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Abstract  An analysis on the algebraic  decoding of the (31, 16, 7) quadratic residue (QR) code with reducib le generator 

polynomial that uses the inverse-free Berlekamp-Massey (IFBM) algorithm to determine the error-locator polynomial is 

presented in this paper. The primary known syndrome S1 will be equal to zero for some weight-3 error patterns. However, the 

zero S1 does not cause a decoding failure while using the IFBM algorithm to determine the error-locator polynomial. Two 

examples with detailed step-by-step analysis show the decoding procedure. 
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1. Introduction 

The well-known QR codes, introduced by Prange[1] in  

1957, are cyclic BCH codes with code rates greater than or 

equal to one-half. In addition, the codes generally have large 

minimum d istances so that most of the known QR codes are 

the best-known codes. The code augmented by a parity bit, 

for example, the (24, 12, 8) QR code was utilized to provide 

error control on the Voyager deep-space mission[2]. 

In the past decades, several decoding techniques have 

been developed to decode the binary QR codes. The ADAs 

most used to decode the QR codes are the Newton identities 

with either Sy lvester resultants [3-7,12-13,15] or Gröbner 

bases[16] , or inverse-free Berlekamp -Massey (IFBM) 

algorithm[8-11,14] to determine the error-locator 

polynomial. Among them, the ADA of the (31, 16, 7) QR 

code[5,12,14,15] with the reducible polynomial can correct 

up to three errors in the finite field GF(2
5
), because the 

error-correcting capability o f the code is  2/)1(  dt

  32/)17(   errors, where  x  denotes the greatest 

integer less than or equal to x, and d = 7 is the minimum 

Hamming d istance of the code. In [5,12,15], the Newton 

identities are applied to determine the coefficients of the 

error-locator polynomials. In[14], the IFBM algorithm[18] is 

applied to determine the error-locator polynomial of the 

received sequence. Finally, the Chien search algorithm[19]  

is applied to find the roots of the error-locator polynomial. 

In [15], the decoding algorithm is very complicated  

because the syndrome S7 = 0. However, the IFBM does not 

us e the s yndrome  S7  to  determine the erro r-locator  
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polynomial of the (31, 16, 7) QR code. For the QR codes 

with irreducible generator polynomial,  the primary known 

syndrome S1 cannot be equal to zero, because the zero S1 

denotes that the received word has no errors in the 

transmission channel. Besides, S1 = 0 means that the power 

(mod codelength n) of S1 are all zero; that is, S2 = (S1)
2
 = 0, S4 

= (S1)
4
 = 0, …. For the (89, 45, 17) QR code with reducib le 

generator polynomial in  the fin ite field GF(2
11

), the IFBM 

algorithm can be used to determine the error-locator 

polynomial while the syndrome S1 = 0[20]. Similarly, for the 

(31, 16, 7) QR code with reducible generator polynomial in 

the fin ite field GF(2
5
), the zero  primary known syndromes, 

S1 = 0 and S5 = 0, do not cause a decoding failure in 

decoding weight-3 error patterns while using the IFBM 

algorithm to determine the error-locator polynomial. The 

analysis of two examples on the weight-3 error patterns 

shows the fact. 

The rest parts of this paper are organized as follows: The 

background of systematic (31, 16, 7) QR codes is briefly 

given in Section 2. The analysis on the zero primary known 

syndromes for the weight-3 error patterns is presented in 

Section 3. Finally, this paper concludes with a brief summary 

in Section 4. 

2. Background of the Binary (31, 16, 7) 
QR Code 

The codeword of the binary (n, k, d) QR code is defined 

algebraically as a mult iple of its generator polynomial g(x) 

with coefficients in GF(2). Let  the length of the code n be a 

prime number of the form n = 8m ± 1, where m is a positive 

integer and m be the smallest positive integer such that 2
m

  1 

(mod n). Thus, GF(2
m

) is the extension field of GF(2). Also, 

let k  = (n+1)/2 be the message length and d be the minimum 
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Hamming distance or Hamming weight of the code. The 

generator polynomial as a cyclic code is  given by 

, )()(  
 nQi

iβxxg
             

(1) 

where the element  is a primit ive nth root of unity in GF(2
m

) 

