
International Journal of Materials Engineering 2016, 6(3): 77-84 

DOI: 10.5923/j.ijme.20160603.03 

Evaluation of Ultrasonic Attenuation in Mortars 

Structures Using the Argand Diagram  

Hassan Bita
*
, Bouazza Faiz, Ali Moudden, Hicham Lotfi, El Houssaine Ouacha, Mustapha Boutaib 

Laboratory of Metrology and Information Processing, Ibn Zohr University, Faculty of Sciences, Agadir, Morocco 

 

Abstract  The work presents a new method that tracks the total attenuation of the ultrasonic waves in a mortar during 

hydration. The method is based on a representation in the complex plane of reflection coefficient of waves backscattered by 

the mortar layer which takes the form of a circle in the vicinity of a resonance. Monitoring the diameter of the circle during all 

stages of hydration shows its sensitivity to changes in the microstructure of the material. A strong correlation exists between 

the diameter of the Argand circle and attenuation on samples with different compositions and at different temperatures. The 

correlation shows the ability of the parameter to detect the physical and chemical changes in the material and its accuracy for 

differentiating the phases of hydration.   
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1. Introduction 

Ultrasound is widely used in many fields of science. 

Their applications are generally classified into two 

categories: high power ultrasound that can change the 

environment in which they propagate as in the case of 

sonochemistry [1-3] and very low power ultrasound used in 

diagnosis, measurement and non-destructive control. 

Recently the ultrasonic application is also extended to the 

civil engineering field. Several research studies have been 

conducted to characterize, in a nondestructive way, the 

cementitious materials [4-7]. These techniques have proven 

to estimate the mechanical and structural properties of these 

materials by measuring the velocity and attenuation. 

The ultrasonic wave propagation and interaction of these 

waves with the material are widely used for non-destructive 

evaluation. The properties of the propagation of these 

waves are directly related to the mechanical and structural 

properties of the materials in which propagate. In 

non-homogeneous or non-elastic media, the interaction of 

the wave with the microstructure causes attenuation losses. 

These losses are due to a combination of absorption and 

diffusion. The effect of absorption losses is due to the 

viscoelastic behavior of materials and scattering losses are 

due to the heterogeneity of the material [8-11]. Much 

research has shown that the attenuation is a function of 

frequency, others have shown that it also depends on the 

grain diameter of material [9-13]. 
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Cementitious materials are sometimes multiphase and are 

characterized by the existence of heterogeneity of different 

natures and also their evolution over time because of the 

very long process of hydration of mixed products. In these 

products, the nature misunderstood of the ultrasonic wave 

propagation greatly complicates the task of quantifying 

contributions of the various mechanisms to the total 

attenuation. Therefore, there are no models that explain 

accurately mitigation mechanisms in these materials [8, 11]. 

In this work, we present a new method to follow and 

evaluate the ultrasonic attenuation in a mortar during all 

phases of hydration using the Argand diagram. 

The resonant scattering theory [14, 15] provides that the 

propagation of sound waves in the material generates 

resonances in its thickness wherein each resonance is 

characterized by its frequency and its width. We are 

interested in resonances of the reflection coefficient of a 

plane mortar structure. In the vicinity of an isolated 

resonance representation in the complex plane of its 

imaginary part as a function of its real part (Argand 

Diagram) is a circle [16]. During its evolution mortar 

transforms from a viscous state to viscoelastic solid state 

then to elastic state. This transformation is accompanied by 

a variation of the ultrasonic attenuation. We show the 

sensitivity of the diameter of the circle Argand to the 

variation of the ultrasonic attenuation in the cementitious 

material during hydration. Correlations established 

experimentally possible to estimate the damping of 

ultrasound in the mortar only via the measurement of the 

diameter of the circle. This dimensionless diameter is later 

named parameter D. 
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2. Materials and Methods  

2.1. Experimental Device  

The experimental device described in detail in a previous 

work [17], consists of a parallel sided container enclosing a 

thick layer of mortar dm= 15mm, irradiated at normal 

incidence by an ultrasonic wave emitted by a transducer of 

central frequency 0,5MHz which acts as emitter and receiver. 

The recording of the signals reflected by the Plexiglas / 

mortar / glass structure, is 15min all three days. 

