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Abstract  We use parallels between the older telephone switches and the multi-skill call centers. We compare different call 
center routing policies at low and high call rates λ. By numerical results it is shown that a call center with equally distributed 
skills is preferable compared to traditional grading-type design. The strong proof is given by expansion of call loss prob-
abilities in powers of λ and of 1/λ, respectively. The proof draws on one excellent V. Benes’s paper (from Bell Labs). The 
main conclusion leads to a new principle for call center design: from throughput point of view a multi-skill call center with 
equally distributed skills is preferable compared to traditional grading-type design. 
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1. Introduction 
In a typical call center, the arriving calls are classified in 

different types, according to the required technical skill to 
answer the call, the language, importance of the call, etc. 
Agents are also classified in skill groups according to the 
subset of call types they can handle. Calls arrive at random 
according to some stochastic process. When a call arrives, it 
may be assigned immediately to an agent that can handle it 
(if there is one available) or it may be put in a queue (usually 
one queue per call type). When an agent becomes available, 
the agent may be assigned a call from one of the queues, or 
may remain idle (e.g., waiting for more important calls). All 
these assignments are made according to some routing policy 
that often incorporates priority rules for the calls and agents.  

Calls waiting in a queue may abandon after a random pa-
tience time. Those subscribers who abandon waiting may 
call again later, although those retrials are rarely modelled in 
practice, usually because of lack of sufficient data. Callers 
who received service may also call again for a number of 
reasons; these are called returns. 

In the (degenerate) special case where each agent has a 
single skill, we have several single queues in parallel. If each 
agent has all skills, then we have a single skill set and a 
single queue. The system is obviously easier to analyse in 
these extreme cases. With all agents having all skills, the 
system is also more efficient (smaller waiting times, fewer 
abandonment). Agents with more skills are also more 
expensive; their salaries depend on their skill sets. Thus, for  
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large volume of call types, it makes sense to select a number 
of single-skill agents (specialists) to handle most of the load. 
A small number of agents with two or more skills can cover 
the fluctuations in the proportion of calls of each type in the 
arriving load. 

The multi-skill call center is far too complex to be avail-
able for strong mathematical analysis. The state of research 
into solving skill-based routing problems is still in its infancy. 
A special case where two classes of calls are served by a 
single pool of cross-trained agents is studied in[1] and 
multi-skill centers in[2]. For a literature survey on asymp-
totic heavy-traffic regimes we refer to[3,4]. The excellent 
survey of multi-skill call centers contains paper[5]. As initial 
point for our study we use paper[6]. There the authors con-
sider routing and scheduling problems under the assumption 
that there is no queuing, assuming that queued calls are 
blocked, or, equivalently, that queued calls abandon waiting 
right away, which result in the so called blocked calls cleared 
discipline. 

The paper is organized as follows. Section 2 contains 
numerical examples for simple multi-skill call center models. 
These models take into account the structure of the call 
center and method used for routing of calls. The results have 
shown that a call center with equally distributed skills is 
preferable comparing to the traditional grading-type design. 
Section 3 contains a short version of mathematical proof on 
call loss probabilities at low and high call rates. The proof 
uses one excellent V. Benes's paper[7] from Bell Labs. In 
Section 4 we apply these results to compare the structures of 
call centres at low and high call rates. Section 5 contains a 
discussion on the basis of numerical examples looking for 
future research. 

The paper is a version of our previous paper[8] extended 
basically for tutorial purposes, namely: the simple numeri-
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cal examples are given in Section 2, numerical results – for 
unsolved issues in Section 5, and some additional detail – 
proving the theorems. 

2. Numerical Examples 
Calls from different skill classes are offered to the call 

center according to a Poisson process with rate λ. The agents 
in the center are grouped according to their heterogeneous 
skill sets that determine the classes of calls that they can 
serve. Each agent group serves calls with independent and 
equally exponentially distributed service times equal to one 
(for simplicity). We consider a call center with no buffers in 
the system, so that every arriving call either has to be routed 
immediately or has to be blocked and is lost. The objective in 
the system is to calculate the call lost probability. 
Example 1. Markov process for the simpliest two-skill 
call center 

 
Figure 1.  Two-skill call center with 3 agents 

Fig 1 displays the simplest two-skill center model: 2 skills 
and 3 agents, two of them are individualists (single skill) 
available for calls as the first choice and one generalist 
(2-skill agent) available for calls as the second choice. To 
calculate the call lost probability we build Markov process 
having 8 states as shown in the state diagram (Fig 2). (Busy 
agents are given in black.) 

