
International Journal of Probability and Statistics 2013, 2(1): 1-8 
DOI: 10.5923/j.ijps.20130201.01 

 

Estimation of Partially Accelerated Life Tests for the 
Extreme Value Type-III Distribution with Type-I 

Censoring 

S. Saxena*, S. Zarrin 

Department of Statistics & Operation Research Aligarh Muslim University, Aligarh, India 

 

Abstract  In this paper a constant stress Partially Accelerated Life Test (CSPALT) using type-I censoring is obtained for 
Extreme Value Type-III distribution. This distribution has been found appropriate for high reliability components. Maximum 
Likelihood (ML) Estimation is used to estimate the parameters of CSPALT model. Confidence intervals for the model 
parameters are constructed. CSPALT plan is used to minimize the Generalized Asymptotic Variance (GAV) of the ML 
estimators of the model parameters. 
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1. Introduction 
In t rad it ional life testing  and  reliab ility  experiments, 

researchers used to analyse t ime-to-failure data obtained 
under normal operating conditions in order to quantify the 
p roduct ’s  failu re-t ime d is t ribut ion  and  its  associated 
parameters. However, such  life data has become very 
difficult to obtain as a result of the great reliability of today’s 
products, and the s mall time period between des ign and 
release. This problem has motivated researchers to develop 
new life testing methods and obtain timely information on 
the reliability of product components and materials. ALT is 
then adopted and widely used in manufacturing industries. In 
s u ch  t es t ing  s i tua t io ns ,  p r odu cts  a r e  t es ted  at 
higher-than-usual levels of stress (e.g., temperature, voltage, 
humid ity, vibration or pressure) to induce early failu re. The 
life data co llected  from such  accelerated  tests is  then 
analysed and extrapolated to estimate the life characteristics 
under normal operat ing cond itions. It is usefu l to d iv ide 
accelerated  tests  in to  two  aims  (i ) Dur ing  p roduct 
development, a  small number of prototype specimens are 
fo rced  to  fail at  h igh  st ress . Eng ineers  examine the 
specimens  to  iden t ify  the causes  o f failu re, and  then 
determine how to improve the product to eliminate or reduce 
those causes . For thousands  o f years , eng ineers  have 
improved product reliab ility with  such development testing, 
called ESS and HALT. Such testing depends on qualitative  
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engineering knowledge of the product and usually does not 
involve a physical-statistical model. (ii) After product 
development, a statistical sample of specimens is tested at 
high stress levels to measure reliability, that is, to estimate 
the product life distribution or degradation at lower   
design stress levels. Such estimation requires a suitable 
model. 

In some cases, such life stress relationships are not known 
and cannot be assumed, i.e., the data obtained from ALT 
cannot be extrapolated to use condition. So, in  such cases, 
another approach can be used, which Is PALT. In PALT, test 
units are run at both usual and higher-than usual stress 
conditions. PALT results in shorter lives than would be 
observed under normal operating conditions. According to 
Nelson[1] stress can be applied in  a number of ways, 
commonly used methods are step stress and constant stress. 
In first case, to use PALT, a test item is run at use condition 
and, if it does not fail for a specified time, then it is run at 
accelerated condition until failure occurs or the observation 
is censored while in  second case, PALT can be applied by 
running each item at either normal use or accelerated 
condition only, i.e. each unit  is run at a  constant stress level 
until the test is terminated. The object of a PALT is to collect 
more failure data in  a limited t ime without using high 
stresses necessarily to all test units.  

Many authors have studied PALT. For an  overview of 
PALT with Type-I censoring, Bai and Chung[2] discussed 
both, the problem of estimation and optimally  designing 
PALT for test items having an exponential distribution. For 
items having log-normally d istributed lives, PALT p lans 
were developed by Bai, Chung and Chun[3]. Ghaly  et al.[4] 
discussed the problem of parameter estimat ion for Pareto 
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distribution using PALT in  case of type-I censoring. 
Concerning the constant stress PALT, there are some studies 
on the optimally  designing constant stress PALT, see Bai and 
Chung[2], Bai, Chung and Chun[3] and Ismail[5]. Attia[6] 
considered the estimation problem of the Weibull 
distribution parameters using the ML method. Abdel-Ghani 
[7] considered only the estimation problem in constant stress 
PALT for Weibull distribution.  

