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Abstract The 1,3,4-thiadiazole nucleus is one of the most important and well-known heterocyclic nuclei, which is a
common and integral feature of a variety of natural products and medicinal agents. The role of thiadiazole and their
derivatives has been very well established as pharmacologically significant scaffolds. Introduction of a nitro group into the
benzene ring is of particular interest both for the elucidation of the influence of electron-withdrawing substituents on the
reactivity of donor centers of heterocyclic compounds and for the subsequent synthesis of thiadiazole derivatives based on the
reduced nitro group. The effect on delocalization of electron density (ED) and donor acceptor interaction due to change in
substituents affects pharmacological activities significantly. In the present work, in an attempt to understand, the structure
activity relation in an 1,3,4-thiadiazole we report optimized molecular structure confirmed by predictive vibrational spectra
(IR/Raman spectra) and electronic behavior of one of the thiadiazole derivative 2-amino-5-(m-nitrophenyl)-1,3,4-thiadiazole.
The calculations were made by density functional theory (DFT) using Becke’s three-parameter hybrid functional (B3LYP) at
various level of theory. The natural bond orbital analysis (NBO) has been performed in order to study the intramolecular
bonding interactions among bonds and delocalization of unpaired electrons. These intramolecular charge transfer (n—-o*,
n—n* and m-n*) can induce biological activities such as antimicrobials, anti-inflammatory, anti-fungal etc. in the molecule.
Calculated band gap of 2.426 eV and global reactivity descriptors using HOMO-LUMO energies explain chemical and
biological activity.

Keywords 1,3,4-Thiadiazole, Density functional theory, Structure activity relation, Charge transfer, IR/Raman spectra,
HOMO-LUMO, Natural bond analysis (NBO)

. We have selected 2-amino-5-(m-nitrophenyl)-1,3,4
1. Introduction -thiadiazole, abbreviated as AMNT, one of the simplest
1,3,4-thiadiazole derivative for our study. To the best of our
knowledge, despite of potential pharmacological
applications, this molecule is not undergone any
comprehensive stereoelectronic and spectroscopic studies.

Heterocyclic compounds are ring compounds containing
carbon and other element, the component being oxygen,
nitrogen and sulphur. Thiadiazoles are heterocyclic

compounds containing two nitrogen atoms and one sulfur 2-amino-5-(m-nitrophenyl)-1,3,4-  thiadiazole  showed

atgm_ as part c_)f the aromatic five-me_mbered_ ””9- 1"?"4' monoclinic packing having cell parameter a = 11.832 A, b =
thiadiazole are important because of their versatile biological g gsn & = 8353 A Vv = 913.63 A® d o = 1.212 g cm
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actions[1]. There are number of thiadiazoles which contain
the nitrogen in different positions such as 1,2,3-thiadiazole
[2], 1,2,4-thiadiazole [3], 1,3,4-thiadiazole [4] and
1,2,5-thiadiazole [5] and their benzo derivatives [6] etc.
1,3,4-thiadiazole Derivatives shows a wide range of
biological, pharmacological, and antileukemic activities
[7-9]. Large number of such compounds have been
synthesized and studies for their spectroscopic behavior and
biological activity [3-6, 10].

with space group P21/c [11]. Introduction of a nitro group
into the benzene ring is of particular interest both for the
elucidation of the influence of electron-withdrawing
substituents on the reactivity of donor centers of
heterocyclic compounds and for the subsequent synthesis of
thiadiazole derivatives based on the reduced nitro group.
Replacing the substituent in the phenyl group at position 3 of
the 1,3,4-thiadiazole compounds with electron withdrawing
groups, like halogens, nitriles, carbonyls etc. leads to affect
« Corresponding author: biological activities [9]. _
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-5-(m-nitrophenyl)-1,3,4-thiadiazole ~ were investigated
computationally using density functional theory (DFT) and
ab initio methods. Therefore, we report optimized molecular
structure confirmed by predictive vibrational spectra
(FTIR/Raman) and physicochemical behavior for
2-amino-5-(m-nitrophenyl)-1,3,4-thiadiazole. In order to
find conformational stability of the 2-amino-5-(m-
nitrophenyl)-1,3,4-thiadiazole molecule, a potential energy
scan is performed, and the corresponding relative energies
were compared. The equilibrium geometry, harmonic
vibrational wavenumbers, electrostatic potential surfaces,
absolute Raman scattering activities and infrared absorption
intensities have been calculated by DFT [12] with B3LYP
functionals using various basis sets and HF/6-311G(d,p)
with the help of Gaussian 09W package [13]. The calculated
vibrational spectra were analyzed on the basis of the
potential energy distribution (PED) of each vibrational mode
which allowed us to obtain a quantitative as well as
qualitative interpretation of the infrared and Raman spectra.
To  understand  structure  property  relationship,
HOMO-LUMO, electrostatic potential surface and natural
bond orbitals have been obtained. Natural bond orbital
analysis has been carried out to understand the nature of
different interactions responsible for the electron
delocalization and the intra-molecular charge transfer
between the orbitals. These intra-molecular charge transfer
(n—o*, n—n* and n-7*) can induce biological activities such
as antimicrobials, anti-inflammatory, anti-fungal, antibiotic,
diuretic, antidepressant, anticancer, anticonvulsants, etc. in
the molecule.