 
Figure 2.  State diagram and Markov process intensities 

Markov process stationary state probabilities pi, i = 0,…, 7 
are defined by the equations: 

2λ p0=p1+p2+p3 
(2λ+1)p1=λp0+p4+p6 
(2λ+1)p2=λp0+p5+p6 

(2λ+1)p3=p4+p5 
(λ+2)p4=λp3+λp1+p7 

(λ+2)p5=λp3+λp2+p7 
(2λ+2)p6=λp1+λp2+p7 

3p7=λp4+λp5+2λp6 
p0+p1+…+p7=1 

By solving the system we get the call loss probability π 
(pictured in Fig 3): 

2 3 4 5
4 5

7 2 3 4 5
3 16 20

2 6 26 50 54 32 8
p p ap λ λ λ λπ

λ λ λ λ λ
+ + + +

= + =
+ + + + +

 

 
Figure 3.  Two-skill call center loss probability 

Discussion. Let us compare now the just above studied 
call center model (Fig 1 and Fig 4a) with two others: a 
similar one (Fig 4b) but by opposite choice of agents – gen-
eralist is considered as the first choice and one more in which 
each agent has both skills (Fig 4c). As Fig 5 shows, the 
minimum call loss is in the case of full availability system 
(Fig 4c), and the corresponding loss probability is defined by 
Erlang formula 

3

2 3
(2 ) / 6(3,2 )

1 2 (2 ) / 2 (2 ) / 6
E λλ

λ λ λ
=

+ + +
 

The above studied scheme (Fig 1) is in the middle and the 
scheme with generalist as the first choice (Fig 4b) gives the 
largest call loss. 

 
Figure 4.  Three simple call center models 

 
Figure 5.  Loss probability: three simple call center models 
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Example 2. Grading-type center vs center with equally 
distributed skills 

Let us start with a historical remark. Up to 50 years ago 
one of the authors (the first one) in his young student age had 
a chance to deliver the numerical results for the two schemes 
shown in Fig. 6 at the Kolmogorov’s applied probability 
seminar at Moscow State University. These schemes relate 
to so called step-by-step telephone exchanges. The results 
have surprised Andrey Kolmogorov, namely: in his opinion, 
in the case of limited access of switch outlets the optimal 
scheme should be in the form of grading (Fig. 6a). But…this 
statement, as it turned out, is true only for low call rate. In the 
case of high call rate, the optimal one is the scheme with 
equally distributed outlets as in Fig. 6b. In terms of call 
center, both these schemes are 4-skill centers with 6 agents, 
and each skill call rate is equal to λ. 

Traditionally, there are two types of agents in a call center: 
individualists (handling calls of one type) and generalists 
(handling calls of any type). Figure 6a corresponds to the 
traditional scheme: there are 4 agents who handle calls of one 
type (from different 4 skills) and 2 agents who are generalists. 
Every callflow has access to 3 agents, and the calls are 
looking for idle agent from below (as arrays show). We show 
that it is advantageous to reject the traditional scheme and 
switch to a scheme with the same number of different skills 
for any agent (as is shown in Fig. 6b). These results were 
included in our paper[9]. 

Figure 7 depicts the loss probability curves for these two 
schemes. And what is surprising? Beginning with a loss 
probability as low as 0.25 (less than 1%), it is advantageous 
to use the equally distributed scheme where any agent is 
received by two type calls. The advantage occurs at as low 
total call rate as 0.73 (i.e. there is less than one call in the 
whole system) and the agents are busy only 0.73/6 = 12% of 
the time. Therefore, the traditional grading-type call centers 
could be recommended when call rates are very low. 

 
Figure 6.  Two multi-skill call center schemes: a) grading-type, b) with 
equally distributed skills 

3. Expansion of Loss Probability in 
Powers of λ and 1/λ 

As we have shown above by numerical analysis, the clas-
sical grading-type call centers are preferable for low call 
flows only. At call loss around 1%, the loss probability 
curves are cross, and more preferable are the schemes with 
uniformly distributed skills among the agents. Now we go to 

the strong mathematical analysis of this phenomenon. 