Extreme Value distribution arise as limit ing distributions 
for maxima and min ima (ext reme values) of a sample of 
independent and identically d istributed random variables, as 
the sample size increases. EVT is the theory of modelling 
and measuring events which occur with very  small 
probability. Th is implies its usefulness in risk modelling as 
risky events per definit ion happen with low probability. Thus, 
these distributions were important in Statistics. These 
models, along with the generalized Extreme Value 
distribution are widely used in risk management, finance 
insurance, economics, hydrology, material sciences, 
telecommunications, and many other industries are dealing 
with ext reme events. 

In this paper, the problems of both, estimation and optimal 
design constant stress PALT are considered under Extreme 
Value type-III distribution using type-I censoring. The 
constant stress testing has several advantages, see Nelson[1]. 
ALT model for constant stress are better developed for some 
material and products. Also it is easier to maintain a constant 
stress level and data analysis for reliability estimation is well 
developed. 

2. The Extreme Value Distribution: As a 
Lifetime model 

The Extreme Value type-III distribution has been 
successfully employed for frequency analysis of low river 
flows, see Gumble[8]. 

If a random variable t  is said to have an Extreme Value 
type-III distribution then its probability density function is 
given by 
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The reliability function takes the form 
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and the corresponding hazard rate or instantaneous failure 
rate is given by 
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2.1. CSPALT: Test Procedure 

In a constant-stress PALT, all of the n  items are div ided 
into two parts. nr items are randomly chosen among n
items, which are allocated to accelerated conditions and the 
remain ing )1( rn −  are allocated to normal use conditions, 
then each test item is run until τ  and the test condition is 
not changed. 

Some assumptions are also made in a constant-stress 
PALT. 
• The lifetimes )1(,,1, rniTi −=   and nriX j ,,1, = , 

of items allocated to normal and accelerated conditions, 
respectively, are i.i.d. random variables. 
• The lifetimes iT  and jX  are mutually statistically  

independent. 

3. Parameter Estimation: MLE 
Technique 

The MLE is one of the most important and widely  used 
methods in statistics. It is commonly  used for the most 
theoretical model and kinds of censored data see 
Grimshaw[9]. The idea behind the maximum likelihood 
parameter estimat ion is to determine the estimates of the 
parameter that maximizes the likelihood of the sample data. 
Also the MLEs have the desirable properties of being 
consistent and asymptotically  normal for large samples. A lso, 
Bugaighis[10] showed that the ML procedure generally 
yields efficient estimators 

In a simple CSPALT, the test item is run either at use 
condition or at accelerated condition only. A simple constant 
stress test uses only two stresses and allocates the n sample 
unit to them; see Miller and Nelson[11]. 

Since the lifet imes of test items follow the Extreme Value 
distribution of type-III, the probability density function of an 
item tested at use condition is given by: 
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For an item tested at accelerated condition, the probability 
density function is given by 
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where TX 1−= β  
The likelihood function for  is given by 
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the likelihood function for ),( ajjx δ  is given by 
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and the total likelihood function for );,,,,;,,,( 11)1()1(11 anrnrarunrnu xxtt δδδδ  −−  is as follows 

),,|,().,|,(),,|,( αθβδαθδαθβ ajjajuiiui xLtLxtL =  

u iu i
rn

i

ii tt
δα

δαα

θ
τ

θθθ
α
































−




































−








= ∏

−

=

−

ex pex p
)1(

1

1

 
ajaj

nr

i

jj xx
δα

δαα

θ
βτ

θ
β

θ
β

θ
αβ
































−





































−








+∏

=

−

expexp
1

1

              (3.4) 

where, 


 ≤

=
otherwise
ti

ui 0
1 τ

δ  )1(,,2,1 rni −= 
 



 ≤

=
otherwise

x j
aj 0

1 τ
δ  nrj ,,2,1 =  

and, uiui δδ −= 1  

ajaj δδ −=1  
As it is easier to  maximize the natural logarithm of the likelihood function rather than the likelihood function itself. The 

first derivatives of the natural logarithm of the total likelihood function in (3.4) with respect to β ,θ  and α  are given by 
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The ML estimators of the parameters are the values ofβ ,θ  and α  which solve the equations obtained by letting each of 
them be zero. So, from (3.5), the ML estimate of β  is given by 
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By substituting for β  into (3.6) and (3.7) and equating each of them to zero, the system equations are reduced into the 
following non linear equations  
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and 
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The above equations are very complex in form to be solved. Therefore, an iterat ive procedure is required to solve them 
numerically. Newton Raphson method is used to obtain the MLE ofα  andθ . Thus, once the values of α  andθ .are 
determined, an estimate of β  can be obtained from eq. (3.8).  