2. Computational Details

Computational aspects for geometry optimization and
electronic structure of the stable conformers of the molecule
have been done by density functional theory [12] by using
the Gaussian 09W program package[13] employing different
basis sets and Becke’s three parameter (local, nonlocal,
Hartree—Fock) hybrid exchange functionals  with
Lee—Yang-Parr correlation functionals (B3LYP) [14-16].
Infrared absorption intensities and Raman intensities have
been calculated in the harmonic approximation with the help
of same functional and basis sets as used for the optimized
geometries, from the derivatives of the dipole moment and
polarizability of each normal mode, respectively. The
normal-mode analysis was used to calculate PED for each of
the internal coordinates using no symmetry [17-18]. In order
to prepare PED a complete set of 57 internal coordinates was
defined using Pulay’s recommendations [19, 20]. The
vibrational assignments of the normal modes were proposed
on the basis of the PED calculated using the program
GAR2PED [21]. Calculated DFT vibrational wavenumbers
are known to be higher than the experimental wavenumbers
as the anharmonicity effects are neglected. Therefore,

wavenumbers obtained by DFT were scaled down by the
wavenumber linear scaling procedure (WLS) vgps =
(1.0087-0.0000163Vcaic) Veae. €M™ [22]. The WLS method
using this relationship predicts vibrational wavenumbers
with high accuracy and is applicable to a large number of
compounds, except for those where the effect of dispersion
forces is significant. All the calculated vibrational
wavenumbers reported in this study are the scaled values. In
order to investigate intra-molecular charge transfer
interactions, rehybridization and delocalization of electron
density within the molecule, the natural bonding orbitals
(NBO) analysis has been performed. The main natural
orbital interactions were analyzed on the basis of NBO
calculations done at DFT/B3LYP level using Gaussian 09W
package. In the NBO analysis [23, 24], the electronic wave
functions are interpreted in terms of a set of occupied
Lewis-type (bond or lone pair) and a set of unoccupied
non-Lewis (antibond or Rydberg) localized NBO orbitals.
Delocalization of electron density (ED) between these
orbitals corresponds to a stabilizing donor-acceptor
interaction. The second-order perturbation theory has been
employed to evaluate the stabilization energies of all
possible interactions between donor and acceptor orbitals in
the NBO basis. The delocalization effects can be estimated
from off-diagonal elements of the Fock matrix in the NBO
basis.

3. Results and Discussion

3.1. Geometry Optimization

The theoretical structure of title molecule have been
calculated by DFT using B3LYP functional having extended
basis sets 6-311++G(d,p), 6-311+G(d,p), 6-311G(d,p) and
HF/6-311G(d,p) with the help of Gaussian 09W package and
geometry obtained from B3LYP/6-311++G(d,p) is shown in
Fig.1.