 
Figure 7.  Comparison of call center routing policy: grading (a) is prefer-
able for low rates only, but as load grows the scheme (b) becomes preferable 

For simplicity of formulas, we consider rectangular-type 
call centers with parameters: n – skills (call flows), d – 
number of available agents for each call flow, v – total 
number of agents. Therefore, the call center has n*d 
skill-points divided into v groups (among v agents). The call 
center serves n Poisson call flows (each of rate λ), the 
holding time is exponentially distributed (with parameter 
equal to one, for simplicity of formulas). If all d agents 
available to some call flow are busy, the call is lost.  

We describe the call processing by means of Markov 
process with a state set S of 2v states. If x is a state, the nota-
tion x will denote the number of calls in progress in state x 
– the number of busy lines in state x. 

We define the levels 

{ : }, 0,1,...,maxk x S
L x S x k k x

∈
= ∈ = = , 

as the sets of states in which a specified number of calls is in 
progress. The {Lk} form a partition of S, 

k
k

L S=


 

0,k jL L k j= ≠ . 

The “neighbours” of a state x are just those states which 
can be reached from x by adding or removing one call. These 
neighbours y of x can be divided into two sets according as y > 
x or y < x; so we are led to define 

Ax = set of neighbours above x  
= set of states accessible from x by adding a call , 

Bx = set of neighbours below x  
= set of states accessible from x by removing one call (see 

Fig 8). 
To describe how routes are assigned to calls, we introduce 

a routing matrix R = (rxy), where rxy – number of the call 
flows (each flow of separate skill) which move the system 
from state x to state y, s(x) – number of call flows having at 
least one idle agent in state x. Obviously,  

( ) xy
y Ax

s x r
⊂

= ∑ , 

rx – element of matrix R in│x│ degree having indexes (0, x). 
Obviously, rx means the number of paths to move from state 
0 to state x by means of incoming calls only. 
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Figure 8.  A state x and sets Ax, Bx in the state diagram: a) common view, b) 
example from Fig. 2 

For the purpose of defining a Markov stochastic process it 
is convenient and customary to collect the assumptions in-
troduced above in a matrix of transition rates 

1

( )

0

xy x

xy xy x

xy

xy

q y B

q r y A

q x s x y x

q otherwise

λ

λ

= ∈

= ∈

= − − =

=

 

We get the state probabilities px as the solution of linear 
algebraic system 

[ ( )] ,x y y yx
y A y Bx x

x s x p p p r x Sλ λ
∈ ∈

+ = + ∈∑ ∑  

and probability of call loss is equal 
[ ( )] x

x S

x
x S

n s x p

n p
π ⊂

⊂

−
=

∑
∑

 

In order to study the optimal call center design principles 
we apply to the expansion of call loss probability in powers 
of λ (Theorem 1) and in powers of 1/λ (Theorem 2). As 
mentioned above, we consider rectangular-type call center 
with parameters: n – skills (call flows), d – number of 
available agents for each call flow, v – total number of 
agents. 
Theorem 1[9]. Expansion of loss probability in powers of 

If the sequence {cm (x), m ≥ 0, x from S} is defined by  
0

1

1

(0) ,
( ) 0 0 , 0,

( ) ,
!

( ) ( ) ( ) ( )

( ) , , 0

m m

m

x
x

m m m
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m xy
y Bx

c
c x m x

r
c x

x

x c x s x c x c y

c y r m x x

δ

−
∈

−
∈

=

= ≤ < >

=

+ =

+ > >

∑

∑

 

and 
1/ 1

; 0
min ( lim ( ) )m

mx S x m
c xλ −

∈ = →∞
<  

then the asymptotic expansion of call loss probability in 
powers of λ is available at point of λ = 0, and the members 
not equal to 0 are of power not less than λd . 

According to this theorem for x> 0 we have expansion 

0
0

( )i
x i

i
p p c xλ

∞

=
= ∑  

and the call loss probability is equal to 

 
Theorem 2[10]. Expansion of loss probability in powers 
of 1/λ. 

