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Abstract  One of the commonly  observed one-factor response patterns in practice is the umbrella ordering in which the 
response variable increases with an increase in the treatment up to a point, then decreases with further increase in the 
treatment level. In this article, a nonparametric test for several sample scale problem against umbrella alternative with at least 
one strict inequality, when peak of the umbrella is known, is proposed using ranked-set data. The proposed statistic has the 
advantage of not requiring the several d istribution functions to have a common median, but rather any common quantile  of 
order 10, ≤≤αα   , (not necessarily ½) which is assumed to be known. The proposed test statistic is based on weighted 
linear combination of statistic proposed by Ozturk and Deshpande[11]. The distribution of the test statistic and optimal 
weights has been calculated. It is shown that the new test is uniformly more efficient in terms of Pitman asymptotic relative 
efficiency than its simple random sampling analog and its Mack-Wolfe (Mack and Wolfe (1981)) version as well.  
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1. Introduction 
The ranked-set sampling (RSS) approach was first 

proposed by McIntyre[9] for estimating mean pasture yields. 
This approach is useful where making measurements on 
experimental units is either expensive, t ime-consuming or 
destructive, but the mechanis m for either informally or 
formally  ranking a set of sample units is relatively  easy and 
reliable. RSS utilizes large number of informal 
measurements for deciding which expensive units should be 
fully measured. RSS generates a set of observations (data) 
with smaller sampling variation than for the simple random 
sampling. Barnett and Moore[1], Kaur, Patil, Sinha, and 
Taillie[6] and Patil[13] have given eloquent account on the 
settings where RSS technique has found applications. 
However, a b rief introduction to the concept of RSS for 
completeness is given below for completeness. 

Suppose X is a random variable with density function f(x). 
First, the items in each  of k  independent random samples of 
size k  from f(x) are separately subjected to ordering on the 
attribute o f interest v ia some ranking p rocess by v isual 
inspection or based on a concomitant variable. RSS involves 
selecting one unit among every ranked set consisting of k 
units for quantificat ion, with the other k-1 units not being 
investigated further. One may  select the unit with rank 1 
from the first set, the unit with rank 2 from the second set,  

 
* Corresponding author: 
anilgaur8@gmail.com (Anil Gaur) 
Published online at http://journal.sapub.org/ijps 
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved 

and so on, i.e., from the rth sample, r = 1, 2,….., k , the item 
judged to be the rth smallest is retained and measured. The 
first cycle is completed when the unit with rank k  is selected 
from the kth set. The selected rank order can be any 
permutation of 1, 2,….., k  based on the type of ranking, 
whether perfect or imperfect. This entire process is repeated 
for m independent cycles. Each cycle involves k2 units and 
among which only k  units will be selected for quantification. 
Finally, the RSS data consists of mk  independent 
observations, with one item retained and measured from 
each of the mk  independent samples. When the judgment 
ranking is perfect, then the observations retained from the ith 
cycle are denoted by Xi = X(1)i, ….., X(k)i ; i= 1, 2,….., m, and 
the entire ranked-set sample is denoted by X1, ..…, Xm = 
X(1)1, ....., X(k)1 ,….., X(1)m, ....., X(k)m. In case the judgment 
ranking is not perfect, the round brackets in the subscript are 
replaced by square brackets.  

There has been a lot of work on testing for equality of 
location parameters in ranked-set sampling, but very litt le 
work on testing for equality of scale parameters problem. 
Stokes and Sager[17] were the first researchers to consider a 
nonparametric setting with RSS data. They developed 
important properties of the empirical distribution function 
from a RSS and compared these properties with those of the 
empirical distribution of a simple random sample. Bohn and 
Wolfe[2] developed a nonparametric test based on RSS data 
for testing the difference between two treatments. They 
compared this procedure with the Mann-Whitney test for 
simple random sample data. Bohn and Wolfe[3] proposed a 
the test for ranked-set two-sample location problem under 
imperfect judgment ranking. Ozturk[10] provided 
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two-sample inference based on the RSS sign statistic. Ozturk 
and Wolfe[12] proposed an improved ranked-set two-sample 
Mann-Whitney-Wilcoxon test. Flinger and MacEachern[4] 
proposed a test for two-sample location problem based on 
the ranks in the RSS which led to tests for the centers of 
distributions. Ozturk and Deshpande[11] proposed a test of 
equality of the scale parameters of the two populations based 
on RSS. But, to our knowledge, no test of equality of 
homogeneity of scale parameters against umbrella 
alternatives based on RSS is availab le.   

