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1. Introduction 
Main aim of underwriting is modelling of aggregate 

distribution function. Based on the distribution function we 
have a possibility to estimate scathe, to calculate required 
probabilities, to calculate tariffs et al. 

Many probabilities in insurance portfolio correspond to 
zero value of losing due to risk (Yi=0). The situation could be 
explained by absence of losings in almost all risks 
framework in a particular year. In this situation distribution 
of the random value Yi=0 is far from normal distribution. 

With increasing of quantity of independent equally 
distributed risks standardized cumulative loss [Y-M(Y)]/σ (Y) 
based on central limiting low more and more like a normally 
distributed quantity (in the sense of convergence of the 
distribution). However due to huge asymmetric of 
distribution of random value Yi the central limiting low could 
be taken into account at very large quantity of risks only. 

To obtain an acceptable approximation of distribution of 
aggregate loss Y of small (as is typical for practice) group of 
risks let us approximate the above distribution of the 
aggregate loss Yi of a single risk i by continuous function, 
which gives a possibility an explicit calculation of 
convolutions [1]. For rough approximation of distribution of 
value Y it is enough to know, that many probabilities are 
equal to zero. During future convolution approximation 
errors decreases. In this situation one can obtain very close to 
reality models of aggregate loss for many probabilities. 

2. Method of Solution 
 

* Corresponding author: 
elp2004@mail.ru (E. L. Pankratov) 
Published online at http://journal.sapub.org/ijire 
Copyright © 2018 Scientific & Academic Publishing. All Rights Reserved 

GAMMA-DISTRIBUTION 
Most known distribution on interval (0,∞), which gives a 

possibility to use convolutions in the explicit form, is 
gamma-distribution. To model distribution of losing of 
underwriting is usually using not standard 
gamma-distribution, but gamma- distribution with 
parametrization with account average value µ of Y. 
Probability density in the case could be written as 
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where α is the form parameter (α  >0). It is important, that 
approximate distribution of value of aggregate losing 
achieved as large as possible probability near zero point. In 
this situation in actuarial calculations during modelling one 
can consider gamma- distributions with form parameter for α 
<0 (see Fig. 1). 

 

Figure 1.  Probability density of gamma-distribution for different values of 
form parameter α 
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Here Γ (α) is the Euler gamma-function: 
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following properties: 
1)  Γ (α +1)=α Γ (α +1) for any positive values для 

любых α; 
2)  if α is a natural number, than: Γ (α +1)=α ! 
3)  Γ (1)=1; ( )1 2 πΓ = . 

The main characteristics of the gamma distribution with 
parametrization: 

- average value is equal to M (x)=µ; 
- dispersion is equal to D (x)=µ2/α; 
- the coefficient of variation is equal to: 1K α= ; 

- coefficient of asymmetry is equal to: 2Ac α= . 

Estimations of the parameters by the method of moments 
from the sample data are determine as: ˆ xµ = , 

2 2ˆ xa x S= , …, where x  is the arithmetic average value 

(sample average value) of losing; 2
xS  is the sample 

dispersion of losing. 
Now let us the above estimations by the maximum 

likelihood probability. Gamma-distribution could be 
considered as a realistic model of aggregate and normalized 
losses of identically distributed independent risks. 

Gamma-distribution has an advantageous property: sum 
of independent gamma- distributed risks has 
gamma-distribution and in that case, when parameters µi and 
αi are not equal for all risks. However their relation µi/αi 
should be constant. In this situation we can model aggregate 
loss of a group of risks with different insured values by using 
gamma-distributions. 
INVERSE GAUSSIAN DISTRIBUTION 

Inverse normal (Gaussian) distribution could be used for 
modelling of non- negative random values. These random 
values should have more sloping right side of distribution in 
comparison with left one. At the same time the normal 
random value could be negative. Framework underwriting 
during modelling of losing it is usually used inverse 
Gaussian distribution with parametrization. Framework the 
parametrization one usually used average value µ of the 
random value. Probability density of the random value could 
be written as (see Fig. 2): 
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Random value with inverse Gaussian distribution could 
have positive values only. 