If the sequence {dm (x), m ≥ 0, x ⊂ S} is defined by 

1 1

( ) ,
( ) 0, 0 ,

1( ) ,
( )

( ) ( ) ( ) ( ) ( ) ,

,

m m

m

x y
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x d x s x d x d y d y r

m x x

ν ν

ν ν

δ
ν
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and 
1/

;
max ( lim ( ) )m

mmx S x
d x

ν
λ

→∞∈ ≠
>  

then the asymptotic expansion of call loss probability in 
powers of λ−1 is available at point of λ = ∞. 

According to this theorem we have the expansion  

0

1 ( ) ,
i

x i
i

p p d x xν ν
λ

∞

=

 = ≠ 
 

∑  

Call loss probability is equal to  

0

0
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i

i
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i

i
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and according to Taylor series  
' '

2
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The four first expansion terms are defined by 
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where  
li – the total number of agents with i-skills, 
sij – the number of skills for which at least one agent is 

available in state when only agents i and j are free, 
ξji – the number of skills (part of sij) from which calls are 

coming to agent j when only agents i and j are free. 
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4. On New Principle of Call Center  
Design 

Let us continue with one more historical remark. To a 
large extent, our paper is based on the results of a study of a 
distinguished mathematician of Bell Laboratories V.E. 
Benes[7, 11] who carried out a research on so called crossbar 
telephone switches. Theorem 3 given below follows Benes’s 
paper[7] from 1963. This paper contains formulas for ex-
pansion of loss probability in powers of λ. A little later, in 
1965 we developed the same type results for step-by-step 
telephone switches[10] using expansion of loss probability 
in powers of λ and in powers of 1/λ. Benes paper[11] from 
1966 contains a similar expansion in powers of 1/λ. And in 
this context it is worthy to mention Benes words[11]. He has 
written: “The question has arisen whether there are examples 
of pairs of networks, with the same number of crosspoints, 
the first of which is better than the second at one value of λ, 
while the second is better than the first at another value of λ”. 
The same type of problem was a goal of our studies[10] – 
only for another telephone exchange generation – 
step-by-step switches. 
Theorem 3[10]. On optimality of grading-type call center 
at λ→ 0 

At λ→0 and given rectangular-type call center with pa-
rameters: n – skills (call flows), v – total number of agents, d 
– number of available agents for each call flow, the optimal 
call center design should follow the principles: 

1). The skill-field (n, d, v) is divided (as possible) in 
skill-sets with 1 and n skill-points (it means that each agent 
has 1 or n skills), and individualists are available earlier than 
generalists, 

2). If the above requirement could not be fulfilled, then 
skill-sets with another skill-points are available after indi-
vidualists and before generalists. 

The idea for proof. The proof is based on Theorem 1. The 
coefficients cm(x) are related to the number of calls, moving 
system from state 0 to state x. For example, c│x│(x) = rx /│x│! 
(rx means the number of paths to move from state 0 to state x 
by incoming calls only) and the first term in the expansion at 
λd is equal to 

(0) 1 [ ( )]
(0) !

x

x d

rB n s x
A n d=

= −∑  

Therefore, the first choice agents should be individualists. 
The proof follows from the analysis of the next terms. 
Theorem 4[10]. On optimality of equally distributed 
skill-points at λ→ ∞ 

At λ→∞ and given rectangular-type call center with pa-
rameters: n – skills (call flows), v – total number of agents, d 
– number of available agents for each call flow, the optimal 
call center design should follow the principles: 

1). The skill-field (n, d, v) is divided between agents with r 
or r+1 skills, where r =[nd/v] ([ ] denotes the whole part), 

2). Agents with r skills are available earlier than agents 
with r+1 skills, 

3). Each agent has equal (as possible) number of different 
skills with each of the other agents. 

Idea for proof. The proof is based on Theorem 3. The first 
two terms in expansion of loss probability in powers of λ−1 

don’t give any information on the scheme structure. The 
third term at power λ−2, equal to L/n, gets minimum value 
when  

1
1/

v

i
i

L l
=

= ∑  

takes minimum value. According to definition  

1
,

v

i
i

l nd
=

=∑  

where li are integer numbers, therefore they should be (as 
possible) equal i.e. equal to[nd/v] or[nd/v] + 1. From that the 
requirement 1 of Theorem 4 follows.  