and Qn denotes the set of quadratic residues given by Qn = 

{jj  x
2
 mod n for 1  x  (n–1)/2}. The set Qn can thus be 

represented as a disjoint union of cyclotomic cosets, modulo 

n. These cyclotomic cosets are defined as Qr = {r2
j
j = 0, 

1, … , nr–1}, where nr is the smallest positive integer such 

that nrr rn
 mod 2  , nr divides (n–1)/2, and r is the smallest 

element in Qr. The element r is called the representative 

element of the cyclotomic cosets Qr. The set S, consisting of 

all representatives of the QR code, is called the base set of 

the QR code. These definit ions and properties cause the 

equality  Sr rn QQ


  relating Qn to the cyclotomic cosets, 

modulo n. 

Let an  element   GF(2
5
) be a root of the primitive 

polynomial p(x) = x
5
 + x

2
 + 1. Then,  generates the 

multip licat ive group of nonzero elements in GF(2
5
). Also, let 

an element  = u
, where u = (2

m
 – 1)/n = (2

5
 – 1)/31 = 1, is a 

primitive 31th root of unity in GF(2
5
); that is,  = . The all 

31 roots of x
31

 – 1 = 0 are shown in Table 1. 

Table 1.  The 31 Roots of x31
 – 1 = 0 

Exponential 

representation 

Polynomial 

representation 

Exponential 

representation 

Polynomial 

representation 

  2
 2

 

3
 3

 4
 4

 

5
 2

 + 1 6
 3

 +  

7
 4

 + 2
 8

 3
 + 2

 + 1 

9
 4

 + 3
 +  10

 4
 + 1 

11
 2

 +  + 1 12
 3

 + 2
 +  

13
 4

 + 3
 + 2

 14
 4

 + 3
 + 2

 + 1 

15 4
+3

+ 2
++1 16 4

 + 3
 +  + 1 

17
 4

 +  + 1 18
  + 1 

19
 2

 +  20
 3

 + 2
 

21 4 + 3 22 4 + 2 + 1 

23
 3

 + 2
 +  + 1 24

 4
 + 3

 + 2
 +  

25
 4

 + 3
 + 1 26

 4
 + 2

 +  + 1 

27
 3

 +  + 1 28
 4

 + 2
 +  

29 3
 + 1 30 4

 +  

The base set of this code is S = {1, 5, 7, 3, 11, 15} and r  

S. The minimal polynomial gr(x) can also be expressed as 

. Therefore, the six cyclotomic 

cosets Qr and their corresponding min imal polynomials are 

shown in Table 2. 

Table 2.  The Cyclotomic Cosets of the (31, 16, 7) QR Code 

r Qr, gr(x) 

1 {1,2,4,8,16} x
5
 + x

2
 + 1 

5 {5,10,20,9,18} x
5
 + x

4
 + x

2
 + x + 1 

7 {7,14,28,25,19} x
5
 + x

3
 + x

2
 + x + 1 

3 {3,6,12,24,17} x
5
 + x

4
 + x

3
 + x

2
 + 1 

11 {11,22,13,26,21} x
5
 + x

4
 + x

3
 + x + 1 

15 {15,30,29,27,23} x
5
 + x

3
 + 1 

Let r = 1, 5, and 7, respectively, the quadratic residue set 

of the code is 

 (2) 

Thus, the g(x) consists of the following three min imum 

polynomials: 

   (3) 

Since the codewords are a multiple of the g(x), the 

codeword polynomial of the (31, 16, 7) QR code can be 

represented by  


30
0

)()()(
i

i
i xgxmxcxc , where ci  

GF(2) for 0 ≤ i ≤ 30, and m(x) = m15x
15

 +  + m1x + m0 

denotes information polynomial, where mi  GF(2) for 0 ≤ i 

≤ 15. In such a representation, this type of codeword is called 

the non-systematic encoding. In  practice, the encoding 

procedure is often implemented by the use of systematic 

encoding. Let p(x) = p14x
14

 +  + p1x + p0 be the 

parity-check polynomial, where pi  GF(2) for 0 ≤ i ≤ 14. 

