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Abstract

In this paper a constant stress Partially Accelerated Life Test (CSPALT) using type-I censoring is obtained for

Extreme Value Type-III distribution. This distribution has been found appropriate for high reliability components. Maximum
Likelihood (ML) Estimation is used to estimate the parameters of CSPALT model. Confidence intervals for the model
parameters are constructed. CSPALT plan is used to minimize the Generalized Asymptotic Variance (GAV) of the ML

estimators of the model parameters.
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1. Introduction

In traditional life testing and reliability experiments,
researchers used to analyse time-to-failure data obtained
under normal operating conditions in order to quantify the
product’s failure-time distribution and its associated
parameters. However, such life data has become very
difficult to obtain as a result of the great reliability of today’s
products, and the small time period between design and
release. This problem has motivated researchers to develop
new life testing methods and obtain timely information on
the reliability of product components and materials. ALT is
then adopted and widely used in manufacturing industries. In
such testing situations, products are tested at
higher-than-usual levels of stress (e.g., temperature, voltage,
humidity, vibration or pressure) to induce early failure. The
life data collected from such accelerated tests is then
analysed and extrapolated to estimate the life characteristics
under normal operating conditions. It is useful to divide
accelerated tests into two aims (i) During product
development, a small number of prototype specimens are
forced to fail at high stress. Engineers examine the
specimens to identify the causes of failure, and then
determine how to improve the product to eliminate or reduce
those causes. For thousands of years, engineers have
improved product reliability with such development testing,
called ESS and HALT. Such testing depends on qualitative
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engineering knowledge of the product and usually does not
involve a physical-statistical model. (ii) After product
development, a statistical sample of specimens is tested at
high stress levels to measure reliability, that is, to estimate
the product life distribution or degradation at lower
design stress levels. Such estimation requires a suitable
model.

In some cases, such life stress relationships are not known
and cannot be assumed, ie., the data obtained from ALT
cannot be extrapolated to use condition. So, in such cases,
another approach can beused, which Is PALT. In PALT, test
units are run at both usual and higher-than usual stress
conditions. PALT results in shorter lives than would be
observed under normal operating conditions. According to
Nelson[1] stress can be applied in a number of ways,
commonly used methods are step stress and constant stress.
In first case, to use PALT, a test item is run at use condition
and, if it does not fail for a specified time, then it is run at
accelerated condition until failure occurs or the observation
is censored while in second case, PALT can be applied by
running each item at either normal use or accelerated
condition only, i.e. each unit is run at a constant stress level
until the test is terminated. The object of a PALT is to collect
more failure data in a limited time without using high
stresses necessarily to all test units.

Many authors have studied PALT. For an overview of
PALT with Type-I censoring, Bai and Chung[2] discussed
both, the problem of estimation and optimally designing
PALT for test items having an exponential distribution. For
items having log-normally distributed lives, PALT plans
were developed by Bai, Chung and Chun[3]. Ghaly et al.[4]
discussed the problem of parameter estimation for Pareto
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distribution using PALT in case of type-I censoring.
Conceming the constant stress PALT, there are some studies
on the optimally designing constant stress PALT,see Baiand
Chung[2], Bai, Chung and Chun[3] and Ismail[5]. Attia[6]
considered the estimation problem of the Weibull
distribution parameters using the ML method. Abdel-Ghani
[7] considered only the estimation problem in constant stress
PALT for Weibull distribution.

Extreme Value distribution arise as limiting distributions
for maxima and minima (extreme values) of a sample of
independent and identically distributed random variables, as
the sample size increases. EVT is the theory of modelling
and measuring events which occur with very small
probability. This implies its usefulness in risk modelling as
risky events perdefinition happen with low probability. Thus,
these distributions were important in Statistics. These
models, along with the generalized Extreme Value
distribution are widely used in risk management, finance
insurance, economics, hydrology, material sciences,
telecommunications, and many other industries are dealing
with extreme events.

In this paper, the problems of both, estimation and optimal
design constant stress PALT are considered under Extreme
Value type-III distribution using type-I censoring. The
constant stress testing has several advantages, see Nelson[1].
ALT model for constant stress are better developed for some
material and products. Also it is easier to maintain a constant
stress level and data analysis for reliability estimation is well
developed.

2. The Extreme Value Distribution: As a
Lifetime model

The Extreme Value type-III distribution has been
successfully employed for frequency analysis of low river
flows, see Gumble[8].

If a random variable ¢ is said to have an Extreme Value
type-III distribution then its probability density function i
given by
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The reliability function takes the form
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2.1. CSPALT: Test Procedure

In a constant-stress PALT, allofthe 7 items are divided
into two parts. nr items are randomly chosen among 7
items, which are allocated to accelerated conditions and the
remaining n(1 —7) are allocated to normal use conditions,

then each test item is run until 7 and the test condition is
not changed.