But the exact mathemat ical expression for the expectation is too difficult to find. So it can be approximated by numerically 
inverting the asymptotic fisher information matrix. It is composed of the negative second and mixed  derivatives of the normal 
logarithm of the likelihood function evaluated at the MLE. So, asymptotic fisher informat ion matrix can be written as follows 
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The elements of Fisher informat ion matrix can be expressed by the following equations 
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4. Confidence Intervals for the Model 

Parameters 
The most common method to set confidence bounds for 

the parameters is to use asymptotic normal distribution of 
maximum likelihood estimators, see Vander Wiel and 
Meeker[12]. 

To construct a confidence interval fo r a population 
parameter ε ; assume that ),,( 1 nyyLL εε =  and 

),,( 1 nyyUU εε =  are functions of the sample data 

nyy ,,1   such that  

ξε εεε =≤≤ )( ULP           (4.1) 
Where the interval [ ]εε UL ,  is called a two sided  

%100ξ  confidence interval fo r ε . εL  and εU are the 
lower and upper confidence limits fo r ε , respectively. The 
random limits εL  and εU  enclose ε  with probability

ξ . 
Asymptotically, the maximum likelihood estimators, 

under appropriate regularity conditions are consistent and 
normally  distributed. Therefore, the two sided approximate 

%100ξ  confidence limits for a population parameter ε  
can be constructed such that: 
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Where Z  is the [ ]th)2/1(100 ξ−  standard normal 
percentile. Therefore, the two sided approximate %100ξ  
confidence limits for β ,θ  and α are given respectively as 
follows: 
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5. Optimum Simple Constant Stress 
Plan 

In most of the test plans, the same number of test units is 
allocated to each stress. Such test plans are usually 
inefficient for estimating the mean life of design stress, see 
Yang[13]. In this section, statistically optimum test plans are 
developed to decide optimum sample p roportion allocated to 
each stress. Therefore, to determine the optimum sample 
proportion ∗r  allocated to accelerated condition, r  is 
chosen such that the GAV of the ML estimators of the model 
parameters is minimized. The GAV of the ML estimators of 
the model parameters as an optimality criterion is commonly 
used and defined below as the reciprocal of the determinant 
of the Fisher information matrix F  (Bai, Kim and 
Chun,[14]). 

F
GAV 1)ˆ,ˆ,ˆ( =αθβ  

The Newton-Raphson method can be applied to 
numerically determine the best choice of sample proportion 
allocated to accelerated condition which minimizes the GAV 
as defined before. Accordingly, the corresponding expected 
optimum number of items failed at use and accelerated 
conditions can be obtained, respectively, as follows: 
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6. Simulation Studies  

The data in Table 1 and Table 2 gives the MSE, RABs, RE 
and variance of the estimators for two  sets of parameters 

)50.0,0.4,25.1( === βθα and )30.0,50.4,0.1( === βθα  
respectively. While Table 3 and Table 4 presents the 
approximated two sided confidence limits at %95  and 

%99  level of significance for the scale parameter and the 
acceleration factor. 

From these tables it is concluded that for the first set of 
parameters )20.0,60.4( == βθ , the ML estimates have good 
statistical properties than the second set off parameters 

)80.0,40.4( == βθ for all sample sizes. Also as the 
acceleration factor increases the estimates have smaller MSE 
and RE. As the sample size increases the RABs and MSEs of 
the estimates of parameters decrease. This indicates that the 
ML estimates provide asymptotically  normally d istributed 
and consistent estimators for the scale parameter and the 
acceleration factor. 

When the sample size increases, the interval of the 
estimators decreases. Also the intervals of the estimators at 

95.0=γ is smaller than the interval of estimators at

99.0=γ . Tables are g iven in appendix. 