Figure 1. Optimized structure of AMNT at the B3LYP/6-311++G(d;p)
level of theory
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Geometry of CgHgN,O,S (AMNT) was optimized without
any constraint to the potential energy surface using given
X-ray diffraction data as initial point [11]. All the optimized
bond lengths and bond angles of the calculated CgHsN,0,S
molecule are tabulated in Table-1 along with the reported
molecular parameters [11]. The title compound contains
phenyl, amino, nitro and thiadiazole moieties. The
five-membered thiadiazole ring is essentially planar. The
dihedral angles between the phenyl and the thiadiazole ring
is calculated at -0.135< but experimental data shows a twist
of 39.73< This may be attributed to intermolecular
interaction in the crystal packing. Only two bond distances
in the thiadiazole ring show a double bond character
C6=N5, C2=N4 with bond lengths 1.297 A, 1.305 A
respectively and bonds S3-C6, S3-C2 with bond lengths

1.775 A, 1.757 A show the values of a single bond character.

The S—C bond distances are found in good agreement with
the accepted value for an S-C(sp2) single bond of bond
length 1.76 A [25]. In general, the calculated structural
parameters match well with experimental data with few
exceptions. The difference found in calculated values (in gas
phase) from the experimental values may be due to the solid
state intermolecular interactions related to crystal packing
effects. It is worth noting that the C9-N13 bond distance
value of 1.481 A falls into the C=N double bond distance
region and is shorter than the C=N double bond distance
found in a related thiadiazole ring structure [26]. The bond
C2-N1 shows the partial double bond character with bond
length 1.367 A

3.2. Potential Energy Scan Studies
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Figure 2. Potential energy scan of AMNT about dihedral angle

(C12-C7-C6-S3) at B3LYP/6-311++g(d,p) level of theory

In order to investigate all possible conformations of
2-amino-5-(m-nitrophenyl)-1,3,4-thiadiazole, a detailed
potential energy scan was performed for the dihedral angle
$(C12-C7-C6-S3) at B3LYP/6-311++g(d,p) level of
theory with constraint nosymmetry. The scan studies was
obtained by minimizing the potential energy in all
geometrical parameters by varying the torsion angles at a
step of 5<in the range of 0-360<rotation around the bond.

The variations of the potential energy change from its
equilibrium with the torsional perturbation are presented in
Fig. 2. The PES scan revealed that the 2-amino-5-
(m-nitrophenyl)-1,3,4 -thiadiazole molecule may have less
stable conformer at torsion angle (C12-C7-C6-S3) equal to
-5.23709=having energy -1076.029 Hartree (-2825114.354
kJ/mol). The most stable equilibrium state belongs to
(C12-C7-C6-S3) =179.862<and potential energy equal to
-1076.309 Hartree (-2825851.595 kJ/mol).

3.3. Natural Bond Orbital Analysis

NBO analysis is an efficient method for study of the
intramolecular and intermolecular bonding and interactions
among bonds. This analysis also provides the study of filled
NBOs (donors) and empty NBOs (acceptors) and their
interactions with the stabilization energy E® resulting from
the second-order perturbation theory. The larger the E@
value, the more intensive is the interaction between electron
donors and acceptors, i.e. the more electron donating
tendency from electron donors to acceptors and the greater
the extent of conjugation of the whole system. This
interaction results a loss of occupancy from the
concentration of electron NBO of the idealized Lewis (bond
or lone pair) structure into an empty (anti-bond or Rydberg)
non-Lewis orbital. For each donor (i) and acceptor (j), the
stabilization energy E® associated with the delocalization i —
j isestimated as [23, 27, 17]:

R e S 1 6

Where ((c|F|o)?) is the Fock matrix element which
corresponds to i and j NBO orbitals. n, is the population of
the donor o orbital, ;- and ¢, are the energies of o* and
o NBOs. NBO calculations were performed using the NBO
5.9 program as implemented in the Gaussian 09 package at
the DFT/B3LYP/6-311++G(d,p) level of the theory. The
second-order perturbation theory analysis of Fock matrix in
NBO basis of AMNT molecule display strong
intra-molecular  conjugative  and  hyperconjugative
interactions and demystify the rehybridization and
delocalization of electron density within the molecule. Some
important interactions between Lewis and non-Lewis
orbitals along with their interacting stabilization energies are
shown in Table-2.

The Fock matrix analysis shows strong intra-molecular
hyperconjugative interactions of & electrons between n bond
orbitals and anti bonding orbitals. These interactions are
established by the orbital overlapping between n(C-C or
C-N) and n*(C-C or C-N) bond orbitals resulting ICT
(Intramolecular charge transfer) causing stabilization of the
system.