Some assumptions are also made in a constant-stress
PALT.

e The lifetimes 7;,i=1,...,n(1-7r) ande,i=1,...,l’ll”,

of items allocated to normal and accelerated conditions,
respectively, are i.i.d. random variables.

e The lifetimes 7; and X j are mutually statistically
independent.

3. Parameter Estimation: MLE
Technique

The MLE is one of the most important and widely used
methods in statistics. It is commonly used for the most
theoretical model and kinds of censored data see
Grimshaw[9]. The idea behind the maximum likelihood
parameter estimation is to determine the estimates of the
parameter that maximizes the likelihood of the sample data.
Also the MLEs have the desirable properties of being
consistent and asymptotically normal for large samples. Also,
Bugaighis[10] showed that the ML procedure generally
yields efficient estimators

In a simple CSPALT, the test item is run either at use
condition or at accelerated condition only. A simple constant
stress test uses only two stresses and allocates the n sample
unit to them; see Miller and Nelson[11].

Since the lifetimes of test items follow the Extreme Value
distribution of type-IIl, the probability density function of an
itemtested at use condition is given by:

a-1 a
fT(l):Z(;\J exp[—[éj} (>0 G

For an itemtested at accelerated condition, the probability
density function is given by

a-l1 a
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where X = 87T
The likelihood function for (¢;

1°

0,;) Is given by

1)

87

ui

o
exp| — [—j
o

(3.3)



International Journal of Probability and Statistics 2013, 2(1): 1-8

the likelihood function for (x ;,8,;) is given by )
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As it is easier to maximize the natural logarithm of the likelihood function rather than the likelihood function itself. The
first derivatives of the natural logarithm of the total likelihood function in (3.4) with respectto §,6 and « are given by
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The ML estimators of the parameters are the values of #, & and « which solve the equations obtained by letting each of

thembe zero. So, from (3.5), the ML estimate of § is given by

la
A on
= a 38
B ( ] (3.8)

Where D— Z PEY +—T “(nr—ny)
0
By substitutmg for ﬂ into (3.6) and (3.7) and equating each of them to zero, the system equations are reduced into the

following non linear equations
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and
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The above equations are very complex in form to be solved. Therefore, an iterative procedure is required to solve them
numerically. Newton Raphson method is used to obtain the MLE of ¢ and @. Thus, once the values of & and @ .are

determined, an estimate of [ can be obtained fromeq. (3.8).

But the exact mathematical expression for the expectation is too difficult to find. So it can be approximated by numerically
inverting the asymptotic fisher information matrix. It is composed ofthe negative second and mixed derivatives of the normal
logarithm of the likelihood function evaluated atthe MLE. So, asymptotic fisher information matrix can be written as follows
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The elements of Fisher information matrix can be expressed by the following equations
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4. Confidence Intervals for the Model S
Parameters Asymptotically, the maximum likelihood estimators,
under appropriate regularity conditions are consistent and

The most common method to set confidence bounds for  normally distributed. Therefore, the two sided approximate

the parameters is to use asymptotic normal distribution of
maximum likelihood estimators, see Vander Wiel and
Meeker[12].

To construct a confidence interval for a population

parameter & ; assume that L. =L.(y,...,y,) and

U,=U,(»,...,y,) are functions of the sample data
Vis---s ¥, such that
P(Ly=e=U,)=¢ (4.1)

Where the interval [LS,UE] is called a two sided
£100% confidence interval for & . L, and U, are the
lower and upper confidence limits for &, respectively. The

random limits L_ and U, enclose & with probability

£100% confidence limits for a population parameter &
can be constructed such that'
- &

o(é)
Where Z is the [1 00(1—- f/2)]th standard normal
percentile. Therefore, the two sided approximate £100%

pP(-z<%

<Z)=¢ (4.2)

confidence limits for #,6 and ¢ are given respectively as

follows:
Ly =p-Zo(p) Uy =B+Zo()
Ly =6-Zo(6) U, =6+Zo(6)
L,=a-Zo(a) U,=a+Zo(a)
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5. Optimum Simple Constant Stress
Plan

In most of the test plans, the same number of test units is
allocated to each stress. Such test plans are usually
inefficient for estimating the mean life of design stress, see
Yang[13]. In this section, statistically optimum test plans are
developed to decide optimum sample proportion allocated to
each stress. Therefore, to determine the optimum sample

proportion " allocated to accelerated condition, 7 is
chosen such that the GA'V of the ML estimators of the model
parameters is minimized. The GA'V of the ML estimators of
the model parameters as an optimality criterion is commonly
used and defined below as the reciprocal of the determinant
of the Fisher information matrix F (Bai, Kim and
Chun,[14]).
s
GAV(B,0,a) ‘F‘