Parameter µ is the parameter of position, which coincides 
with average value of random value (as for normal 
distribution low). Parameter α is the form parameter of the 

considered probability distribution. Increasing of the 
parameter α (α →+∞) the inverse normal distribution of 
probability becomes more like on normal distribution of 
probability. In this situation framework actuarial calculations 
(as in the case with gamma-distribution) one can consider  
α <1. 

 

Figure 2.  Probability density of inverse Gaussian distribution 

Main characteristics of inverse Gaussian distribution with 
parametrization: 

- average value is equal to M (x) =µ; 
- dispersion is equal to D (x) =µ2/α; 
- the coefficient of variation is equal to: 1K α= ; 

- coefficient of asymmetry is equal to: 3Ac α= . 

Estimations of parameters of moments of random value 
could be determined as: ˆ xµ = , 2 2ˆ x sα = . 

Inverse Gaussian distribution could be also consider as a 
realistic model for aggregate and normalized losses 
framework group of identically distributed independent risks 
and in many respects similar to the gamma distribution [2]. 

Inverse Gaussian distribution has a property, which 
coincides with analogous property of gamma-distribution: 
both distributions will not be changed during using 
convolution. The property will be saved when parameters αi 
and µi are not equal for different risks. However relation 
αi/µi should be constant. In this situation the considered 
distribution of aggregate lose with different insurance sums. 

One of advantages of inverse Gaussian distribution in 
comparison with gamma distribution is the possibility of 
expressing the distribution function through the standard 
normal distribution and its tabulated distribution function: 
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LOGNORMAL DISTRIBUTION 
Continuous random variable X could be described by 

logarithmically normal (lognormal) distribution with 
parameters µ and σ in the case, when the logarithm is 
subordinate to the normal law and probability density could 
be written as (see Fig. 3): 
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Figure 3.  Probability density of lognormal distribution 

Logarithmically normal value could be positive only. 
Because at X >0 inequalities X<x and lnX<lnx are equal to 
each other, distribution function of lognormal distribution 
coincides with distribution function of normal distribution of 
random value lnx: 
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where Φ(t) is the distribution function of standard normal 
value. The distribution could be written as  
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Parameter µ is the scale parameter. The parameter µ is the 
average meaning of random value framework normal 
distribution low or median of random value framework 
lognormal distribution low. As for normal distribution 
probability density of lognormal distribution can not be 
integrated to obtain probability distribution function in an 
explicit form. However values of integral function of 
lognormal distribution could be determined by using values 
of the same integral function of standard normal distribution. 

Lognormal distribution has steep left and sloping right 
descent, i.e. positive asymmetry. At increasing of parameter 
µ one can find shifting of probability distribution to right, i.e. 
come near to normal distribution. Parameter σ is the standard 
deviation of random value lnx and form parameter. 
Decreasing of parameter σ leads to increasing of asymmetry 
of distribution. In this situation framework in actuarial 
calculations one can use lognormal distribution at small 
value of σ, when σ <µ. 

The main quantitative characteristics of the lognormal 
random quantity are: 

- average value is equal to ( )
2 2M x eµ σ+= ; 

- dispersion is equal to ( ) ( )2 22 1D x e eµ σ σ+= − ; 

- the coefficient of variation is equal to 
2

1K eσ= − ; 
- coefficient of asymmetry is equal to 

( )2 2

2 1Ac e eσ σ= + − . 

Statistical estimations of parameters µ and σ of lognormal 
distribution based on sample data could be determined based 

on moments approach: 
_____

ˆ ln xµ = , 2
lnˆ xSσ = . Lognormal 

distribution could be obtained by multiplication of large 
number of independent or weakly dependent non-negative 
random values. Dispersion of every random value should be 
enough small in comparison with dispersion of lognormal 
distribution. The logarithmically normal distribution is based 
on the multiplicative process of the formation of random 
variables, i.e. framework the process the effect of each 
additional factor on a random amount is proportional to its 
achieved level. 

