finite time ruin (non-ruin) probabilities of 
model (1.1) with Assumption 2.1 to Assumption 2.4, 
respectively, by 
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.  (2.3) 

Throughout this paper, we denote as
A B=  if 

( )( \ ) ( \ ) 0P A B B A∪ =  

To establish a formula for (1) (1)( ), ( )t tu uψ ϕ , we first proof 
the following Lemma. 

Lemma 2.1. Any u  and { } { }1 1,t t
i ii ix y= =  are positive 

integer numbers. 
With p being a positive integer number and 1 1p t≤ ≤ −  

satisfies: 
1
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Proof. 
From (2.4), we have 
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Hence (2.5) holds. 
This completes the proof. 
Next, we give an exact formula for finite time non-ruin 

(ruin) probability of model (1.1). 
Theorem 2.1. Let model (1.1) satisfy Assumption 2.1 to 

Assumption 2.4, then finite time non-ruin probability of 
model (1.1) is defined by 
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where 
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In addition, [ ]1(1 ) (1 )u r x r+ + +  is integer part of the 

1(1 ) (1 )u r x r+ + + . 

Proof. 
Firstly, we have 
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By Assumption 2.2, we let 1 1 2 2, ,..., t tX x X x X x= = =  
with 1 2, ,..., tx x x  being positive integer numbers and 

satisfying: 1 21 , ,..., tx x x M≤ ≤ .  

 
Let 

. 

Since  is a sequence of independent  random variables then 

 (2.8) 

Hence, (2.7) is given 
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                            (2.10) 

By Assumption 2.3, we let  with  being positive integer numbers 

andsatisfying: .  
Let 

, 

, 

… 

, 

In addition,  is integer part of , 

By using Lemma 2.1, , , …, 

 are integer numbers. 

Thus, (2.10) is written as 
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      (2.11) 

As Assumption 2.3, we let  with is positive integer number then . Combining Assumption 2.3, 

(2.10) and formulas define , we have . 
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Therefore, (2.11) can be rearranged as 

{ }... 1 1 2 21 2
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... ( ) ( ) ... ( )
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y g y g y gt t

B Y y Y y Y y
≤ ≤ ≤ ≤ ≤ ≤

= = ∩ = ∩ ∩ =
              (2.12) 
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By using, and  are independent, if and  hold then and  are 

independent events.  

In addition, system of events  in (2.9) is incompatible.  

Therefore, combining (2.8) and (2.13), we have 

=  

              (2.14) 

This completes the proof. 
Corollary 2.1.  Let model (1.1) satisfy Assumption 2.1 to Assumption 2.4, then finite time ruin probability of model (1.1) 

is defined by 

    (2.15) 

Remark 2.1. Formula (2.6) (or (2.15)) gives a method to compute exactly finite time non-ruin (ruin) probability of model 
(1.1) which  and  are sequences of independent and identically distributed random variables, 

and they take values in a finite set of positive integer numbers. 

3. Computing Ruin Probability of Generalized Risk Processes under Constant 
Interest Force with Homogeneous Markov Chains 

Let model (1.1). We assume that: 
Assumption 3.1. ,  are positive integer numbers. 
Assumption 3.2.  is a homogeneous Markov chain,  take values in a finite set of positive integer 
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numbers  with ( ) { }*
1 , ( \ 0 , , )ij m m X Xp P X j X i m N N i E j E+= = = ∈ = ∈ ∈  where 

. In addition, 

, . 

Assumption 3.3.  is a homogeneous Markov chain,  take values in a finite set of positive integer numbers 

 with ( ) { }*
1 , ( \ 0 , , )rs m m Y Yq P Y s Y r m N N r E s E+= = = ∈ = ∈ ∈  where 

. In addition,  

, . 

Assumption 3.4. and are assumed to be independent. 

Supposing that the ruin time is defined by  where . 