Also, let m(x)x
n-k

 divide by g(x), then we get the following 

identity: 

m(x)x
n-k

 = q(x)g(x) + d(x).       (4) 

Multiplying both sides  of (4) by x
k
 and using x

n
 = 1, Then, 

it yields d(x)x
k
 + m(x) = (q(x)x

k
)g(x). The term d (x)x

k
 + m(x), 

which is a mult iple of g (x), has m(x) in  its lower k  bits and p(x) 

= d(x)x
k
 in its higher n – k  bits. Thus, the codeword can be 

represented by the equation below. 

c(x) = d(x)x
k
 + m(x) = p(x) + m(x).    (5) 

As shown in (5), this form of the codeword is called 

systematic encoding. Now, let a  codeword be t ransmitted 

through a noisy channel to obtain a received word  of the 

form r(x) = c(x) + e(x), where e(x) = e30x
30

 ++ e1x + e0 is 

the occurred error polynomial and ei  GF(2). For 

simplification, the polynomial form can be expressed as the 

vector form. For example, c(x) can be expressed as c = 

(c30, …, c1, c0). The syndromes or known syndromes of the 

code are defined by 

,)()()(
30

0 


j
ji

j
ii

i βeerS       (6) 

where i (mod 31)  Q31. If i   Q31, the syndromes are called 

unknown syndromes. All known and unknown syndromes 

can be expressed as some powers of S1, S5, S7, and S3, S11, S15, 

called the primary known syndromes and the primary 

unknown syndromes, respectively. For example, S2 = S1
2
, S4 

= S1
4
, S8 = S1

8
, and S16 = S1

16
. Note that S0 = 0 or 1 depends on 

the fact that v is even or odd, where v is the actual number of 

errors to be corrected and 1 ≤ v  ≤ 3. 

If there are v  t errors in r(x), then e(x) has v nonzero 

terms over GF(2); that is, vrrr
xxxxe  21)( , where 0 

≤ r1 < r2 < ... < rv ≤ n–1. For i  Qn, the syndrome can be 

written as i
v

ii
i XXXS  21 , where 

jr

j βX   for 1 

≤ j ≤ v are called the error locators. Assuming that v errors 

 


4

0
2 )()(

i
r

r

i

xxg 

}.19,25,28,14,7,18,9,20,10,5,16,8,4,2,1{       

75131



 QQQQ 

.  1        

)()()(        

  )()(

389131415

751

31





 

xxxxxx

xgxgxg

xxg
Qi

i
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occur, the classical error-locator polynomial L(x) is defined 

by 

, )1()( 01
1

σxσxσxXxL v
v

v

j
j 



  (7) 

where the σj are called the elementary symmetric functions 

for 1 ≤ j ≤ v  and σ0 = 1. The roots of L(x) are the inverse of the 

v error locators {Xj}. 

The steps of the IFBM algorithm are summarized as 

below: 

1).Init ialize k = 0, μ
(0)

(x) = 1, λ
(0)

(x)=1, l
(0)

 = 0, γ
(0)

 = 1. 

2).Compute 










)1(

0

)1()(
kl

j
jk

k
j

k S ,        (8) 

where μj
(k–1)

 is the coefficient of μ
(k–1)

(x). 

3).Compute 

μ
(k)

(x) = (k–1)
μ

(k–1)
(x) – δ

(k)
λ

(k–1)
(x)x.   (9) 

4).Compute 












































   12  and 0 if  ,

12or     0 if  ,
      

  12  and 0 if  , 

12or     0 if  , 
       

   12  and 0 if  ),(

12or     0 if  , )(
)(

1)-()()(

1)-()()1(
)(

1)-()()1(

1)-()()1(
)(

1)-()()1(

1)-()()1(
)(

kl

kl

kllk

kll
l

klx

klxx
x

kkk

kkk
k

kkk

kkk
k

kkk

kkk
k















(10) 

5).Set k  = k  + 1. If k  ≤ 2t, then go to step 2. Otherwise go to 

stop and declare a decoding failure . 

3. Analysis on the Zero Primary Known 
Syndromes for the Weight-3 Error 
Patterns 

The ADA given in[14] used the IFBM algorithm to 

determine the error-locator polynomial. In  order to use the 

IFBM algorithm, the consecutive syndromes, Si for 1 ≤ i ≤ 

6, need to be computed first. Among them, there are two 

unknown syndromes S3, and S6, where S6 can be computed 

from the square of S3. The determination of the unknown 

syndrome S3 is computed from (17) of[12]. 