The electron density (ED) at the six conjugated m bonds
(1.6-1.7¢) and n* antibonds (0.1-0.4 €) of the phenyl ring
clearly shows strong delocalization leading to stabilization of
energy in the range of 12-23 kcal/mol. These results are
consistent with as reported by C. James et al. [18]. The
important interaction (n-m) energies associated with the
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resonance in the molecule are electron donation from the
LP(1) of atom N1, LP(2) of atom S3 (electron donating
groups) to the anti-bonding acceptors n*(C2-N4) and
n*(C2-N4) ,n*(N5-C6) of thiadiazole ring which correspond
to the stabilization energies 38.22 and 27.80, 24.16 kcal/mol
respectively. Similar interaction is observed from LP(3) of
atom 014 to the anti-bonding acceptor 7*(N13-015) of nitro
group having stabilization energy equal to 12.90 kcal/mol.
These n*(C2-N4) and n*(N5-C6) antibonding orbitals of the
thiadiazole ring further show hyperconjugation with
*(N5-C6) and n*(C7-C8) of phenyl ring respectively. This
shows the intramolecular charge transfer from thiadiazole
ring to phenyl ring with enormous amount of stabilization
energies 173.73 and 101.66 kcal/mol respectively. A strong
intramolecular interaction of m electrons occurs from
n(C7-C8) and w(C11-C12) bonds to the =n*(C9-C10)
antibond corresponding to the stabilization energies 20.36
and 23.43 kcal/mol respectively. This enhanced 7*(C9-C10)
NBO further hyperconjugates with 7*(C11-C12) correspond

The hyperconjugative interaction of o(N1-H17) and
conjugative interaction of o(S3—-C6) distribute over
6*(C2-S3) and (N1-C2) leads to the stabilization energies
6.51 and 5.53 kcal/mol respectively. The hyperconjugative
interaction (n—c*) between the electron-donating nitrogen
atoms nl1(N4) and n1(N5) of the thiadiazole ring and
antibonding orbitals 6*(C2-S3), (N5-C6) and o*(C2-N4),
(S3-C6) leads to the stabilization energies 15.21,5.53 and
5.35,16.31 kcal/mol respectively. The charge transfer from
lone pairs of n2(014) and n2(015) to antibonding orbitals
6*(C9-N13), (N13-O15) and o*(C9-N13), (N13-O14)
correspond to the stabilization energies 12.37, 18.95 and
12.47, 19.03 kcal/mol due to small energy difference
between donor and acceptor respectively. These
intramolecular charge transfer (n—o*, n—n* and n-n*) may
induced biological activities such as antimicrobials,
anti-inflammatory,  anti-fungal,  antibiotic,  diuretic,
antidepressant, anticancer, anticonvulsants, etc. in the title
molecule.

the high stabilization energy 223.26 kcal/mol.

Table 2. Second-order perturbation theory analysis of Fock matrix in NBO basis

Donor NBO(i) | ED(i)/e | Acceptor NBO(j) | ED(j)/e | EQ2)kcal/mol | E(j)-E(i)a.u. | F(i,j)a.u.
o N1-H17 1980 | o*(C2-S3 0.082 6.51 0.84 0.067
nC2-N4 1.874 * N5-Cé 0.332 14.32 0.33 0.065
G S3-C6 1976 | o*N1-C2 0.024 5.53 1.10 0.070
ntN5-Cé 1.897 n* C2-N4 0.390 9.57 0.32 0.053
ntN5-C6 1.897 n* C7-C8 0.352 9.65 0.35 0.056
nC7-C8 1.632 m* N5 - Cé 0.332 19.37 0.27 0.065
nC7-C8 1.632 n* C9-C10 0.375 20.36 0.28 0.067
nC7-C8 1.632 n* C11-C12 0.279 19.17 0.29 0.068
nC9-C10 1.647 n* C7-C8 0.352 21.71 0.29 0.071
nC9-C10 1.647 m*C11-C12 0.279 15.99 0.30 0.063
nC9-C10 1.647 m* N13-015 0.618 12.87 Ti7d 0.145
nC11-C12 | 1.640 n* C7-C8 0.352 19.17 0.28 0.065
nC11-C12 | 1.640 m* C9-C10 0.375 23.43 0.27 0.072
ntN13-015 |1.986 |[n3014 1.448 12.47 0.18 0.079
n1N1 1.803 * C2 - N4 0.390 38.22 0.30 0.100
n2S3 1.668 * C2 - N4 0.390 27.80 0.25 0.076
n2S3 1.668 * N5-Cé 0.332 24.16 0.26 0.071
nl N4 1.898 | g*(C2-S3 0.082 15.21 0.56 0.082
nl N4 1.898 | g*N5-C6 0.026 5.53 0.95 0.066
nlN5 1.893 | g*C2-N4 0.031 5.36 0.93 0.064
n1N5 1.893 | 6*S3-C6 0.082 16.31 0.55 0.085
n2 014 1.898 | g*(C9-N13 0.106 12.37 0.56 0.074
n2 014 1.898 o*N13-015 0.054 18.95 0.73 0.106
n3 014 1.448 n*N13-015 0.618 12.90 177 0.137
n2 015 1.898 | g*(C9-N13 0.106 12.47 0.56 0.075
n2 015 1.898 | g*N13-014 0.054 19.03 0.73 0.106
m* C2-N4 0.390 T* N5 - C6 0.332 173.73 0.01 0.064
m* N5-C6 0.332 m* C7 - C8 0.352 101.66 0.02 0.067
n* C9-C10 | 0.375 n* C11-C12 0.279 233.26 0.01 0.083
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3.4. Molecular Electrostatic Potential