The Newton-Raphson method can be applied to
numerically determine the best choice of sample proportion
allocated to accelerated condition which minimizes the GA'V
as defined before. Accordingly, the corresponding expected
optimum number of items failed at use and accelerated
conditions can be obtained, respectively, as follows:

n, =n(l—r")P, and n, =nr P,

Where
ot
P, =|1-exp ( é}

6. Simulation Studies

And

The data in Table 1 and Table 2 gives the MSE, RABs, RE
and variance of the estimators for two sets of parameters
(@=1250=4.0,5=050) and (a=1.0,0 =4.50, =0.30)
respectively. While Table 3 and Table 4 presents the
approximated two sided confidence limits at 95% and
99% level of significance for the scale parameter and the
acceleration factor.

From these tables it is concluded that for the first set of
parameters (0 = 4.60, 8 =0.20), the ML estimates have good
statistical properties than the second set off parameters
(0=4.40,5=0.80) for all sample sizes. Also as the
acceleration factor increases the estimates have smaller MSE
and RE. As the sample size increases the RABs and MSEs of
the estimates of parameters decrease. This indicates that the
ML estimates provide asymptotically normally distributed
and consistent estimators for the scale parameter and the
acceleration factor.

When the sample size increases, the interval of the
estimators decreases. Also the intervals of the estimators at
y=0.95 is smaller than the interval of estimators at

y =0.99 . Tables are given in appendix.

Notations

n: Total number of test items in a PALT

7 :censoring time of a PALT

T : Lifetime of an item at use condition

X : Lifetime of an item at accelerated condition

B : Acceleration factor (£ >1)

P, : Probability that an item tested only at use condition
fails by 7

P, : Probability that an item tested only at accelerated
condition fails by 7

A : implies a maximum likelihood estimate

O : scale parameter of Extreme Value distribution

o : shape parameter of Extreme Value distribution

t; : observed life time of item i tested at use condition

X ;: observed life time of item J tested at accelerated

condition
514[ : Indicator function at use condition

0, « + Indicator function at accelerated condition

7 : Proportion of sample units allocated to accelerated
condition

r Optimum proportion of sample units allocated to
accelerated condition
n,: Number of items failed at use condition

N, : Number of items failed at accelerated condition

ty <...5t <7 : ordered failure times at use
(O] (m,)

condition

Xy S SX, ) ST ordered failure times at

accelerated condition

Acronyms:

ALT: Accelerated Life Test

AV: Asymptotic Variance

ESS: Environmental Stress Screening

EVT: Extreme Value Theory

GAV: Generalized Asymptotic Variance (GA V)
MLE: Maximum Likelihood (ML) Estimation

PDF: Probability Density Function

MSE: Mean Square Error

RABs: Random Absolute Bais

RE: Relative Error

HALT: Highly Accelerated Life Testing

SSPALT: Step-Stress Partially Accelerated Life Test
CSPALT: Constant Stress Partially Accelerated Life Test

Appendix
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Table 1. The MSE, RABs, RE and Variances of the Parameters Table 2. The MSE, RABs, RE and Variances of the Parameters