Let’s prove the requirement 3 for particular case when 
nd/v is an integer, i.e. equal r. Then  

 
and we need to minimize the first sum. If we denote the 
number of common inlets for lines i and j by qij then  

 
This sum takes minimum value when all sij are equal (as 

possible). It means that each skill-set has equal (as possible) 
number of different skills with each of the other skill-sets, 
and the requirement 3 for particular case is proved necessary. 

 
Figure 9.  The call centers (of Fig 6) expanded by one additional 
agent-generalist 

5. Discussion 
To make clear the advantage of equally distributed skills 

solution, we shall give some additional numerical examples 
as a basis for future study. 
Example 3. Universal agents influence 

In Fig. 9, the two previous schemes are shown but with 
one more agent-generalist added as the last choice. It shows 
strong influence: the loss curves are crossing at total traffic 
of only 0.105 and when the loss probability is 0.23 × 10–9, 
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i.e., almost zero. This means that it is reasonable to have 
more universal agents in reserve, but apply the equally dis-
tributed scheme. 
Example 4. Agents number doubling 

The other possible variant of modification is the doubling 
of the agents number in each of the six groups that were 
shown in Fig. 6. This way we will get two schemes with 12 
agents in each (Fig. 10). The solution of the system of 212 

equations shows that the pattern almost does not change: the 
loss curves are crossind if the losses are 0.0032 (instead of 
0.0025 in Fig. 6). However, this result may be achieved 
under total traffic of 3.65, which constitutes 31% of the 
agent’s workload, i.e., less than a third of the time. Generally, 
the overall picture shows no changes: the scheme with 
equally distributed skills among the agents is practically 
preferable at any load. 

 
a)               b) 

Figure 10.  Doubled agent groups (in comparing to Fig 6a and 6b) 

Example 5. Waiting space influence 
Obviously, use of waiting places always reduces call 

losses: due to waiting places the loss curves are moved to the 
right. What is more interesting: due to waiting places the 
preference of equally distributed agent skills grows. 

Table 1.  The crosspoint of loss curves for schemes 6a and 6c with waiting 
places 

Number of waiting places Total load Loss probability crosspoint 
0 0.72855 0.2542 x 10-2 

1 0.6427 0.9424 x 10-4 

2 0.616 0.4091 x 10-5 

The calculation shows that the waiting spaces increase the 
advantage of equally distributed schemes (Table 1). The 
absence of waiting spaces corresponds to the initial case in 
Fig. 6; i.e. the curves cross when the losses are 0.25%. 
Adding one waiting space for every call flow moves the 
concurrence point to 0.94 × 10–4, and, if there are two wait-
ing spaces, the curves cross even earlier when the losses are 
0.41 × 10–5 only. 
Example 6. One unsolved problem 

See examples (Fig. 11) of three almost same call centers 
but with different agent access policy. The above studied 
scheme 11a and two similar schemes 11b and 11c are de-
picted, but there is a slight difference in the calls assignment, 
which should provide, in our opinion, more even distribution 
and higher performance. However, this change worsens the 

scheme’s traffic capacity (Table 2): the initial scheme 11a 
remains the most preferable, scheme 11c is the second, and 
scheme 11b is the third. This is hard to explain, and addi-
tional research is required. Seems it depennds on the corre-
lation between call flows. 

 
Figure 11.  Unexplained effect of call flow correlation. 

Table 2.  Comparison of schemes with equally distributed skill-points but 
different access policy 

Total traffic Loss probability 
Fig. 11a Fig. 11b Fig. 11c 

4 
1 

0.25 
0,0625 

0.67315 
0.18903 

0.66143×10-2 
0.92525×10-4 

0.67320 
0.19284 

0.91470×10-2 
0.18718×10-3 

0.67319 
0.19223 

0.85695×10-2 
0.15925×10-3 

6. Conclusions 
Numerical analysis of simple multi-skill call centers 

proposes a new principle for call center design: from 
throughput point of view, a multi-skill call center with 
equally distributed skills is preferable compared to tradi-
tional grading-type design. The strong proof is given by 
expansion of call loss probabilities in powers of call rate λ 
and of 1/λ, respectively. 
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