We define the finite time ruin (non-ruin) probability of model (1.1) using Assumption 3.1 to Assumption 3.4, respectively, 
by 

,                               (3.1) 

.                (3.2) 

Similar to Theorem 2.1, we have 
Theorem 3.1. Let model (1.1) satisfy Assumption 3.1 to Assumption 3.4, then finite time non-ruin probability of model 
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Proof. 
We proof similarly as Theorem 2.1, where,  
(2.8) replaced by 

 

 

In the other hand, we have 

 

{ }1,2,...,XE M=

1
0 1, 1

M

ij ij
j

p p
=

≤ ≤ =∑

1( ) ( )i XP X i p i E= = ∈
1

0 1, 1
M

i i
i

p p
=

≤ ≤ =∑

{ } 1n nY Y ≥= nY

{ }1,2,...,YE N=

1
0 1, 1

N

rs rs
s

q q
=

≤ ≤ =∑

1( ) ( )i YP Y i q i E= = ∈
1

0 1, 1
N

i i
i

q q
=

≤ ≤ =∑
X Y

{ }inf : 0u jT j U= < ∞=φinf

(2)

1
( ) ( ) ( 0)

t

t u j
j

u P T t P Uψ
=

 
 = ≤ = <
 
 


(2) (2)( ) 1 ( )t tu uϕ ψ= −
1

( 1) ( 0)
t

u j
j

P T t P U
=

 
 = ≥ + = ≥
 
 


1 2, ,..., tg g g

( ) ( ) ( )1 2... 1 1 2 2( ) ...
tx x x t tP A P X x X x X x = = ∩ = ∩ ∩ = 

( ) ( ) ( )
1 1 2 1

1 1 2 2 1 1 1 1. ...

...
t t

t t t t

x x x x x

P X x P X x X x P X x X x

p p p
−

− −= = = = = =

=

( ) ( ) ( )
( ) ( ) ( )

1 1 2 2

1 1 2 2 1 1 1 1

...

. ...
t t

t t t t

P Y y Y y Y y

P Y y P Y y Y y P Y y Y y− −

 = ∩ = ∩ ∩ = 
= = = = = =

1 1 2 1
...

t ty y y y yq q q
−

=  



40 Quang Phung Duy:  Computing Ruin Probability in Generalized Risk Processes under Constant Interest Force  
 

 

 
In addition, (2.13) substituted by 

. 

By using the same method to prove Theorem 2.1, we have formula (3.3). 
This completes the proof. 
Corollary 3.1. Let model (1.1) satisfy Assumption 3.1 to Assumption 3.4, then finite time ruin probability of model (1.1) is 

defined by 

 (3.4) 

 
 

Remark 3.1. Formula (3.3) (or (3.4)) gives a method to 
compute exactly finite time non-ruin (ruin) probability of 
model (1.1) which { } 1n nX X ≥=  and { } 1n nY Y ≥= are 

homogeneous Markov chains and they take values in a finite 
set of positive integer numbers. 

4. Numerical Illustration 

4.1. Numerical Illustration for (1) ( )t uψ  

Let { } 1n nX X ≥=  be a sequence of independent and 

identically distributed random variables, nX  take values in 

a finite set of positive integer numbers { }1, 2,3,4,5XE =  

with 1X  having a distribution: 

1X  1 2 3 4 5 

P 0,687918 0,107263 0,027260 0,044032 0,133522 

Let { } 1n nY Y ≥=  be a sequence of independent and 

identically distributed random variables, nY  take values in 

a finite set of positive integer numbers { }1,2,3,4,5YE =  

with 1Y  having a distribution: 

1Y  1 2 3 4 5 

P 0,693655 0,234842 0,034024 0,022141 0,015337 

By using the C progaram, the (1) ( )t uψ is calculated with 

the assumptions above of random variables 1 1,X Y . 

Table 4.1 shows (1) ( )t uψ for a range of value of u. 