A nonparametric test for homogeneity of scale parameters 
against umbrella alternative, with at least one strict 
inequality has been tackled as a testing problem in the 
following context. Let ;.......,,, 21 iinii X   XX

 
k   i ,.......,2,1= , be independent random samples of size 

in  from absolutely continuous cumulative distribution 

functions k   i  x FxF
i

i ,......,2,1,)( =







=

θ
, where 

)0( >ii θθ is the scale parameter. It is assumed that these 
distribution functions have zero as the common quantile of 
order )10( ≤≤αα  , i.e., α=)0(iF  for

k   i ,......,2,1= . It is also assumed that )(xFi , 

k   i ,......,2,1= , are identical in all respects except 
possibly their scale parameters. The hypothesis which is of 
interest in this paper can be formally stated as follows:  

k  H θθθ === ..........: 210  
against the umbrella alternative 

kkhhh      H θθθθθθθ ≥≥≥≥≤≤≤≤ −+− 111211 ........:  
with at least one strict inequality and h, the peak of the 

umbrella, is known. 
For some earlier work on this problem see Gaur et al.[5] 

and Singh and Liu[16]. Singh and Liu[16] proposed a test 
statistics for homogeneity of scale parameters against 
umbrella alternative with at least one strict inequality based 
isotonic estimator of scale parameter. They also provided 
one-sided simultaneous confidence intervals for all the 
ordered pairwise scale ratios, and critical points for two 
parameter exponential probability distribution. Recently, 
Gaur et al.[5] provided three test statistics based on linear 
combination of two-sample U-statistics for testing 
homogeneity of scale parameters against umbrella 
alternative, with at least one strict inequality, when the peak 
of the umbrella, h is known. Gaur et al.[5] test require that 
the different distribution functions have common quantile of 
order 10, ≤≤αα   , (not necessarily  ½) which is assumed 
to be known.  

In this paper, we extend the concept of ranked-set samples 
to the k-sample scale setting when the scale parameters 
follow an umbrella pattern, with peak of umbrella, h  to be 
known. The test is given  in  section 2 and distribution of the 
test statistic is discussed in section 3. Sect ion 4 is devoted to 
optimal choice of weights. In section 5, we consider the 

performance of the proposed test statistic against its simple 
random sample analog. It is shown that the proposed test has 
higher Pitman efficiency for the same number of fully 
measured observations.   

2. The Proposed Test 
To construct a mult i-sample umbrella alternative problem, 

we select vn  independent ranked-set samples from 

absolutely continuous distribution k   v ;Fv ,......,2,1= , 
then apply the ranked-set concept and repeat the process for 

u cycles, where vm   u  ,......,2,1= . Let vutX ,)( ; 

vn    t ,.......,2,1= ; vm   u  ,......,2,1= ; 

k   v ,.......,2,1= , be k independent ranked-set samples of 
size nv*mv. We assume that the distribution functions have 
zero as the common quantile of order )10(, ≤≤ αα   , i.e., 

α=)0(iF  for k   i ,......,2,1= .  
First we consider the two-sample U-statistic, proposed by 

Ozturk and Deshpande[11] where the assumption of the 
common quantile o f order )10(, ≤≤αα    is made and 
then extend it to the k  sample umbrella alternative problem. 
Define for i<j; i,j=1,2,…,k, 
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The two-sample U-statistic corresponding to the kernel 
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The statistic ijU  is obviously a U-statistic (Lehmann[7]) 

corresponding to the kernel ijφ . It can be seen that the 
kernel takes non-zero value only  when both X(p)r,i’s and 
X(q)s,j’s have the same sign.  

