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Abstract  A scheme has been developed to integrate the phase-field model with the homogeneous deformation. This has 
been applied to the simulation of the microstructure evolution during warm rolling of steels. The phase transition is 
characterized by the evolution of a phase-field order parameter. The rolling of the steels is calculated by the displacement of 
vectors in materials by the deformation matrix. The governing equation for phase-field order parameter is solved numerically 
in the irregular and changing lattices. Significant discrepancies of crystal morphologies are observed in crystal growth before 
deformation, deformation of materials after crystal growth and deformation of materials while crytal growing. Those three 
thermomechanical processing conditions can be considerred as the cases of hot rolling, cold rolling and warm ro lling, 
respectively. It has been found that the interface anisotropy plays an important role fo r the observed microstructural 
descrepacies. Other mechanisms affect ing the grain morphologies are discussed for various thermomechanical p rocessing of 
steels. 
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1. Introduction 
Thermomechanical processing implements heat and stress 

in tailoring the microstructure of steels. Hot rolling, cold 
rolling and warm ro lling are characterized by the sequences 
of austenite-ferrite phase transformat ions regarding to the 
mechanical deformation, i.e ., the hot rolling deforms steels 
before austenite-ferrite phase transition, cold rolling deforms 
steels after this phase transition, and warming rolling 
deforms steels during the phase transition. In practice, steel 
processing may use more than one rolling scheme, e.g. 
starting from the hot rolling but completing at the warm 
rolling temperature. Warm rolling has attracted significant 
attention due to its complexity. Experimental observations 
such as the evolution of microstructure[1] and texture[2] in 
warm ro lling of low carbon steels have been reported. 
Numerical simulations including finite element calculation 
are carried  out to the investigation of the warm ro lling[3-4]. 
This work aims to study the microstructure evolution in 
warm rolling by coupling the phase-field model with 
homogeneous deformation theory. 

The deformation of materials can be described by either 
the equal-st ress  o r equal-st rain  approximat ions . The 
homogeneous deformation is an equal-strain method, and is 
suitab le part icu larly fo r those deformat ions without  the  
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formation of cracks and other defects. The fundamental 
principle of this method is represented by following equation 
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where S is called the deformation matrix. U


 and V


 are 
the vectors before and after the deformat ion, respectively. 
The elements of the matrix S take different values to 
represent various types of homogeneous deformations. Zhu 
et al has applied the homogeneous deformat ion method to 
the study of the metallography of a tetrakaidecahedron 
grain[5]. Chae et al applied the method to the deformation of 
non-uniform grains[6]. The computation of the 
microstructure evolution in mechanical deformation can be 
achieved by applying Eq. (1) to every pixel of the 
micrograph images. 

The microstructure evolution in phase transition, 
including both displacive transformation and reconstructive 
transformation, can be calcu lated in  the framework of a 
phase-field model[7]. The model introduces an order 
parameter (φ) to represent the physical state of the materials. 
φ takes one value from one phase to another value in another 
phase and changes smoothly from one value to another 
across the interface. The governing equation for the 
phase-field order parameter can be derived explicitly from 
the second law of the thermodynamics. The parameters in the 
governing equation can be obtained by manipulating the 
governing equation to the simplest conditions. For a case 
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where the phase transition is driven by a constant driving 
force and the solute and temperature heterogeneous are 
ignored completely, the governing equation for the 
phase-field order parameter is[8] 
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where φM  is called the phase-field mobility related to the 

interface kinetics. ε is called the gradient energy coefficient 
reflected the interface energy and the interface anisotropy. 

( )φg  is the free energy density of the material and is a  
double well potential in  non-equilib rium state. The 
calculation of the phase transition is achieved by solving Eq. 
(2) with time iteration. Application of the phase-field models 
in various materials have been summarized in a number of 
review articles, as listed in ref.[9]. 

In the present work, the phase-field  model has been 
coupled with the homogeneous deformation theory. 
Application of the coupled model to the thermomechanical 
processing of steels has been demonstrated. The 
microstructural evolution in various processing conditions is 
calculated. The mechanisms responsible for the 
characterized microstructures will be investigated. 