The lognormal distribution is not invariant with respect to 
convolution, in contrast to the gamma distribution and the 
inverse Gaussian distribution, and is well suited for 
modeling the size of losses in a separate insured event. 
COLLECTIVE METHODS AND MODELS OF INSURANCE 
UNDERWRITING 

The individual insurance underwriting models considered 
are designed primarily to simulate the average values and 
variance of the aggregate yearly losing to calculate tariffs. 
The premise of using these models is the homogeneity of the 
groups: the risks of each group should be similar in 
everything, except for insurance amounts. 

As for the aggregate portfolio of risk insurance policies, it 
is usually very inhomogeneous, even if it can be divided into 
homogeneous groups. One of the most important aims of the 
insurance company is the modeling of the distribution of the 
loss of the aggregate portfolio. Based on the model of 
aggregate loss, an idea is constructed about the level of 
reliability of the company and the required capital. In the 
collective model of insurance underwriting, it is interesting 
not only the average value, but also the type of distribution of 
the aggregate loss. Especially, its right "tail", containing the 
largest losses, directly determines the level of reliability of 
the company. Thus, we need a method that allows us to 
approximate as accurately as possible the aggregate loss 
distribution of an arbitrary inhomogenous portfolio. 

The portfolio of risk insurance contracts, as a rule, is very 
inhomogeneous, so you have to carve up the portfolio into 
the most homogeneous and independent groups, calculate a 
loss distribution for them according to the individual model, 
and then to do convolution of these distributions. However, 
some groups may be too small, and it is not possible to 
reliably describe the "tails" of distributions. This problem is 
typical for risks with high insurance sums, the quantity of 



 International Journal of Inspiration & Resilience Economy 2018, 2(1): 18-29 21 
 

 

which is small, and the influence of the aggregate portfolio 
on the distribution of the loss is significant. 

Another, much more successful way was introduced at the 
beginning of the 20th century by Philippe Lundberg and 
continued by his compatriot Harald Kramer. The way was 
finished by the development of a recursive formula that was 
published in 1980 by Harry Paging and was called the 
recursive Panger formula [4]. 

The idea of a collective model of insurance underwriting 
is to consider portfolio only as a producer of losses, not 
taking into account the belonging of losses to defined risks. 
This assumption does not lead to losses of information or 
quality of results, because the initial distributions of the 
collective model is the distribution of the volume of loss and 
the distribution of the loss amount-can be estimated much 
more accurately than the distribution of losses of individual 
homogeneous risk groups. 

As in the individual insurance underwriting model, a 
relatively short period of time is analyzed in the collective 
insurance underwriting model and it is assumed that the 
insurance fee is paid in full at the beginning of the analyzed 
period. However, unlike the individual model, in the 
collective insurance underwriting model, the entire portfolio 
of concluded insurance contracts is treated as a single whole, 
without distinguishing individual contract components. 
Accordingly, the upcoming insurance events are not 
associated with certain contracts, but are considered as a 
result of the company's total risk. It follows that the main 
characteristic of the portfolio is not the quantity of contracts 
concluded, but the total quantity of insurance cases for the 
analyzed period, which is a random variable. Another 
important difference is that an equal distribution of random 
variables Yi describing losses due to successive insured 
events is assumed. This assumption means a certain 
equivalence of insured events, related to the fact that 
insurance cases are considered as a consequence of the 
company's overall risk, rather than individual contracts with 
their specific characteristics. In addition, random variables Yi 
describe only real damage and are therefore strictly positive. 

In collective models it is assumed that the number of 
insurance cases and losses after the occurrence of insured 
events are independent in the aggregate. The ruin of the 
insurance company is also determined by the excess of the 
total payments Z of the insurer's assets A: ε  =P (Z >A); 
Z=Y1+Y2+…+Yn. 

In individual models, the average values of payments for 
each contract are first calculated, and then these averages are 
summarized by the quantity of contracts. In collective 
models, the quantity of requirements is modeled, so the 
summation under contracts is replaced by multiplying two 
mathematical expectations: M(Z)=M(N)⋅ M(Y). 

The quantity of insured events in a single contract N is a 
discrete random variable. Therefore, when modeling the 
quantity of requirements, discrete laws of distribution of 
random variables are used. But since qualitatively 
heterogeneous risks can be contained throughout the 

portfolio, it is not always possible to use simple, most 
common discrete distribution laws, often using mixed 
discrete laws, for example, various mixed (composite) 
Poisson distributions. 