2.2. Theory 

Assuming that the three layers structures plexiglas, mortar 

and glass are flat, and by placing in the context of the theory 

of linear systems, the signal reflected by the mortar layer can 

be written as a sum of echo reflected by the interface 

Plexiglas / mortar and all the echoes that have undergone 

multiple reflections within the cementitious material: 

𝑆𝑟𝑚 (𝑡) = 𝑆𝑟2 𝑡 +  𝑆𝑟3 𝑡 +  𝑆𝑟3′ 𝑡 + …       (1) 

Signal processing in the frequency plan allows to write: 
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 
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With: 

 S0 (f) ∶  The Fourier transform of the signal emitted by 

the transducer passing through the coupling medium (water 

+ Plexiglas) twice (round trip). 

Ri/j  =    
Z j−Zi

Z j +Zi
  : The reflection coefficient of the i/ j interface. 

Ti/j  =    
2Zi

Zj +Zi
  : The transmittance of the i/j interface. 

zi ∶ The acoustic impedance of the medium i and the 

letters p, m, and g represent the Plexiglas, mortar and glass. 
𝑘𝑚 : The wave vector and  𝑑𝑚  the thickness of the mortar. 

The reflexion coefficient of the mortar layer can be written 

as a series of Debye: 

R =  
Srm (t)

 S0 f 
 =  R p

m
+  Tp

m
 Rm

g
Tm

p
  exp(− j 2 km dm ×

                          (Rm

g

∞
n=0  Rm

p
exp −j2km dm )  n          (3) 

Experimentally terms of order n ≥1 in equation (1) are not 

visible (Figure 1), in this case the complex reflection 

coefficient of the mortar is then: 

R =    R p

m
+  Tp

m
 Rm

g
Tm

p
  exp(− j 2 km dm      (4) 

The mortar is a mitigating environment and attenuation of 

the ultrasonic wave αm  expressed in the imaginary part of 

the wave vector km  as follows: 

km =
2π f

vm
− j αm                 (5) 

Where:  vm ∶ The speed of the wave in the mortar. 

In the vicinity of a resonance, the Argand diagram is a 

circle with center Ω (  R p

m
 , 0) and diameter D : 

D = 2 Tp
m

 Rm
g

Tm
p

 exp −2 αm  dm  

  = 2 (1 − R
 
p

m

2 ) Rm

g
 exp −2 αm  dm       (6) 

2.3. Measures 

The experimental reflexion coefficient of mortar layer s 

obtained using the Fourier transforms ratio of the two echoes 

Sr2(t) and Sr3(t) reflected by the two mortar interfaces: 

   R = R p

m
  ×

Sr2 f +  Sr3 f  

Sr2 f 
              (7) 

To measure the total attenuation of the ultrasonic waves, 

we use the spectra ratio method of these two echoes as it is 

detailed in [17]. 

 

Figure 1.  Example of signal reflected by the various interfaces of the Plexiglas / mortar / glass structure 
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αm = − 
1

2dm
ln  

T p
m

 Rm
g
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p

  R p
m

 Sr3 f  

 Sr2 f  
            (8) 

The calculation of the Fourier transforms and the 

application of different signal processing techniques is 

performed using the LabView environment as a platform. 

3. Results and Discussion 

3.1. Variation of Parameter D with Frequency  

A representation of the experimental reflection coefficient 

modulus as a function of frequency for a mortar made of 

sand grain with size d = 315µm at room temperature T = 

25°C is carried on the figure 2. The representation shows the 

resonance frequencies of the mortar structure corresponding 

to the minimum of the reflection coefficient. Equation (4) 

shows that the resonance frequencies where the minima of 

the reflection coefficient lie are such that: 

 𝑓0 =  2n + 1 
vm

4dm
                 (9) 

With n is the order of apparition of a minimum. 

 

Figure 2.  A representation of the reflection coefficient modulus as a function of the frequency 

 

Figure 3.  Variation of the diameter of the Argand circle with frequency 
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In Figure 3, we presented in the complex plane the 

reflection coefficient. This representation shows that each 

resonance is characterized by a circle of diameter D which 

decreases with frequency. The propagation of sound waves 

in the material leads to attenuation losses that are related to 

the viscosity, thermal conductivity and the physico-chemical 

changes in the propagation medium structure. Several 

studies show that the attenuation increases with frequency  

[9-11, 18]. Thus the decrease in the amplitude of the modulus 

of the reflection coefficient and the diameter of the Argand 

circle with frequency can be explained by an increase of the 

ultrasound attenuation in the mortar. 