2. Theoretical Consideration 
Warm rolling has two coupled physical processes, namely  

the phase transition and materials deformation. Phase-field 
model can be used to address the microstructure evolution in 
phase transition. Homogeneous deformation is to be used to 
address the mechanical deformation. Warm rolling is taking 
place in relative high temperature. This enables the 
ignorance of the residual stress in materials which otherwise 
will affect the free energy density and interface energy. The 
formation of various defects such as dislocations, voids and 
cracks are ignored. It is also assumed that the time of each 
rolling pass is short enough in comparison with the overall 
phase transition time. This is reasonable because the phase 
transition takes place in a wide temperature range but the 
temperature dropping during each rolling pass is small. With 
such consideration, we can ignore the phase transition during 
the rolling pass, i.e., phase transition takes place in many 
time steps but each rolling pass can complete within a single 
time step. 

The double well potential for the free energy density can 
be represented as 

( ) ( ) ( ) ( )[ ] 01
22 11

4
1 ghghg φφφφ
ω

φ −++−=
 

where ( ) ( )10156 23 +−= φφφφh . ω is related to the 
barrier height and can be determined by the interface 
thickness (2λ) and interface energy (σ) via. 

)./( σλω 426=  0g and 1g  are the free energy density 

of bulk phases represented by 0=φ  and 1=φ , 

respectively. )(φh  is associated with the volume fraction 
of the phases. This gives the second term in the 
right-hand-side of Eq. (2) as 
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where ( ) ( )22 130 φφφ −=′h . )( 01 gg −=ℜ  is the 
driving force fo r phase transition. The gradient energy 
coefficient ε in  Eq. (2) is related to the interface energy and 
its anisotropy. For cubic crystal, the anisotropic interface 
energy can be represented as[8] 
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where znynxnn zyx ˆˆˆˆ ++=  is the normal vector to 
interface and is determined in phase-field calculation 
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by. The coefficients 0ε , 1ε , 2ε  and 0ε  

are determined by  
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The coefficients 0k , 1k , 2k  and 0k  are determined 
according to the interface anisotropy. A method to specify 
those coefficients for various metals was presented in our 
earlier works[8, 10]. 

In phase transition, Eq. (2) is calcu lated in  space 
represented by discrete lattices that can be arranged as 
regular o r irregular patterns. Crystal growth is obtained by 
iteration of Eq . (2) in a series discrete time steps. Each 
rolling pass is calculated within  one time step according to 
Eq. (1) and the calculation is performed throughout the 
discrete lattices in space. The different values of φ is plotted 
with d ifferent colours so that the crystal morphology can be 
examined. 

3. Numerical Calculation 
The materials are init ially  represented by rectangular 

lattices with lattice distance in all three dimensions 
equivalent to ∆h. The finite d ifference method gives the first 
order differentiation of phase field order parameter regarding 
to the space coordinate parameters as following forward step 
approximation  
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where the mean ing of ijkφ  is illustrated in Fig. 1(a). After 
the shape deformat ion, the rectangular lattices are not able to 
retain its original shape in all three d imensions. In some 
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cases, the lattices are arranged in a shape similar to that 
illustrated in Fig. 1(b). The part ial difference regard ing to 
space coordinate should use more generic equation of 
followings[11] 
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In discrete format as that illustrated in Fig. 1(b), it has 
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To reduce the mathematical error, following calculat ion is 
applied in the calcu lation 
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Figure 1.  Schematic diagrams of (a) rectangular and (b) non-rectangular 
lattices 

The important condition for using Eq. (8) and Eq. (9) is 
that all the four lattice points should be in the same p lane. 
The differentiat ion regarding to time is represented by 
following exp licit discrete approximat ion in a time step of ∆t 
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In the present simulation, a  rectangular lattices of 
160 × 160 × 120 are defined in itially. The init ial condition 
for the phase field  order parameter is specified  according to 
following conditions 
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The constant driving force is selected as 

38106863 mJ /. ×−=ℜ . The experimental 
measurement gives the average interface energy between 
face centred cubic and body centred cubic crystals of steel as 
k0= 0.8 J/m2. Because the actual anisotropic property 
between austenite and ferrite phases is not known, one uses a 
general expression of the anisotropic interface energy for the 
cubic metals and chooses following arbitrary values for the 
calculation: 