Collective models of insurance underwriting for the 
distribution of the number of insured events. The distribution 
of the quantity of insured events occurring in one insurance 
contract during the term of the insurance policy is a discrete 
random variable that takes integral non-negative values, etc. 
is the length of the "right tail" essentially depends on the type 
of insurance. And the longer the right tail of the distribution, 
the more non-uniform the portfolio is (see Fig. 4). 

 

Figure 4.  An example of a histogram of the real distribution of the quantity 
of insured events in the portfolio of voluntary medical insurance 

The process of data analysis includes the following steps: 
-  processing and grouping of primary information; 
-  estimation of the parameters of the distribution laws of 

the discrete random variable; 
-  the construction of various theoretical distributions 

approximating the studied distribution of the number of 
insured events; 

-  checking of the statistical hypothesis about the form of 
the distribution law and the distribution parameters; 

-  choosing the best distribution. 
The classical model of receipt of claims presupposes the 

following assumptions: 
-  a fixed time interval is analyzed; 
-  the number of contracts n is fixed and it is not random; 
-  the risks are pairwise independent; the occurrence of an 

insured event under one contract does not affect the 
occurrence of insured events under other contracts; 

-  treaties are homogeneous, i.e. the likelihood of an 
insured event p is the same for all contracts. 

The latter assumption is often broking in practice in real 
insurance portfolios and for this purpose more complex 
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actuarial models are used in the form of various mixed 
(composite) distributions. To begin with, consider simple 
basic distributions suitable for homogeneous portfolios with 
a small right tail. 
POISSON DISTRIBUTION 

Poisson's law is used if the probability of occurrence of an 
event in each treaty is small, and the number of contracts is 
large (the law of rare events) and is an approximation of the 
binomial distribution at n→∞. Insurance cases occur 
independently of each other with a constant average intensity. 
The Poisson distribution plays a leading role in modeling the 
distribution of the quantity of insurance cases, since if it is 
not used directly, it serves as the basis for constructing mixed 
Poisson distributions. 

When modeling the number of insurance cases, the 
Poisson distribution can be applied to a homogeneous 
portfolio if several claims can be brought under the contract 
(not simultaneously), in property, automobile, medical 
insurance. 

Discrete random variable is the quantity of insurance 
claims in a given year or in a separate insurance contract has 
a Poisson distribution if the probability of occurrence of 
insured events in one insurance contract is calculated by the 
relation 

pk =e-λλk/k!, k =0, 1, 2, … 
The parameter λ >0 is called as the intensity, it is equal to 

the quantity of observations of the random variable 
multiplied by the probability of success in one test: λ =np. 

Numerical characteristics of the Poisson distribution are: 
M(K)=D(K) =np =λ. This implies the basic requirement 
when using the Poisson law: the sample expectation and 
variance of the number of insurance cases should be 
approximately equal. 

The Poisson distribution is the limiting case of a binomial 
distribution for p→0, n→∞. It follows that the Poisson 
distribution with the parameter λ =np can be used in place of 
the binomial distribution, when the quantity of experiments n 
is sufficiently large, and the probability p is sufficiently 
small, i.e. in each individual experiment, the interesting 
event occurs extremely rarely. 

The statistical estimate of the Poisson distribution 
parameter λ̂ , both by the method of moments and by the 
maximum likelihood method, from the sample is found as 
the average value by the following relation: 
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Example 1 
According to the portfolio of insurance contracts for 

citizens traveling abroad, in 2016, claims were received in 
connection with insurance cases for 186 policies out of 
29,382. The number of insured events that occurred with one 
insured person varies from 0 to 2. 

Table 1.  Empirical frequencies of the quantity of insured events per 
insurance policy 

Quantity of insurance case k Quantities of contracts with k 
cases (empirical frequencies) mk 

0 29 196 

1 184 

2 2 

It is required to simulate the distribution of the number of 
insured events in one contract with the help of the Poisson 
distribution and verify its compliance with the Pearson 
consensus criterion at a significance level of 0.05. 
Solution 

Based on the results of calculations of estimates of the 
distribution parameters of the random variable k (the 
quantity of insurance cases in one contract) the following 
indicators were determined. Selected average value:  

1

1 0.006398
l

i i
i

k k m
n =

= =∑ . 