For the (31, 16, 7) QR code, a C++ program shows that 

there are 155 weight-3 error patterns will cause the primary 

known syndromes and the primary unknown syndromes to 

be equal to zero; however, they are not simultaneous equal 

to zero. The zero  primary  known syndromes  do not cause a 

decoding failure while using the IFBM algorithm to 

determine the error-locator polynomial. The following 

example shows the decoding procedure. 

3.1. The Case of Primary Known Syndrome S1 = 0  

Example 1: 

If m(x) = x
7
, by (4) and (5), then the systematic codeword 

is c(x) = x
30

 + x
29

 + x
27

 + x
26

 + x
25

 + x
20

 + x
19

 + x
7
. If there is 

a weight-3 error pattern e(x) = x
18

 + x + 1 occurred in the 

transmission channel, then the received word becomes r(x) 

= x
30

 + x
29

 + x
27

 + x
26

 + x
25

 + x
20

 + x
19

 + x
18

 + x
7
 + x + 1. 

The syndromes S1 = 0, S2 = 0, S4 = 0, and S5 = 30
 are 

computed by (6), respectively, and the syndromes S3 = 19
 

and S6 = S3
2
 = 7

 are computed by (17) in[12]. Next, the 

IFBM algorithm is applied to obtain the error-locator 

polynomial. The decoding procedure is described as fo llows: 

Define in itial value as fo llows: k = 0, μ
(0)

(x) = 1, λ
(0)

(x)=1, 

l
(0)

 = 0, γ
(0)

 = 1. 

Set k  = k + 1 = 0 + 1 = 1. By (8), compute 

1
)0(

0
0

0 1
)0()1(

)0(

SS
l
j jj  


   = 0. 

By (9), compute μ
(1)

(x) = (0)
μ

(0)
(x) – δ

(1)
λ

(0)
(x)x = 1∙1 – 

0∙1∙x = 1. 

The condition in (10) is δ
(1)

 = 0. Compute λ
(1)

(x) = xλ
(0)

(x) 

= x, l
(1)

 = l
(0)

 = 0, and γ
(1)

 =γ
(0)

 = 1, respectively. Go to step 2. 

Set k  = k + 1 = 1 + 1 = 2. By (8), compute 

2
)1(

0
0

0 2
)1()2(

)1(

SS
l
j jj  


    = 0. 

By (9), compute μ
(2)

(x) = (1)
μ

(1)
(x) – δ

(2)
λ

(1)
(x)x = 0∙1 –  

0∙1∙x = 1. 

The condition in (10) is δ
(2)

 = 0. Compute λ
(2)

(x) = xλ
(1)

(x) 

= xx = x
2
, l

(2)
 = l

(1)
 = 0, and γ

(2)
 = γ

(1)
 = 1, respectively. Go to 

step 2. 

Set k  = k + 1 = 2 + 1 = 3. By (8), compute 

3
)2(

0
0

0 3
)2()3(

)2(

SS
l
j jj  


   = 1S3 = S3. 

By (9), compute μ
(3)

(x) = (2)
μ

(2)
(x) – δ

(3)
λ

(2)
(x)x = 1∙1 – 

S3∙x
2
∙x = 1 + S3x

3
. 

The conditions in (10) are δ
(3)

 = S3 ≠ 0 and 2l
(2)

 = 0 ≤ k  – 1 

= 3 – 1 = 2. Compute λ
(3)

(x) = μ
(2)

(x) = 1, l
(3)

 = k  - l
(2)

 = 3 – 0 = 

3, and γ
(3)

 = δ
(3)

 = S3, respectively. Go to step 2. 

Set k  = k + 1 = 3 + 1 = 4. By (8), compute. 

0.1
)3(

2

2
)3(

23
)3(

14
)3(

0
3

0 4
)3()4(

)3(






 

S

SSSS
l
j jj




 

By (9), compute μ
(4)

(x) = (3)
μ

(3)
(x) – δ

(4)
λ

(3)
(x)x = S3(1 –  

S3x
3
) = S3 + S3

2
x

3
. 