Notations 
: Total number of test items in a PALT 
: censoring time of a PALT 
: Lifet ime of an item at use condition 
: Lifet ime of an item at accelerated condition 
: Acceleration factor  
: Probability that an item tested only at use condition 

fails by  
: Probability that an  item tested only at accelerated 

condition fails by  
: implies a maximum likelihood estimate 
: scale parameter of Extreme Value distribution 
: shape parameter o f Extreme Value distribution 
: observed life time of item  tested at use condition 

: observed life t ime of item  tested at accelerated 
condition 

: Ind icator function at use condition  

: Ind icator function at accelerated condition  
: Proportion of sample units allocated to accelerated 

condition 
: Optimum proportion of sample units allocated to 

accelerated condition 
: Number of items failed at use condition 

: Number of items failed at accelerated condition 

: ordered failure times at use 
condition 

: ordered failure t imes at 
accelerated condition 

Acronyms: 
ALT:  Accelerated Life Test 
AV:  Asymptotic Variance 
ESS:  Environmental Stress Screening  
EVT:  Extreme Value Theory 
GAV:  Generalized Asymptotic Variance (GAV)  
MLE:  Maximum Likelihood (ML) Estimat ion 
PDF:  Probability Density Function 
MSE:  Mean Square Error 
RABs:  Random Absolute Bais 
RE:  Relative Error 
HALT:  Highly Accelerated Life Testing 
SSPALT:  Step-St ress Partially Accelerated Life Test 
CSPALT: Constant Stress Partially Accelerated Life Test 
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Table 1.  The MSE, RABs, RE and Variances of the Parameters 

)50.0,0.4,25.1( === βθα  under Type-I Censoring 

Size 
n  

Parameters 
 MSE RBias RE Variance 

50 

α  

θ  

β  

0.0301 0.0600 0.1388 0.0245 

0.0062 0.0010 0.0197 0.0062 

0.0306 0.0354 0.3499 0.0303 

100 

α  

θ  

β  

0.0266 0.0449 0.1305 0.0234 

0.1055 0.0006 0.0812 0.1055 

0.0047 0.0364 0.1371 0.0044 

150 

α  

θ  

β  

0.0245 0.0374 0.1252 0.0223 

0.0152 0.0015 0.0308 0.0152 

0.0023 0.0260 0.0959 0.0022 

200 

α  

θ  

β  

0.0199 0.0312 0.1129 0.0184 

0.0131 0.0002 0.0286 0.0131 

0.0209 0.0176 0.2891 0.0208 

250 

α  

θ  

β  

0.0174 0.0214 0.1055 0.0167 

0.0150 0.0036 0.0306 0.0148 

0.0028 0.0076 0.1058 0.0028 

300 

α  

θ  

β  

0.0163 0.0162 0.1021 0.0159 

0.0169 0.0209 0.0325 0.0099 

0.0016 0.0144 0.0800 0.0015 

350 

α  

θ  

β  

0.0150 0.0123 0.0979 0.0148 

0.0118 0.0225 0.0272 0.0037 

0.0197 0.0192 0.2807 0.0196 

400 

α  

θ  

β  

0.0140 0.0050 0.0947 0.0140 

0.0181 0.0241 0.0336 0.0088 

0.0029 0.0170 0.1077 0.0028 

450 

α  
θ  

β  

0.0126 0.0007 0.0897 0.0126 

0.0197 0.0246 0.0351 0.0100 

0.0014 0.0128 0.0748 0.0014 

Table 2.  The MSE, RABs, RE and Variances of the Parameters 

)30.0,50.4,0.1( === βθα  under Type-I Censoring 

Size 
n  Parameters MSE RBias RE Variance 

50 

α  

θ  

β  

0.0286 0.0532 0.1691 0.0258 

0.0227 0.0054 0.0335 0.0221 

0.0002 0.0110 0.0471 0.0002 

100 

α  

θ  

β  

0.0227 0.0249 0.1507 0.0221 

0.0399 0.0123 0.0444 0.0369 

0.0004 0.0183 0.0667 0.0004 

150 

α  

θ  

β  

0.0242 0.0237 0.1556 0.0236 

0.0914 0.0001 0.0672 0.0914 

0.0020 0.0027 0.1491 0.0020 

200 

α  

θ  

β  

0.0198 0.0207 0.1407 0.0194 

0.0162 0.0072 0.0283 0.0152 

0.0002 0.0240 0.0471 0.0001 

250 

α  

θ  

β  

0.0182 0.0189 0.1349 0.0178 

0.0266 0.0040 0.0362 0.0263 

0.0003 0.0253 0.0577 0.0002 

300 

α  

θ  

β  

0.0166 0.0150 0.1288 0.0164 

0.0698 0.0014 0.0362 0.0698 

0.0015 0.0007 0.1291 0.0015 

350 

α  

θ  

β  

0.0153 0.0112 0.1237 0.0152 

0.0107 0.0059 0.0229 0.0100 

0.0001 0.0063 0.0333 0.0001 

400 

α  
θ  

β  

0.0142 0.0098 0.1192 0.0141 

0.0014 0.0033 0.0083 0.0012 

0.0002 0.0009 0.0471 0.0002 

450 

α  
θ  

β  

0.0135 0.0004 0.1162 0.0135 

0.0165 0.0035 0.0285 0.0163 

0.0002 0.0360 0.0471 0.0001 
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Table 3.  Confidence Bounds of the Estimates at Confidence Level at 0.95 