Various weak interactions in 2-amino-5- (m-nitrophenyl)-
1,3,4-thiadiazole molecule, such as C-H...n, n—=n and weak
hydrogen-bonding interactions have very important
significance in determining stability of the molecule. The
presence of amino and nitro group leads to the electronic
coupling between ring electrons and nitrogen lone pair
electrons which provides stabilization to the molecular
structure and enhance its antilukemic properties. Hence it is
important to study the electrostatic potential distribution in
the molecule. The molecular electrostatic potential (MEP) is
a property that the electrons and nuclei of a molecule create
at each point r in the surrounding space [28]. Electrostatic
potential provides very useful information to explain
hydrogen bonding, reactivity and structure—activity
relationship of molecules and correlates with dipole moment,
electronegativity, partial charges and site of chemical
reactivity of the molecule. It gives a visualization to
understand the relative polarity of a molecule. The regions
with negative MEP, correspond to the areas of high electron
density representing a strong attraction between the proton
and the points, on the molecular surface have the brightest
red color. The positive valued regions, areas of lowest
electron density, have deep blue to indigo color indicating
the regions of maximum repulsion. The electron density
isosurface onto which the electrostatic potential surface has
been mapped is shown in Fig. 3 for 2-amino-5-
(m-nitrophenyl)-1,3,4-thiadiazole. The different values of
the electrostatic potential at the surface are represented by
different colors; yellow represents regions of most negative
electrostatic potential, blue represents regions of most
positive electrostatic potential over the amino group and
green represents regions of zero potential. From Fig. 3, it is
visible that the region of the most negative electrostatic
potential is spread over the 014, 015 atom of NO, group and
N4, N5 of the thiadiazole ring. This indicates the
delocalization of m electrons over the nitro group and
thiadiazole ring. This also reveals extended conjugation of
the phenyl rings with the nitro group.

Figure 3. Molecular electrostatic potential mapped on the isodensity
surface for AMNT calculated at the B3LYP/6-311++G(d;p) level of theory

3.5. HOMO-LUMO Analysis

The highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) are the main

orbitals that plays an important role in chemical stability
[29]. The HOMO exhibits the ability to donate an electron
and LUMO as an electron acceptor serves the ability to
obtain an electron. The HOMO and LUMO energy
calculated by B3LYP/6-311++G (d,p) level of theory show
the energy gap which reflects the chemical activity of the
molecule.

HOMO energy (B3LYP) =—782.609 kJ/mol
LUMO energy (B3LYP) =—548.520 kJ/mol
HOMO — LUMO energy gap (B3LYP) = 234.089 kJ/mol

The HOMO is positioned over the thiadiazole ring and
amino group, the HOMO—LUMO transition implies an
electron density transfer to Phenyl ring and nitro group
from thiadiazole ring and amino group. This ICT between
thiadiazole ring and Phenyl ring is responsible for existing
biological activities. The atomic orbital compositions of the
frontier molecular orbital are shown in Fig. 4.