The condition in (10) is δ
(4)

 = 0. Compute λ
(4)

(x) = x1 = x, 

l
(4)

 = l
(3)

 = 3, and γ
(4)

 = γ
(3)

 = S3, respectively. Go  to step 2. 

Set k  = k + 1 = 4 + 1 = 5. By (8), compute 




 
3

0 5
)4()5(

)4(l
j jj S = S3S5 + 0S4 + 0S3 + S3

2
S2 = S3S5. 

By (9), compute the error-locator polynomial of degree 3, 

μ
(5)

(x) = (4)
μ

(4)
(x) – δ

(5)
λ

(4)
(x)x = S3(S3 + S3

2
x

3
) – (S3S5)xx = 

S3
2
 + S3S5x

2
 + S3

3
x

3
. 

The condition in (10) is 2l
(k-1)

 = 2l
(4)

 = 6 > k  – 1 = 5 – 1 = 4. 

Compute λ
(5)

(x) = xλ
(4)

(x) = xx = x
2
, l

(5)
 = l

(4)
 = 3, and γ

(5)
 = γ

(4)
 

= S3, respectively. Go to step 2. 

Set k  = k + 1 = 5 + 1 = 6. By (8), compute 




 
3

0 6
)5()6(

)5(l
j jj S = S3

2
S6 + 0S5 + S3S5S4 + S3

3
S3 = 

0. 

By (9), compute the error-locator polynomial of degree 3, 

μ
(6)

(x) = (5)
μ

(5)
(x) – δ

(6)
λ

(5)
(x)x = S3(S3

2
 + S3S5x

2
 + S3

3
x

3
) = S3

3
 

+ S3
2
S5x

2
 + S3

4
x

3
. 
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The condition in (10) is δ
(6)

 = 0, compute λ
(6)

(x) = xλ
(5)

(x) = 

xx
2
 = x

3
, l

(6)
 = l

(5)
 = 3, and γ

(6)
 = γ

(5)
 = S3, respectively. Go to 

step 2. 

Set k  = k + 1 = 6 + 1 = 7. Since k  = 7 > 2t = 6, go to stop. 

The above decoding procedure is simplified in Table 3. 

Table 3.  The Simplified Decoding Procedure for Example 1 

k μ
(k)

(x) λ
(k)

(x) l
(k)

 γ
(k)

 δ
(k)

 

0 1 1 0 1 - 

1 1 x 0 1 0 

2 1 x
2
 0 1 0 

3 1 + S3x
3
 1 3 S3 S3 

4 S3 + S3
2
x

3
 x 3 S3 0 

5 S3
2
 + S3S5x

2
 + S3

3
x

3
 x

2
 3 S3 S3S5  

6 S3
3
 + S3

2
S5x

2
 + S3

4
x

3
 x

3
 3 S3 0 

7 Stop     

When k  = 6, one obtains the error-locator polynomial μ
(6)

(x) 

= L(x) = S3
3
 – S3

2
S5x

2
 – S3

4
x

3
, which means that μ

(6)
(x) has 

three roots. By applying Chien search algorithm, the roots of 

L(x) are exactly the inverse of the three error locators {0, 1, 

18}. For example, the third error locator is 18
, and the 

reciprocal of 18
 is 13

. Substituting 13
 into L(x), then the 

error-locator polynomial L(13
) = S3

3
 + S3

2
S5(13

)
2
 + 

S3
4
(13

)
3
 = (19

)
3
 + (19

)
2
(30

)(13
)
2
 + (19

)
4
(13

)
3
 = 26

 +  

+ 22
 = 0. Similarly, the first and the second error locators 

are 0
 and 1

, then we obtain L(1) = 0 and L(30
) = 0, 

respectively. A C++ program shows that the total 155 

weight-3 error patterns with S1 = 0 can be corrected. 

3.2. The Case of Primary Known Syndrome S5 = 0  

Example 2: 

If m(x) = x
7
, by (4) and (5), then the systematic codeword 

is c(x) = x
30

 + x
29

 + x
27

 + x
26

 + x
25

 + x
20

 + x
19

 + x
7
. If there is 

a weight-3 error pattern e(x) = x
19

 + x + 1 occurred in the 

transmission channel, then the received word becomes r(x) 

= x
30

 + x
29

 + x
27

 + x
26

 + x
25

 + x
20

 + x
7
 + x + 1. 