863001 ./ −=εε  

395002 ./ =εε                (11) 

0238003 ./ =εε  
The corresponding anisotropic interface energy in its polar 

diagram is illustrated in Fig. 2. Other parameters include 
Mφ=100 and λ=14.3 nm. This gives ω=1.35×10-9 m3/J and 
ε0=2.488×10-4 2121 // / mJ . Without consideration of 
deformation, the crystal morphology at t = 12000 time steps 
is demonstrated in Fig. 3. This is a  typical anisotropic crystal. 
Due to the assumption of constant driving force and 
ignorance of heat and mass transfer and also the ignorance of 
fluctuation, there is no equilib rium shape of the crystal can 
be obtained. 

 
Figure 2.  Polar diagram of anisotropic interface energy represented by Eq. 
(4) with coefficients value in Eq. (11)[12] 

Application of shear deformation to the crystal once after 
12000 steps of crystal growth gives the crystal morphology 
demonstrated in Fig. 4. The deformat ion matrix for shear 
deformation is 
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After one rolling at the 12000 t ime steps, the morphology 

of crystal changes into that demonstrated in Fig. 4. The 
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topological geometry of the crystal is not changed but the 
morphology is homogeneously sheared alone z-d irection. 

 
Figure 3.  The crystal morphology without deformation at 12000 time 
steps 

 
Figure 4.  The crystal morphology after the shear deformation at 12000 
time steps 

 
Figure 5.  Crystal shape at (a) 6000, (b) 8000, (c) 10000, (d) 12000, (e) 
14000 and (f) 16000 time steps. The shear deformation applied after every 
6000 time steps 

Another case is to have the shear deformation after every 
6000 time steps of crystal growth. The crystal morphological 
evolutions are demonstrated in Fig. 5. It can be that the 
crystal morphology is completely  different from that of Fig. 
3 and Fig. 4. 

In summary, Fig. 3 corresponding a crystal growth 
without deformation. This is similar to the microstructure 
evolution in hot ro lling. Fig. 4 corresponding to a mechanical 
deformation after crystal growth. This is similar to the case 
of cold rolling. Fig. 5 gives microstructure evolution with 
phase-transition and mechanical deformation taking place in 
a same period, and is corresponding to warm rolling. Warm 
rolling generates significant different microstructure in 
comparison with hot rolling and cold ro lling. 

4. Discussion 

 
Figure 6.  Lattices and crystal interfaces after shear deformation and 
crystal growth 

It can be seen from Fig. 5 that the major d ifference of the 
crystal morphology is at the crystal arms  facing and parallel 
to the shear direction. The interface at  this direct ion is getting 
more steeper after shear deformation. Th is makes its 
interface energy bigger than before deformation. To reduce 
the interface energy, crystal growth along this direction is 
accelerated so that there are less amount of interface will be 
faced to this direction and hence the total surface energy and 
total free energy of the system can be reduced. This can be 
clearly seen in Fig. 6. The same situation appears to the 
interfaces at the plane d iagonal direction. It  can be seen that 
the similar crystal morphology evolution are appeared in that 
crystal arm. On the contradictory, the interface parallel and 
along the shear direction is getting less steep and more close 
to an interface normal direction which possesses smaller 
interface energy. The crystal growth at those areas is not 
encouraged in order to maintain its smallest interface energy 
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and hence the total free energy. This is clearly seen in Fig. 5. 
The shear deformat ion does not change the orientation of 
other four crystal arms significantly. Therefore, the crystal 
morphology at those places are not altered obviously. 

In summary, the combination of deformation and interface 
anisotropy are the major reason to cause the unusual 
microstructure evolution. Quantitative and more general 
description of this effect  requires more systematic 
investigations. 

5. Conclusions 
A phase-field model has been coupled to the 

homogeneous deformat ion method. The integrated scheme is 
able to simulate the thermomechanical processing of steels. 
The microstructure evolution due to phase transition can be 
handled by the phase-field model. The microstructure 
evolution due to mechanical deformat ion can be calculated 
by the deformat ion theory. The coupled scheme has been 
applied to the crystal growth in warm ro lling. The drastic 
microstructure alteration in this case is considered due to the 
deformation of the interface and the anisotropic properties of 
the interface. 
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