3.2. Sensitivity of the Parameter D to the Evolution of the 

Mortar Microstructure 

Monitoring the variation of the parameter D, 

corresponding to the resonance of order n = 5 during the 

evolution of the mortar from a young age to curing for 70 

hours, is used to trace the curves representing the diameter D 

and its derivative function over time in Figure 4. in the figure 

we can distinguish five stages and four characteristic points. 

The four points corresponding to the extrema of the function 

derivative  
𝑑𝐷

𝑑𝑡
= 𝑓(𝑡), used to locate the time in each of the 

mortar hydration phases described previously [17]. During 

the first stage called initial phase, which lasts about one hour, 

the mixed products are completely separate in water [19, 20] 

the diameter D remains constant D≅12. The end of the first 

step and the start of the second are marked by the first feature 

point A1. In this step, we observe a linear decrease of the 

parameter D over time; the derivative function is almost 

constant at this stage. In this phase, it begins the formation of 

first hydration products, but the bonds between the particles 

of cement are not yet well established; the material remains 

plastic and workable. The curves shown in Figure 5 show 

that during this time the total attenuation increases 

progressively in the opposite direction to the variation of the 

parameter D. From the characteristic point A2 we observe a 

rapid decrease of parameter D accompanied by a sharp 

increase in attenuation, and from the time t = 5h measuring 

the diameter of the circle is not possible because the signal is 

completely attenuated in the mortar [17]. At this stage, 

significant changes in the structure of the material appear, 

the rate of formation of hydrated products is very large and 

bonds between constituting of the mortar become solid. This 

step corresponds to the beginning of the intake phase, which 

is considered the most important in the structure of 

cementitious products. Taking phase is divided into two 

stages: the first is the acceleration period characterized by 

significant and continuous reduction of the diameter D and 

the second is the period of deceleration whose beginning is 

marked in the figure by the partial characteristic point A3 

where the parameter D starts to increase. In fact, the curve 

representing the derivative function is decreasing indicating 

a decrease in the formation rate of the hydration products. 

The end of the setting period is marked by the characteristic 

point A4 from which the variation of the parameter D is very 

low indicating the start of the final stage of the hydration of 

the mortar. The diameter D tends to stabilize on a long-term 

time interval. 

 

Figure 4.  Representation of parameter D and its derivative dD/dt according to the time 
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Figure 5.  Variation of parameter D and attenuation according to time 

3.3. Correlation between the Parameter D and the 

Attenuation 

The accuracy of the parameter D in the detection of 

different periods of hydration of the mortar, shows its 

sensitivity to any variation or change in the material 

microstructure. Figure 5 shows the variation of the parameter 

D compared to the attenuation in the mortar over time. We 

find that the attenuation is going through the same phases of 

hydration as parameter D. In the early hours, when the 

attenuation begins to increase, we observe a strong decrease 

of the parameter D. At the end of the setting period and 

during the hardening phase, the behavior of the two 

parameters is reversed; we note a decrease in attenuation 

over time against an increase in the diameter of the Argand 

circle. In the last phase, the rate of change of these two 

parameters becomes low. These important observations 

therefore show that there is a strong correlation between the 

two studied parameters. 

In Table 1, we gathered the curves representing the 

evolution of the parameter D depending on the total 

attenuation αm  in two main phases of the mortar, liquid and 

solid for four mortars solutions prepared with sand grains of 

different sizes or different temperatures. The results show an 

exponential decrease of the parameter D when the total 

attenuation increases, this applies to all the prepared 

solutions in all mortar hydration phases. The results also 

show that the relationship between the parameter D and the 

total attenuation is unique and follows the law: 

𝐷 = 𝐷0 𝑒−𝐿𝛾                    (10) 

Where 𝐷0  is the diameter of Argand circle at zero 

attenuation, it is dimensionless and 𝐿 is the distance traveled 

by the wave in the material in meters. 