(¢ =1.25,0=4.0, =0.50) underType-I Censoring (¢ =1.0,6 =4.50, £ =0.30) underType-I Censoring
Size | parameters MSE RBias RE Variance Size Parameters MSE RBias RE Variance
n n
a 00301 | 00600 | 0138 | 00245 a 0.0286 00532 | 01691 00258
50 0 00002 | 00010 100197 | 00062 50 2] 00227 00054 | 00335 [ 00221
B 00306 | 00352 10349 | 00303 B 0.0002 00110 | 0.0471 | 0.0002
» 00266 | 00m0 | 01305 | 00234 a 00227 00249 | 0.1507 | 00221
100 ) 0.1055 | 00006 | 00812 | 0.1055 100 0 0.0399 00123 | 00444 ] 00369
B 000 | voser Vo1 | ooom B 0.0004 00183 | 00667 | 0.0004
o 00245 | 00312 | o122 | 00223 a 00242 00237 | 0.1556 | 0.0236
150 0 00152 | 00015 | 00308 | 00152 150 0 0.0914 00001 | 00672 ] 00914
B 00023 | 002600 | 00959 | 00022 P 0.0020 00027 1 0.1491 ) 00020
a 0019 | 00312 [01129 | 00184 a 0.0198 00207 ] 0.1407 ] 0.0194
200 0 00131 | 00002 | 0028 | 00131 200 0 0.0162 00072 ] 00283 | 00152
B 00209 | 00176 | 02891 | 0.0208 P 0.0002 00240 | 00471 00001
a 00174 00214 | 01055 | 0.0167 a 00182 0.0189 0.1349 1 00178
250 0 0.0150 0.0036 0.0306 | 0.0148 250 o 0.0266 0.0040 0.0362 | 0.0263
B 00028 | 00076 | 01058 | 00028 B 0.0003 00253 | 00577 | 0.0002
a 0.0163 0.0162 0.1021  0.0159 a 0.0166 0.0150 0.1288 | 0.0164
300 o 0.0169 0.0209 0.0325 0.0099 300 2] 0.0698 0.0014 00362 | 0.0698
B 0.0016 00144 0.0800 | 0.0015 B 0.0015 0.0007 0.1291 | 0.0015
@ 00150 | 00123 ] 00979 | 0.0148 a 00153 00112 | 01237 | 00152
350 0 00118 | 00225 |00272 | 00037 150 o 00107 00059 | 00229 | 00100
B 00197 | 00192 | 02807 | 001% B 0.0001 00063 | 00333 | 00001
a 00140 | 00050 | 00947 | 00140 a 00142 00098 | 01192 | 00141
400 0 00181 | 00241 ] 00336 | 00088 400 0 00014 00033 | 00083 [ 0.0012
B 00029 | 00170 ] 0.1077 | 0.0028 B 0.0002 00009 | 0.0471 | 0.0002
a 00126 | 00007 | 00897 | 00126 a 0.0135 00004 | 01162 | 00135
450 0 00197') 00246 | 00351 | 0.0100 450 0 0.0165 00035 | 00285 | 00163
p 00014 | 00128 | 00748 | 0.0014 B 0.0002 00360 | 0.0471 | 0.0001
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Table 3. Confidence Bounds of the Estimates at Confidence Levelat 095  Table 4. Confidence Bounds of the Estimates at Confidence Level at 0.95

and099 (o =1.25,0=4.0, 5 =0.50) and0.99 (o =1.0,0 =4.50, 4 =0.30)
Size | parameters 95% 99% Size | parameters 95% 99%
n LCL ucL | LcL UCL n LCL UCL LCL UCL
o 1013 | 16317 | 10683 | 15817 a 07384 13697 07898 | 13166
S0 0 28208 | 4158 | 38750 | 2135 50 0 4.1841 47691 42317 | 47195
i 01411 | 08235 | 0198 | 07678 B 02691 03243 02736 | 03198
a 10065 | 1.6059 | 1.0554 | 15569 a 07334 13164 0.7810 | 12688
100 0 33650 | 46391 | 34698 | 45352 100 0 41789 49319 | 42403 | 48704
i 0385 | 06481 | 04095 | 06269 B 02663 03447 02727 | 03383
o 1000 | 15893 | 10518 | 15416 a 07058 13416 07577 | 04282
150 9 37523 | 42357 | 39718 | 4192 150 6 39079 5.0930 40047 | 49963
Vi 03951 | 05789 | 04101 | 0563 B 02116 03868 02259 | 03725
o 1022 | 15518 | 10667 | 15114 a 0.7477 12937 0792 | 1249
200 P 37751 | 42235 | 38117 | 41869 200 6 42261 47095 42656 | 4.6700
B 02262 | 07914 | 02723 | 07453 B 02824 03268 02908 | 03236
p 10235 | 15299 | 10688 | 14886 a 0.7574 12803 08001 | 12377
250 2] 37471 | 42241 | 37860 | 4.1852 250 o 4.2003 48361 42522 | 4788
yij 04001 | 06075 | 04170 | 0.5906 B 02648 0.3200 02693 | 03155
a 10231 | 15175 | 10635 | 14771 a 0.7639 12661 08049 | 12251
300 0 37212 | 41112 | 37530 | 40794 300 0 39759 50115 40604 | 49269
B 04169 | 05687 | 04293 | 05563 B 02239 03757 02363 | 03633
a 10269 | 15039 | 1.0658 | 14649 a 0.7695 12529 08089 | 12134
0 37910 | 40204 | 38107 | 40097 o 42774 46692 43094 | 46374
350 350
yij 02352 | 07840 | 02800 | 07392 Yij 02785 03177 02817 | 03145
a 10244 | 14882 | 10623 | 14503 a 07771 12425 08151 | 12045
400 0 37199 | 40876 | 37499 | 40576 400 6 44175 45531 44286 | 45420
B 03878 | 05952 | 04046 | 05783 B 02696 03248 02741 | 03203
a 10309 | 14708 | 1.0669 | 14349 a 0.7726 12282 08098 | 1.1909
450 6 37055 | 40975 | 37375 | 4.0655 450 0 42654 47659 43063 | 46251
B 04203 | 05669 | 04323 | 05549 yij 02696 03088 02728 | 03056
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