The known syndromes S1 = 5
, S2 = 10

, S4 = 20
, and S5 

= 0 are computed by (6), respectively, and the known 

syndromes S3 = 24
 and S6 = 17

 are computed by (17) in[12]. 

Next, the IFBM algorithm is applied to obtain the 

error-locator polynomial. The decoding procedure is 

described as follows: 

Define in itial value as fo llows: k = 0, μ
(0)

(x) = 1, λ
(0)

(x)=1, 

l
(0)

 = 0, γ
(0)

 = 1. 

Set k  = k + 1 = 0 + 1 = 1. By (8), compute 

1
)0(

0
0

0 1
)0()1(

)0(

SS
l
j jj  


   = S1. 

By (9), compute μ
(1)

(x) = (0)
μ

(0)
(x) – δ

(1)
λ

(0)
(x)x = 1∙1 – 

S1∙1∙x = 1 + S1x. 

By (10), the conditions δ
(1)

 = S1 ≠ 0 and 2l
(0)

 = 2∙0 = 0 ≤ k  – 

1 = 1 – 1 = 0 are satisfied. Then compute λ
(1)

(x) = μ
(0)

(x) = 1, 

l
(1)

 = k  – l
(0)

 = 1 – 0 = 1, and γ
(1)

 = δ
(1)

 = S1, respectively. Go 

to step 2. 

Set k  = k + 1 = 1 + 1 = 2. By (8), compute 

1
)1(

12
)1(

0
1

0 2
)1()2(

)1(

SSS
l
j jj  


   = 1∙S2 + S1S1 

= 0. 

By (9), compute μ
(2)

(x) = (1)
μ

(1)
(x) – δ

(2)
λ

(1)
(x)x = S1(1 + 

S1x) – 0∙1∙x = S1 + S1
2
x. 

By (10), the condition δ
(2)

 = 0 is satisfied. Then compute 

λ
(2)

(x) = xλ
(1)

(x) = x, l
(2)

 = l
(1)

 = 1, and γ
(2)

 = γ
(1)

 = S1, 

respectively. Go to step 2. 

Set k  = k + 1 = 2 + 1 = 3. By (8), compute 

2
)2(

13
)2(

0
1

0 3
)2()3(

)2(

SSS
l
j jj  


  = S1S3 + 

S1
2
S2 = S1S3 + S1

4
. 

By (9), compute μ
(3)

(x) = (2)
μ

(2)
(x) – δ

(3)
λ

(2)
(x)x = S1(S1 + 

S1
2
x) – (S1S3 + S1

4
)∙x∙x = S1

2
 + S1

3
x +(S1S3 + S1

4
)x

2
. 

By (10), the conditions δ
(3)

 ≠ 0 and is 2l
(2)

 = 2 ≤ k  – 1 = 3 –  

1 = 2. Compute λ
(3)

(x) = μ
(2)

(x) = S1 + S1
2
x, l

(3)
 = k  –  l

(2)
 = 

3 – 1 = 2, and γ
(3)

 = δ
(3)

 = S1S3 + S1
4
, respectively. Go to step 

2. 

Set k  = k + 1 = 3 + 1 = 4. By (8), compute. 

2
)3(

23
)3(

14
)3(

0
2

0 4
)3()4(

)3(

SSSS
l
j jj  


 

= S1
2
S4 + S1

3
S3 + (S1S3 + S1

4
)S2 = 0. 

By (9), compute μ
(4)

(x) = (3)
μ

(3)
(x) – δ

(4)
λ

(3)
(x)x = (S1S3 + 

S1
4
)( S1

2
 + S1

3
x +(S1S3 + S1

4
)x

2
) – 0(S1 + S1

2
x)x = (S1

3
S3 + S1

6
) 

+ (S1
7
 + S1

4
S3)x + (S1

2
S3

2
 + S1

8
)x

2
. 

By (10), the condition in  is δ
(4)

 = 0 is satisfied. Then 

compute λ
(4)

(x) = xλ
(3)

(x) = x(S1 + S1
2
x) = S1x + S1

2
x

2
, l

(4)
 = l

(3)
 

= 2, and γ
(4)

 = γ
(3)

 = S1S3 + S1
4
, respectively. Go to step 2. 