These results are in good agreement with our theoretical 

predictions (equation 6). Table 2 compares the derived 

parameters of the exponential regression. Important 

observations can be captioned. Indeed, the high values of the 

correlation coefficients which are close to 1, indicates a 

strong correlation between the parameter D and the total 

attenuation and demonstrate the sensitivity and the 

dependence of this parameter to the variation of the 

attenuation regardless of the particle size sand, temperature 

and any other unknown mortar curing time. The empirical 

law (10) expressing the relationship between the parameter 

D and the total attenuation provides constant values of 

parameter D0 that represents the diameter of the Argand 

circle at zero attenuation. The regression results show that 

the parameter D0 is more important in the solid phase than in 

the liquid one for all mortar solutions. Table 2 shows the 

highest values of D0 in the solid phase for solutions prepared 

with diameter of sand grains of d=500µm, 315µm and at 

temperature T = 42°C compared to other solutions. Indeed 

the measured values of D0 are approximate because this 

parameter depends on the reflection coefficients of the two 

mortar interfaces (Equation 5) and can vary due to the 

change of the acoustic impedance of the mortar during 

hydration. Similarly the route of the ultrasonic wave in the 

mortar is subject to variations during the transition of the 

mortar from the liquid phase to the solid one. This variation 

may be due to a change in the thickness of the mortar. Indeed, 

we notice a decrease of the thickness of the material structure 

in the first hours of hydration, a decrease which is 

particularly important that the diameter of sand is large and 

the temperature is high. The mortar thickness reduction can 

be attributed to a chemical removal, which is not good for the 

material and can cause microscopic cracks which can 

seriously degrade the performance of long-term material 

[21-23]. However, we can not confirm this in the present 

work until the study is not extended at different W / C ratio; 

several studies have shown the influence of  W / C ratio and 

hardening temperature on the removal of chemicals of 

cement pastes at an early age [21, 23]. We also note the 

absence of this phenomenon in the mortar prepared at room 

temperature. 
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Table 1.  Exponential fit of the parameter D depending of the total attenuation 
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Table 2.  Parameters of the exponential regression 

Parameters of the 

regression 
T=42°C T=25°C 

 

 

 

 

 

D0 

 

 

L 

 

 

R2 

 

  d=250µm                 d=315µm                    d=500µm 

 

[0,25h--5h]    [15h--70h]     [0,25h--5h]     [15h--70h]     [0,25h--5h]     [15h--70h] 

 

0,804           0,941           0,800         1,153           0,914            1,191 

 

 

0,028          0,029            0,028         0,032            0,029             0,033 

 

 

0,97            0,99            0,98          0,99            0,99             0,99 

 

d= 315µm 

 

[0,25h--5h]       [15h--70h] 

 

0,938          0,959 

 

 

0,029          0,029 

 

 

0,99            0,99 

 

 

Figure 6.  Temperature effect on the evolution of the parameter D 

 

Figure 7.  Effect of the size of sand grains on the evolution of the parameter 

D 

The effect of the temperature and the particle size of the 

sand on the evolution of the parameter D according to the 

mortar of the hydration time is shown in the figures 6 and 7. 

The influence of the sand grain size is clearly observed on 

the diameter of the Argand circle. It is particularly important 

that the diameter of the sand grains is low .This can only be 

explained by an increase of the attenuation which can be due 

to an increase in porosity. Several studies have shown that 

the mechanical properties of cement-based materials 

decrease with porosity [24-27]. Further work showed that the 

compressive strength increases as the size of sand grains 

decreases [28, 29]. Similarly, the impact of temperature on 

the change of the parameter D is remarkable in the hardening 

phase. Figure 6 shows that the cured mortar at temperature 

T=42°C has a lowest parameter D compared to hardened at 

ambient temperature so high ultrasonic attenuation. This 

shows that temperature has a major role in the development 

of mechanical mortar properties. Low hardening 

temperatures result in a uniform distribution of hydrates, 

while higher temperatures lead to a coarser pore structure 

[30]. 

4. Conclusions 

This work presents a non-destructive characterization 

method of cementitious materials based on the representation 

of Argand. The extracted representation of this parameter is 

the diameter of the circle Argand. The ability of the 

parameter to detect the different physical and chemical 

transformations of the material is not affected by the 

variation of the temperature or the type of sand. Our 

experimental measurements on mortar samples show that the 

D parameter is especially important as temperature is low 

and the diameter of the sand grains is great. We also showed 

that the diameter of the Argand circle follows an exponential 

distribution of the total attenuation of ultrasound in the 

mortar. The fact that neither the general shape of the curves 

or correlation is affected by temperature and the nature of the 

sand, shows that the parameter D may be used as an indicator 

of the total attenuation; its measurement can therefore inform 

us on the microstructure and the health status of the material 

at all times. Parameter D can be used also to measure with 

great precision the thickness of the mortar. 
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