The average quantity of insured events occurring in one 
insurance contract abroad is 0.0064 for the portfolio under 
study. Such an extremely low value of the average number of 
claims, by the way, explains so many low insurance rates for 
travelers abroad. Selected dispersion:  

___
2 2 2 0.006494kS k k= − = . 

In the portfolio under investigation, the probability of 
occurrence of the insured event is sufficiently small 
(m/n=186/29382≈0,0064), therefore for analysis it is 
possible to apply the Poisson distribution. A statistical 
estimation of the Poisson distribution parameter has 
calculated by using the relation: 0.006398kλ = = . 

The results of approximating the quantity of insurance 
cases for the portfolio of contracts on the basis of the Poisson 
distribution are given in the table: 

Table 2.  Results of approximating the quantity of insured events by the 
portfolio of agreements on the basis of the Poisson distribution 

Quantity of 
insured events k 

Empirical 
frequencies mk 

Theoretical 

probabilities 
pkT 

frequencies 
mkT 

0 29 196 0,99362 29 195 

1 184 0,00635 185 

2 2 0,0000523 2 

n 29 382 1 29 382 

The values of the theoretical probabilities pkT can be 
calculated by the formula or obtained using the Poisson 
function (PEASSON (k, k ,0)) in MS Excel. Theoretical 
frequencies are calculated using the Poisson distribution 
formula: mkT=pkT⋅n. 

With Pearson's agreement criterion x2, the adequacy of the 
model at the significance level σ =0,05 is checked. The 
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results of calculations of the x2 (which were observable) are 
presented in the following table: 

Table 3.  Calculation of the statistics of the Pearson criterion for the 
Poisson distribution 

Quantity of 
insured 
events k 

Empirical 
frequencies 

mk 

Theoretical 
frequencies 

mkT 

( )2
k kT

kT

m m
m
−

 

0 29196 29195 0,9039 

1 184 186 2,2528 

2 2 1 0,9074 

Sum 2
obsx  3,7641 

Value 2 3.7641obsx = . The critical value of statistics can 
be determined from the distribution tables, or by using the 
XI20B function in MS Excel. The Poisson distribution has 
one parameter, estimated from the sample (to combine the 
intervals did not become so as not to zero the number of 
degrees of freedom), so 2 3.841critx = . In the considered 

case 2 2
obs critx x<  the hypothesis that the number of 

insurance cases is distributed according to the Poisson 
distribution is not rejected at the significance level α =0.05, 
the model is adequate for modeling of the quantity of 
insurance cases in a given portfolio. It should be noted that 
the Poisson distribution has come up as a model of the 
number of insured events occurring in one travel insurance 
contract (which in practice happens rarely), since the 
empirical distribution has a very short right tail - the random 
variable K takes only three values - 0, 1 and 2. And so it 
turned out that the average and sample variance of the 
distribution under study are approximately equal. This led to 
the result. 
THEORETICAL DISTRIBUTIONS USED TO APPROXIMATE 
EMPIRICAL DISTRIBUTIONS IN COLLECTIVE MODELS OF 
INSURANCE UNDERWRITING [5] 
Negative binomial distribution 

A random variable K has a negative binomial distribution 
with parameters (r,p) if in the Bernoulli test sequence with 
probability of success p and probability of failure q = 1-p, the 
probability of the number of failures k that occurred prior to 
the r-th success is determined by the following relation 

( ) ( )1 1 kk r
r kP K k C p p+ −= = ⋅ ⋅ − , 

where r is the quantity of successes, positive integer number; 
k quantity of failures that occurred before the quantity of 
successes r. 

Average value and dispersion of a random variable having 
a negative binomial distribution are equal to: 

( ) 1 pM K r
p
−

= ⋅ , ( ) ( )
2

1M K pD K r
p p

−
= = ⋅ . 