and 0.99 )50.0,0.4,25.1( === βθα  

Size 
n  

Parameters 
 

95% 99% 

LCL         UCL LCL          UCL 

50 

α  

θ  

β  

1.0183 1.6317 1.0683 1.5817 

3.8498 4.1583 3.8750 4.1332 

0.1411 0.8235 0.1968 0.7678 

100 

α  

θ  

β  

1.0065 1.6059 1.0554 1.5569 

3.3659 4.6391 3.4698 4.5352 

0.3883 0.6481 0.4095 0.6269 

150 

α  

θ  

β  

1.0040 1.5893 1.0518 1.5416 

3.7523 4.2357 3.9718 4.1962 

0.3951 0.5789 0.4101 0.5639 

200 

α  

θ  

β  

1.0232 1.5548 1.0667 1.5114 

3.7751 4.2235 3.8117 4.1869 

0.2262 0.7914 0.2723 0.7453 

250 

α  

θ  

β  

1.0235 1.5299 1.0648 1.4886 

3.7471 4.2241 3.7860 4.1852 

0.4001 0.6075 0.4170 0.5906 

300 

α  

θ  

β  

1.0231 1.5175 1.0635 1.4771 

3.7212 4.1112 3.7530 4.0794 

0.4169 0.5687 0.4293 0.5563 

350 

α  

θ  

β  

1.0269 1.5039 1.0658 1.4649 

3.7910 4.0294 3.8107 4.0097 

0.2352 0.7840 0.2800 0.7392 

400 

α  

θ  

β  

1.0244 1.4882 1.0623 1.4503 

3.7199 4.0876 3.7499 4.0576 

0.3878 0.5952 0.4046 0.5783 

450 

α  

θ  

β  

1.0309 1.4708 1.0669 1.4349 

3.7055 4.0975 3.7375 4.0655 

0.4203 0.5669 0.4323 0.5549 

Table 4.  Confidence Bounds of the Estimates at Confidence Level at 0.95 

and 0.99 )30.0,50.4,0.1( === βθα  

Size 
n  

Parameters 
 

95% 99% 
LCL         UCL LCL          UCL 

50 

α  

θ  

β  

0.7384 1.3697 0.7898 1.3166 

4.1841 4.7691 4.2317 4.7195 

0.2691 0.3243 0.2736 0.3198 

100 

α  

θ  

β  

0.7334 1.3164 0.7810 1.2688 

4.1789 4.9319 4.2403 4.8704 

0.2663 0.3447 0.2727 0.3383 

150 

α  

θ  

β  

0.7058 1.3416 0.7577 0.4282 

3.9079 5.0930 4.0047 4.9963 

0.2116 0.3868 0.2259 0.3725 

200 

α  

θ  

β  

0.7477 1.2937 0.7922 1.2492 

4.2261 4.7095 4.2656 4.6700 

0.2824 0.3268 0.2908 0.3236 

250 

α  

θ  

β  

0.7574 1.2803 0.8001 1.2377 

4.2003 4.8361 4.2522 4.7842 

0.2648 0.3200 0.2693 0.3155 

300 

α  

θ  

β  

0.7639 1.2661 0.8049 1.2251 

3.9759 5.0115 4.0604 4.9269 

0.2239 0.3757 0.2363 0.3633 

350 

α  

θ  

β  

0.7695 1.2529 0.8089 1.2134 

4.2774 4.6692 4.3094 4.6374 

0.2785 0.3177 0.2817 0.3145 

400 

α  

θ  

β  

0.7771 1.2425 0.8151 1.2045 

4.4175 4.5531 4.4286 4.5420 

0.2696 0.3248 0.2741 0.3203 

450 

α  

θ  

β  

0.7726 1.2282 0.8098 1.1909 

4.2654 4.7659 4.3063 4.6251 

0.2696 0.3088 0.2728 0.3056 
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