Table 4.  The Simplified Decoding Procedure for Example 2 

k μ
(k)

(x) λ
(k)

(x) l
(k)

 γ
(k)

 δ
(k)

 

0 1 1 0 1 - 

1 1 + S1x 1 1 S1 S1 

2 S1 + S1
2
x x 1 S1 0 

3 S1
2
 + S1

3
x +(S1S3 + S1

4
)x

2
 S1 + S1

2
x 2 S1S3 + S1

4
 S1S3 + S1

4
 

4 (S1
3
S3 + S1

6
) + (S1

7
 + S1

4
S3)x + (S1

2
S3

2
 + S1

8
)x

2
 S1x + S1

2
x

2
 2 S1S3 + S1

4
 0 

5 
(S1

10
 + S1

4
S3

2
) + (S1

11
 + S1

5
S3

2
)x + (S1

6
S3

2
 + S1

9
S3)x

2
 + 

(S1
13

 + S1
4
S3

3
)x

3
 

(S1
3
S3 + S1

6
) + (S1

7
 + S1

4
S3)x + 

(S1
2
S3

2
 + S1

8
)x

2
 

3 S1
11

 + S1
2
S3

3
 S1

11
 + S1

2
S3

3
 

6 

(S1
21

 + S1
6
S3

5
 + S1

12
S3

3
 + S1

15
S3

2
) + (S1

22
 + S1

16
S3

2
 + 

S1
13

S3
3
 + S1

7
S3

5
)x + (S1

20
S3 + S1

17
S3

2
 + S1

11
S3

4
 + 

S1
8
S3

5
)x

2
 + (S1

24
 + S1

6
S3

6
)x

3
 

(S1
3
S3 + S1

6
) x + (S1

7
 + 

S1
4
S3)x

2
 + (S1

2
S3

2
 + S1

8
)x

3
 

3 S1
11

 + S1
2
S3

3
 0 

7 Stop     
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Set k  = k + 1 = 4 + 1 = 5. By (8), compute 

= 

(S1
3
S3 + S1

6
)0 + (S1

7
 + S1

4
S3)S4 + (S1

2
S3

2
 + S1

8
)S3 = S1

11
 + 

S1
2
S3

3
. 

By (9), compute μ
(5)

(x) = (4)
μ

(4)
(x) – δ

(5)
λ

(4)
(x)x = (S1S3 + 

S1
4
)((S1

3
S3 + S1

6
) + (S1

7
 + S1

4
S3)x + (S1

2
S3

2
 + S1

8
)x

2
) – (S1

11
 + 

S1
2
S3

3
)(S1x + S1

2
x

2
)x = (S1

10
 + S1

4
S3

2
) + (S1

11
 + S1

5
S3

2
)x + 

(S1
6
S3

2
 + S1

9
S3)x

2
 + (S1

13
 + S1

4
S3

3
)x

3
. 

By (10), the conditions δ
(4)

 ≠ 0 and 2l
(k-1)

 = 2l
(4)

 = 4 ≤ k  – 1 

= 5 – 1 = 4 are satisfied. Then compute λ
(5)

(x) = μ
(4)

(x) = 

(S1
3
S3 + S1

6
) + (S1

7
 + S1

4
S3)x + (S1

2
S3

2
 + S1

8
)x

2
, l

(5)
 = k  – l

(4)
 = 

5 – 2 = 3, and γ
(5)

 = δ
(5)

 = S1
11

 + S1
2
S3

3
, respectively. Go  to 

step 2. 

Set k  = k + 1 = 5 + 1 = 6. By (8), compute δ
(6) = 

= (S1
10

 + S1
4
S3

2
)S6 + (S1

11
 + S1

5
S3

2
)S5 + (S1

6
S3

2
 + S1

9
S3)S4 + 

(S1
13

 + S1
4
S3

3
)S3 = 0. 