To apply a negative binomial distribution, the dispersion 
in the quantity of insurance cases must be greater than the 
average value, so its application in insurance in many cases 

gives the most adequate result. It is used, for example, in 
modeling the distribution of the number of insured events of 
an individual insured for a heterogeneous portfolio of 
contracts. 

If the estimation of dispersion from the statistical data is 
greater than the estimation of the average value, then the 
moment method can be used to estimate the parameters p and 
r: 

2
ˆ

k

kp
s

= , ( )2

2
ˆ

k
r

s k
=

−
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Now we can obtain the limitations on the use of a negative 
binomial distribution follows: since the probability can not 
be greater than 1, the average value of the damage should not 
exceed the dispersion. This situation is very often 
encountered in practice in inhomogenous portfolios with a 
long right tail (in insurance LCA, CASCO, etc.), so its 
application in insurance in many cases gives the most 
adequate result. 
Geometric distribution 

The discrete random variable K has a geometric 
distribution with the parameter p if it takes the values 0, 1, 
2, ..., k, ... (an infinite but countable set of values) with 
probabilities 

P(K=k)=pqk. 
The probabilities P (K = k) represent a geometric 

progression with the first term p and denominator q, hence 
the name "geometric distribution". 

In practice, a random quantity having a geometric 
distribution is the number of k tests conducted according to 
the Bernoulli scheme, with probability p of the occurrence of 
an event in each test, before the first success, i.e., the number 
of failures before the first positive outcome. 

The average value and dispersion of a discrete random 
variable, distributed geometrically, are determined by the 
formulas 

M(K)=q/p, D(K)=q/p2. 
The statistical estimate of the parameter p from the sample 

is: 
1ˆ

1
p

k
=

+
. 

The geometric distribution is a particular case of a 
negative binomial distribution (for r =1). Therefore, it is 
applicable when the estimate of the parameter r is close to 1 
and the probability p is within acceptable limits. 
Mixed Poisson distributions for modeling the quantity of 
insured events 

In practice, the Poisson distribution parameter λ is often 
not constant for the following reasons: 

-  the difference between the parameters of the Poisson 
distribution for different insurers when modeling the 
number of cases in individual models; 

-  the parameter difference for different years in a 
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portfolio with the same risks in the case of a collective 
model (weather conditions, economic conditions, etc.). 
For example, when car insurance against an accident, 
the intensity depends on the quantity of days with bad 
weather and is not constant. 

In this case, the problem arises of introducing an 
additional random variable Λj that is responsible for 
changing the parameter λ and reflecting the heterogeneity of 
the portfolio (in the first case) or serving to model annually 
changing external impacts in a homogeneous portfolio of the 
collective model (in the second case). Λj are the independent 
identically distributed random variables characterizing the 
insurer's individuality in the first case and the "quality of the 
year" in the second case. Distribution Λj is called a mixing 
distribution and acts as a measure of the inhomogeneity of 
the portfolio.  

Jean Lemer [6, 7] and Thomas Mack [3] suggest that a 
certain function called the structure function u (λ), which 
leads to the so-called mixed (composite, complex) Poisson 
distribution, should be used to account for the 
inhomogeneity of policyholders. 

Suppose that the distribution p(k) (k=0, 1, 2, …) of the 
number of insured events on the account of each insured 
person has a Poisson distribution: 

!

k

k
ep

k

λλ−

= , k=0, 1, 2, … 

Each insured is characterized by its value λ, which allows 
to take into account heterogeneity of risks. 

The discrete random variable K has a mixed Poisson 
distribution law if it takes the values k=0, 1, 2, …, with the 
parameter function u (λ) with probabilities: 

( ) ( )
0 !

k

k
ep P K k u d

k

λλ λ λ
∞ −

= = = ∫ , 

where u (λ) is the distribution density of the random variable 
Λj (structure function). In practice, a certain assumption is 
made about the form of the mixing distribution, i.e. 
distribution of a random variable Λj. 

As a structural or mixing function, different functions can 
be selected. The most common as a mixing distribution and 
result in adequate results: 

- gamma-distribution; 
- inverse Gaussian distribution. 