4

Laszs il
. <

LUMO = -548.520 kJ/mol

HOMO = -782.609 kJ/mol

Figure 4. The molecular orbitals of AMNT at B3LYP/6-311++ G(d;p)
level

On the basis of HOMO-LUMO energies global reactivity
descriptors, such as the energies of frontier molecular
orbitals (€Homo, €Lumo), energy band gap (eromo — €Lumo),
electronegativity (¥), chemical potential (pn), global
hardness (1), global softness (S) and global electrophilicity
index (w), which describe the electrophilic behaviour
[30-34], have been calculated for AMNT using Egs. (2)—(6):

%= —%[sto + €yomo) = 665.564 k]/mol  (2)
w=—1= (o + Sxomo) = —665.564 kj/mol (3)

€nomo) = 117.045 K] /mol  (4)

1
n=z (Erumo —

_1_ AN
§ = 1-=0.004 (ml) (5)
® = *;‘—:= 1892.330 kj/mol )

Electrophilic charge transfer (ECT) [30] is defined as the
difference between the ANp, Vvalues of interacting
molecules. For two molecules | and Il approaching each
other (i) if ECT > 0, charge flows from Il to | and (ii) if ECT
< 0, charge flows from I to Il. ECT is calculated using Eqg.

(7):
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ECT = (ANmax)i — (ANmax)ii
where (ANma)i = — U/ My and (ANma )i = — /.

()

3.6. Vibrational Spectral Analysis

The vibrational spectra of 2-amino-5-(m-nitrophenyl)
-1,3,4-thiadiazole molecule have been calculated by DFT
with B3LYP functional having extended basis set
6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p) and by HF with
basis set 6-311++G(d,p) using Gaussian 09W package. Due
to exclusion of anharmonicity, the calculated wave numbers
are higher and therefore, scaled down by the wave number
linear scaling procedure (WLS) [Vops/Vea = (1.0087 —
0.0000163 *ve,) cm™] given by Yoshida et al. [22]. This
molecule has 21 atoms, which gives 57 (3n-6) normal modes.
AMNT has phenyl and thiadiazole rings with different
functional groups namely nitro and amino respectively.
Vibrational mode assignments have been made on the basis
of relative intensities, line shape and potential energy
distribution obtained from normal coordinate analysis. All
the 57 fundamental vibrations of the free molecule are both
IR and Raman active. The calculated vibrational
wave-numbers and their PED for each normal mode are
presented in Table 3. The calculated (scaled) infrared
absorbance and Raman spectra are shown in Fig. 5 and Fig. 6,

57

respectively.

In order to make better understanding, the vibrational
assignments have been studied separately for all groups and
rings. We have discussed here only the dominant
contributions to the total potential energy of normal modes
of vibration out of several internal coordinates that may be
present in the PED as shown in Table-3.

AMNT consist a thiadiazole ring (ring-1) having amino
group attached at position 2. Ring-1 has two CS stretching
vibrations which are calculated at 653 and 665 cm™. These
modes have prominent contribution (10-60%) from CS
stretch along with other vibrations of the ring-land amino
group. Two C-N antisymmetric and symmetric stretching
vibrations are calculated at frequencies 1497 and 1507 cm™
and are reported at 1517 and 1619 cm™ [11] and for AMNO
[35] it is reported at 1630 cm™. One prominent N-N
stretching(49%) vibration is calculated at 1154 cm™, this
mode is reported to be observed at 995 cm™ [11]. These
vibrations also have the contribution from other modes of
ring-2 and amino group. The in-plane bending of ring-1
calculated at 440 cm™ and out-of-plane bending of ring-1
occurs at 607 cm™ having contribution from ring-2
deformation and other vibrations of amino group in the
frequency range 85-740 cm™.

JJ.MJU

—

B3LYP/6-311++G(d,p)

HF/6-311++G(d,p)|

e

Absorption (A.U.)

(-

B3LYP/6-311+G(d,p) |

i

JMMJU
JMJMJWU

[B3LYP/6-311G(d,p)

0 500 1000 1500

I
2000 2500 4000

wavenumber (cm)-1

Figure 5. Calculated infrared spectra of AMNT at various level of theory
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Figure 6. Calculated Raman spectra of AMNT at various level of theory