By (9), compute the error-locator polynomial of degree 3, 

μ
(6)

(x) = (5)
μ

(5)
(x) – δ

(6)
λ

(5)
(x)x = (S1

11
 + S1

2
S3

3
)( (S1

10
 + S1

4
S3

2
) 

+ (S1
11

 + S1
5
S3

2
)x + (S1

6
S3

2
 + S1

9
S3)x

2
 + (S1

13
 + S1

4
S3

3
)x

3
) – 

0((S1
3
S3 + S1

6
) + (S1

7
 + S1

4
S3)x + (S1

2
S3

2
 + S1

8
)x

2
)x = (S1

21
 + 

S1
6
S3

5
 + S1

12
S3

3
 + S1

15
S3

2
) + (S1

22
 + S1

16
S3

2
 + S1

13
S3

3
 + 

S1
7
S3

5
)x + (S1

20
S3 + S1

17
S3

2
 + S1

11
S3

4
 + S1

8
S3

5
)x

2
 + (S1

24
 + 

S1
6
S3

6
)x

3
. 

By (10), the condition δ
(6)

 = 0 is satisfied. Then compute 

λ
(6)

(x) = xλ
(5)

(x) = x((S1
3
S3 + S1

6
) + (S1

7
 + S1

4
S3)x + (S1

2
S3

2
 + 

S1
8
)x

2
) = (S1

3
S3 + S1

6
)x + (S1

7
 + S1

4
S3)x

2
 + (S1

2
S3

2
 + S1

8
)x

3
, l

(6)
 

= l
(5)

 = 3, and γ
(6)

 = γ
(5)

 = S1
11

 + S1
2
S3

3
, respectively. Go  to step 

2. 

Set k  = k + 1 = 6 + 1 = 7. Since k  = 7 > 2t = 6, go to stop. 

The above decoding procedure is simplified in Table 4. 

When k  = 6, one obtains the error-locator polynomial μ
(6)

(x) 

= L(x) = (S1
21

 + S1
6
S3

5
 + S1

12
S3

3
 + S1

15
S3

2
) + (S1

22
 + S1

16
S3

2
 + 

S1
13

S3
3
 + S1

7
S3

5
)x + (S1

20
S3 + S1

17
S3

2
 + S1

11
S3

4
 + S1

8
S3

5
)x

2
 + 

(S1
24

 + S1
6
S3

6
)x

3
, which means that μ

(6)
(x) has three roots. By 

applying Chien search algorithm, the roots of L(x) are 

exactly the inverse of the three erro r locators {0, 1, 19}. For 

example, the third error locator is 19
, and the reciprocal of 

19
 is 12

. Substituting 12
 into L(x), then the error-locator 

polynomial L(12
) = ((5

)
21

 + (5
)
6
(24

)
5
 + (5

)
12

(24
)
3
 + 

(5
)
15

(24
)
2
) + ((5

)
22

 + (5
)
16

(24
)
2
 + (5

)
13

(24
)
3
 + 

(5
)
7
(24

)
5
)12

 + ((5
)
20

(24
) + (5

)
17

(24
)
2
 + (5

)
11

(24
)
4
 + 

(5
)
8
(24

)
5
)(12

)
2
 + ((5

)
24

 + (5
)
6
(24

)
6
)(12

)
3
 = 12

 + 26
 + 

8
 + 30

 + (17
 + 4

 + 13
 + 1)12

 + (1 + 9
 + 27

 + 5
)24

 + 

(27
 + 19

)5
 = 12

 + 26
 + 8

 + 30
 + 29

 + 16
 + 25

 + 12
 + 

24
 + 2

 + 20
 + 29

 +  + 24
 = 0. Similarly, the first and 

the second error locators are 0
 = 1 and , then we obtain 

L(1) = 0 and L(30
) = 0, respectively. A C++ program shows 

that the total 155 weight-3 error patterns with S5 = 0 can be 

corrected. 

For the primary known syndrome S7, there are also 155 

weight-3 error patterns are equal to zero. However, the 

IFBM algorithm does not use S7 to decode the weight-3 

error patterns. 

4. Conclusions 

For the QR codes with irreducible generator polynomial, 

the primary known syndrome S1 cannot be equal to zero 

while the IFBM algorithm is used to determine the 

error-locator polynomial. In th is paper, two examples with 

detailed step-by-step analysis show that the IFBM algorithm 

can obtain an valid error-locator polynomial for the (31, 16, 7) 

QR code with reducible generator polynomial in GF(2
5
). 

However, the determination of the error-locator polynomial 

by using the IFBM is time-consuming. An efficient 

condition may be added in the IFBM to reduce the decoding 

time in the future. 
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