Mixed Poisson / Gamma distribution 
As a Poisson parameter simulating the function in 

actuarial calculations, a gamma distribution with parameters 
a and b is often used: 
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1a b ab eu

a

λλλ
− −

=
Γ

, a >0, b >0, 

where ( ) 1

0

a ta t e d t
∞

− −Γ = ∫  is the Euler gamma function, 

Γ(a+1)=aΓ(a), Γ(a+1)=a!, a is the natural number. Number 
characteristics of the distribution are: M(Λ)=a/b; D(Λ)= a/b2. 
It is the gamma distribution that well describes the situation 
when the values of λ fluctuate around a certain value, while 
both very small and very large values of λ are possible, but 
unlikely. The distribution of the quantity of insured events in 
the portfolio is {pk, k =0, 1, 2, …} then reduced to the 
following form: 

( ) ( )

( ) ( )
( ) ( ) ( )

( )
( )( )
( )

( ) ( )

1

0 0

11

0

! !

! 1

1 1

! 1

1
1 1 1

k k a b a

k

a

k a

k ab

a

k a

a k

e e b ep u d d
k k a

b
k a b

e b d b

k a b

k a b

k a b
k a b b

λ λ λ

λ

λ λ λλ λ λ

λ λ

∞ ∞− − − −

+

∞
+ −− +

+

= =
Γ

     = ×
⋅ Γ ⋅ +

 +   +    

Γ + ⋅
=

Γ +

Γ +    =    Γ + Γ + +   

∫ ∫

∫  

If a is an integer, then, taking into account that Γ(a+1)=a!, 
one can obtain: 

( )
( )

1

1 ! 1
! 1 ! 1 1

1
1 1

a k

k

a k
k
k a

k a bp
k a b b

bC
b b+ −

+ +    =    − + +   

        =    + +   

. 

Thus, we came to a negative binomial model with the 
form: 

( )1 1 kk a
k k ap C p p+ −= −  

with parameters and numerical characteristics: 

1
bp

b
=

+
, 11

1
q p

b
= − =

+
;  

( ) aM K
b

= ; ( ) 11aD K
b b

 = + 
 

. 

The calculation of the probabilities of a negative binomial 
distribution does not require a table of values for the gamma 
function. Consistent use of the property Γ(a+ 1)=aΓ(a) 
allows us to go over to the recurrence formula: 

( )
( )( )1 1 1

k
k

k a p
p

k b+
+

=
+ +

 

at the initial value 

0 1

abp
b

 =  + 
. 
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Estimates of the distribution parameters for the sample 
using the method of moments are carried out by the 
formulas: 

2
ˆ

k

kb
s k

=
−

, 
( )2

2
ˆ

k

k
a

s k
=

−
. 

Example 2 
It is known, that: 
1)  The number of insurance cases K has a Poisson 

distribution with an average Λ; 
2)  Λ has a gamma distribution with average value 1 and 

dispersion 2. 
Let us define probability of that K=1 (in the contract there 

will be 1 insurance case). 
Solution 

By the condition of the problem, the random variable K 
has a mixed Poisson / gamma distribution, which is reduced 
to a negative binomial distribution of the form: 

( )1 1 kk a
k a kp C p p+ −= −  

with parameters: 
p =b/(1+b), q =1-p =1/(1+b), 

where a and b are the parameters of the gamma distribution 
that are related to its average value and dispersion by the 
following relations: 

M(Λ)=a/b, D(Λ)=a/b2. 
By condition M(Λ)=1, D(Λ)=2. 
Hence the parameters of the gamma distribution: 

2

1

2

a
b
a
b

 =

 =


⇒a =1/2, b =1/2. 

In this situation one can obtain 
p =b/(1+b)=1/3, q =1-p =1/(1+b)=2/3, 

Now, using the formula of negative binomial distribution, 
we can calculate the required probability: 

( ) ( ) ( )1
1

1 1
2

1 1 1

1 1 2 1 0,19245
2 3 3 3 3

k ka a
ap P K C p p a p p= = = − = −

        = = ≈   
   

. 