Calculated phenyl ring vibrations are in good agreement
with the experimental data [11]. The selection rule for
meta-substituted phenyl ring allows four C-H stretching
vibrations. Although the DFT predict all these four bands,
but these are observed as inseparable in IR. Usually Raman
has one strong band in this zone [36]. The ring CH stretching
vibrations appear to be very weak, which is due to steric
interaction that induces effective conjugation and charge
carrier localization resulting in twisted phenyl ring [37]. The
carbon hydrogen stretching vibrations give rise to bands in
the region 3100-3000 cm ™ in all the aromatic compounds
[38]. The C—H stretching vibrations of phenyl ring are
calculated at 3084, 3070 and 3048 cm™ in AMNT but in
CDMABA[39], these bands are found at 3045, 3061 cm™in
IR spectra and at 3057, 3069 cm™ in Raman spectra
respectively while in AMNO[35] these modes are observed
at 3080 cm™ . Minor shift may arise due to the influence of
nitro group attached to the phenyl ring in title compound.
There are six vibrational modes of C-C stretching with a
contribution of ring bending, which are more substituent
dependent, calculated corresponding to the peaks at 1003,

1097, 1335, 1426, 1587 and 1625 cm™ with other mode of
vibrations [39]but in AMNO[35] these are reported at 1569
and 1480 cm™, shown in PED table-3. These modes of
phenyl ring are also having contributions in the vibrations of
substituent nitro group and thiadiazole ring. The in-plane CH
bending vibrational modes of the phenyl ring, are found as a
series of bands at 1178, 1299, 1316, 1426 and1478 cm™in
the range 1003-1626 cm™. PED assignment shows that these
vibrations have coupling with C-C stretching of the ring and
the other vibrational modes of substituents. The CH
out-of-plane bending modes of the phenyl ring vibrations
corresponding to medium, strong and weak bands are
calculated at 813, 913, 953 and 1007 cm™, having
contribution in other modes are shown in Table 3 and are
assigned to ring in-plane deformation modes. The puckering
modes of phenyl ring (ring-2) with a contribution of
out-of-plane bending of the substituents are calculated at 674
cm™. Other fundamental modes of phenyl ring that show
similar characteristics like torsional modes and their
assignments have also been calculated and shown in table 3
with their corresponding potential energy distributions.
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Nitro group compounds show a very strong asymmetric
stretch at 1540-1614 cm™ and a strong symmetric stretch at
1320-1390 cm™ [40]. For this title compound a very strong
band corresponding to asymmetric stretch at 1557 cm™ and
a strong band at 1351 cm™ corresponding to symmetric
stretch are calculated by DFT and reported at 1550 and 1350
cm™ for AMNO[35]. According to Peticolas and co-workers
it has been found that the NO, symmetric stretching
vibration occurs at 1364 cm™ in a series of chemically
related p-nitro substituted derivatives [41]. NO, group
scissoring modes are assigned at frequencies 739 and 879
cm®. Rocking modes of NO, are found at 541 cm™ and out of
plane bending of NO, group calculated at 729 cm™.

The N-H group attached to the hetero aromatic molecule
shows stretching mode in the usual range 3500-3220 cm*
of appearance for NH,, CH; and C-H stretching vibrations.
These absorptions depend upon the degree of hydrogen
bonding and the physical state of the sample or the polarity
of the solvent [42]. The N—H stretching vibrational bands
are sharper and weaker than O—H stretching vibrations by
virtue of which they can be easily identified [43]. The N-H
stretching fundamental of piperidine was observed in the
vapor phase at 3364cm* [44] and in the liquid phase at
3340cm * for the N—H stretching of the piperidine [34, 45].
For our compound the stretching vibrations of the amino
group associated with thiadiazole ring are experimentally
observed in the range 3050-3225 cm™ [11], which are
calculated at 3393 and 3494 cm™ conforms the NH stretching
vibrations. The out-of-plane bending of amino group are
calculated at 489 and 528 cm™ mixed with other modes of
vibrations of ring-1, which are shown in Potential energy
distribution table.

4. Conclusions

Geometry of AMNT molecule was optimized using DFT
at various levels of theory and also HF employing
6-311++G(d,p) basis set. The calculated values are also
compared with experimental data. In general the structural
parameters matches well with the experimental one, with
few exceptions caused due to constraints imposed by isolated
molecule model. Potential energy scan suggested one less
stable conformer in which two rings are almost twisted by
180°. A detailed normal coordinate analysis of all the
normal modes along with PED very clearly indicates the
composition of each normal mode in terms of internal
coordinates. Predictive IR and Raman spectra are very
useful in the absence of experimental data. HOMO-LUMO,
EPS and NBO may serve as a useful quantity to explain
hydrogen bonding, reactivity and structure-activity
relationship of molecules.
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