Table 4.1.  Ruin probabilities of model (1.1) with Assumption 2.1- 2.4 and 
r = 0,15 

 t = 3 t = 5 t = 7 

u = 1,5 0,451331 0,731346 0,872909 

u = 2,5 0,421682 0,720987 0,868336 

u= 3,5 0,369372 0,713196 0,862931 

u = 4,5 0,350304 0,703524 0,859522 

u= 5,5 0,345694 0,691736 0,856952 

u= 6,5 0,340705 0,687219 0,853781 

u = 7,5 0,332709 0,684591 0,850476 

4.2. Numerical Illustration for (2) ( )t uψ  

Let { } 1n nX X ≥=  be a homogeneous Markov chain, nX   

take values in a finite set of positive integer numbers 
{ }1,2,3,4,5XE = ,with 1X having a distribution 

1X  1 2 3 4 5 

P 0,412732 0,143721 0,201232 0,112731 0,129584 

In addition, matrix 
5 5ij x

P p =    is given by 























=

008866,0053181,0312923,0621674,0003357,0
313049,0003048,0230476,0076737,0376690,0
029025,0241161,0072098,0072188,0585528,0
023678,0205732,0074864,0225771,0469955,0
009610,0019325,0046277,0169668,0755119,0

P
 

Let { } 1n nY Y ≥=  be a homogeneous Markov chain, nY
take values in a finite set of positive integer numbers 

{ }1,2,3,4,5YE = , with 1Y  having a distribution 

1Y  1 2 3 4 5 

P 0,713095 0,060022 0,118444 0,075802 0,032637 

1 2 1 1 2 1
1 1 2 2

...
1 1 1

( ) ... ...
t t t

t t

x x x y y y y y
y g y g y g

P B q q q
−

≤ ≤ ≤ ≤ ≤ ≤
= ∑ ∑ ∑

(2) (2)( ) 1 ( )t tu uψ ϕ= −  1 1 2 1 1 1 2 1
1 2 1 1 2 2, ,..., 1 1 1 1

1 ... ... ...
t t t t

t t t

M

x x x x x y y y y y
x x x y g y g y g

p p p q q q
− −

= ≤ ≤ ≤ ≤ ≤ ≤

 
 = −
 
 

∑ ∑ ∑ ∑
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In addition, matrix 
5 5ij x

Q q =    is given by 























=

114905,0040222,0313488,0073241,0458144,0
023701,0062131,0270579,0220847,0422742,0
006209,0199290,0406201,0068527,0319773,0
046882,0009616,0031809,0183338,0728355,0
059771,0039239,0030568,0105781,0764641,0

Q

 
By using the C progaram, the (2) ( )t uψ  is calculated 

with the assumptions above of random variables 1 1,X Y and 
matrixs ,P Q . 

Table 4.2 shows (2) ( )t uψ for a range of value of u. 

Table 4.2.  Ruin probabilities of model (1.1) with Assumption 3.1-3.4 and 
r = 0,15 

 t = 3 t = 5 t = 7 

u = 1,5 0,438056 0,670702 0,806759 

u = 2,5 0,414305 0,660951 0,802202 

u= 3,5 0,387413 0,651153 0,798389 

u = 4,5 0,372796 0,642734 0,795026 

u= 5,5 0,368182 0,636163 0,792125 

u= 6,5 0,363660 0,633552 0,789425 

u = 7,5 0,357099 0,631753 0,786936 

5. Conclusions 
By using technique of classical probability with u , t , 

claims, premiums all are positive integer numbers and r  is 
a positive number, this paper constructed an exact formula 
for ruin (non-ruin) probability of model (1.1), where 
sequences of claims and premiums are independent and 
identically distributed random variables or homogeneous 
Markov chains. Our main results in this paper not only prove 
Theorem 2.1 and Theorem 3.1 but also give numerical 
examples to illustrate for Theorem 2.1 and Theorem 3.1. 
These results proof for the suitability of theoretical results 
and practical examples. It also mean that: 

When initial u  is increasing then (1) ( )t uψ , (2) ( )t uϕ are 
decreasing, 

With u  being unchanged, when t  is increasing then 
(1) ( )t uψ , (2) ( )t uϕ are increasing. 
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