For testing 
0H against 1H , with α=)0(iF  for

k   i ,......,2,1= , we propose the test statistics 
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where ( )121 ,,........., −kaaa  are some real positive constants 

to be chosen suitably and 1, +iiU  is the ranked-set 
two-sample statistic proposed by Ozturk and Deshpande[11]. 
For each set of values ( )121 ,,........., −kaaa , we get a distinct 
member of this class of test statistics. Large values of T are 
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significant for testing 0H  against 1H . When ia =1, 

( 1,......,2,1 −= k   i ), we obtain Mack-Wolfe (Mack and 
Wolfe[8]) version of T as 

1 1

, 1 1, 
1

h k
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− −

+ +
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3. Distribution of the Proposed Test 
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Using the results of Lehmann[7], the proof of the 

following theorem fo llows from the transformat ion theorem 
(see Serfling[15], page 122) immediately  
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After involved computations, it can be seen that under 0H , 
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Similarly, the asymptotic null distribution of 

)]([ MM TET N −  is normal with mean  zero and 
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4. Optimal Choice of Weights 
Under the sequence of Pitman alternatives, the square of 

the efficacy of test T is g iven by 
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size and equally spaced alternatives of the type 

 




+=−
=

=
., ....., khi for         ih

,...., h,, i for                  i
i 1)2(

21
θ

θ
θ   ,  

0>θ .                (4.1) 
Making use of the results due to Rao[14] (page 60) for 

determining optimal weights, we obtain the optimal weights 
*
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The square of the efficacy of tests T with optimal choice of 
weights in (3.3) is given by 
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And the square of the efficacy of tests MT  is given by 
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5. Asymptotic Relative Efficiencies 

In this section, we compute and compare the Pitman  
asymptotic relative efficiency of T with respect to its 
Mack-Wolfe version, TM, also with its competitor test (the 
test A given by Gaur et al.[5]) in simple random sampling. 
Using Ozturk and Deshpande[11] and Gaur et  al.[5], efficacy 
of  test A of Gaur et al.[5], TSRS test under multivariate 
setting can be given by  

( ) [ ]
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Then the asymptotic relative efficiency (ARE) of the T  
test with respect to TSRS test can be computed form the rat io 
of the Pitman efficacies, and the ARE for different values of 
n are given in Tab le 1.  
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Also, ARE (T, TM )= 2
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 and the values of 

ARE for different values of k  are given in Table 2. 

It is straight forward that these asymptotic relat ive 
efficiencies are independent from underly ing distribution F. 
The inequality in equation (5.1) follows from the fact that 

),( αnC is negative. The asymptotic relat ive efficiency 
(ARE) of the T  test with respect to TSRS test has been 
calculated for certain value of n and α  and presented in 
Table 1. 

6. Conclusions 
The AREs in Table 1 and Tab le 2, immediately  show that 

test for homogeneity of scale parameters against umbrella 
alternative based on ranked-set sample, T, is always better 
than the simple random sample test, TSRS, with respect to 
pitman efficiency.  

Also, the proposed test T is better than its Mack-Wolfe 
version, TM irrespective of underlying distribution. As k 
increases, the proposed test T become more efficient as 
compared to its Mack-Wolfe version, TM . 

Table 1.  ARE of the T with respect to TSRS 

n 
α  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
2 1.139 1.195 1.099 1.028 1 1.028 1.099 1.195 1.139 
3 1.589 1.386 1.242 1.142 1.103 1.142 1.242 1.386 1.589 
4 1.853 1.573 1.396 1.277 1.231 1.277 1.396 1.573 1.853 
5 2.092 1.756 1.552 1.418 1.367 1.418 1.552 1.756 2.092 
6 2.319 1.934 1.708 1.561 1.506 1.561 1.708 1.934 2.319 

Table 2.  ARE of T with respect to TM with different values of k 

k 3 5 7 9 11 13 15 17 19 

ARE(T,T M) 1.000 1.050 1.238 1.458 1.691 1.929 2.171 2.415 2.661 
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