Example 3 
Let us analyze a portfolio consisting of n =2515 contracts 

for auto hull insurance. For the year, claims were received 
for m =888 contracts in connection with insurance cases. 
Quantity of insurance cases k that occurred under one 
contract varied in the portfolio from 0 to 10. It is necessary to 
check whether the mixed Poisson/gamma distribution 
(negative binomial) is suitable for modeling the distribution 
of the number of insured events in a given auto hull portfolio. 

Solution 
We will calculate estimations of the distribution 

parameters of the quantity of insured events in one contract 
(average value): 

1

1 l

i i
i

k k m
n =

= ∑ ; 
1

l

i
i

n m
=

= ∑  

and selective dispersion ( )
___

22 2
kS k k= − . The table with 

results of calculation could be written as: 

Table 4.  Calculation of sample estimates of the distribution parameters of 
the quantity of insured events in one contract 

k mk k mk k2 k2 mk 

0 1624 0 0 0 

1 490 490 1 490 

2 208 416 4 832 

3 98 294 9 882 

4 48 192 6 768 

5 23 115 25 575 

6 10 60 36 360 

7 5 35 49 245 

8 3 24 64 192 

9 2 18 81 162 

10 1 10 100 100 

n 2512 0,658k =  
 

___
2 1,834k =  

So, based on the results of calculating the estimates of the 
distribution parameters of a random variable K (quantity of 
insurance cases in one contract) we obtain: 

-  sample average: k =0.6584 is in one portfolio contract, 
an average of 0.658 insured events occur during the 
year; 

-  sample variance: 2 1.834 0.6582 1.4001kS = − = . 

The verification of this empirical distribution on the 
Poisson law gave a serious discrepancy between the 
empirical and theoretical frequencies and 

2 2829,541obs critχ χ= >  (a=0.05, v=5-2=3)=7.815. Thus, in 
the example considered, the Poisson distribution can not 
serve as an adequate model, the empirical distribution has a 
long right tail (up to 10 insurance cases) it is necessary to try 
mixed Poisson distributions. So, we calculate the mixed 
Poisson/gamma distribution. 

Taking into account the sampling characteristics found, 
the mean and sample variance k=0.6584, 

2 1.834 0.6582 1.400kS = − =  let us calculate estimations 
of parameters of gamma-distribution:  

2
ˆ 0.8878

k

kb
S k

= =
−

; 
2

2
ˆ 0.5846

k

ka
S k

= =
−

. 

Using the recurrence formula and the formula for 
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calculating the probability of zero payments, we calculate 
the theoretical frequencies, the results are presented in the 
following table: 

Table 5.  Calculation of the distribution of the number of claims in the 
portfolio of auto hull contracts using a negative binomial distribution 
(mixed Poisson / gamma distribution) 

Quantity of 
insured events 

in the contract k 

Empirical 
frequencies 

mk 

Theoretical (negative binomial 
distribution) 

probabilities pkT frequencies mkT 

0 1624 0.6434 1616 

1 490 0.1992 501 

2 208 0.0836 210 

3 98 0.0382 96 

4 48 0.0181 46 

5 23 0.0088 22 

6 10 0.0043 11 

7 5 0.0022 5 

8 3 0.0011 3 

9 2 0.0005 1 

10 1 0.0003 1 

Total 2512 1.000 2512 

Further, in accordance with the requirements of the 
Pearson consensus criterion for combining intervals with 
small theoretical frequencies less than 5, the observations 
were grouped together and the value 2

obsχ . Comparison of 
2 0.806obsχ =  and 2

critχ  (a=0.05, v=9-2-1=6)=12.592 

shows, that 2 2
obs critχ χ< . In this situation the verifiable 

hypothesis is not rejected, i.e. the considered negative 
binomial model is adequate and assumes as accurately for 
description of distribution of the quantity of claims. A 
negative binomial model, adopted at the same level of 
reliability, can be used for actuarial calculations. 
Modeling of value of loss in one insurance contract in a 
collective insurance underwriting model. 

The collective model assumes that during the time when 
external factors (in particular, inflation) change 
insignificantly, the random values of the loss size in a 
separate insurance event in the portfolio under consideration 
are independent and equally distributed. If the assumption of 
independence is recognized as fulfilled, then the assumption 
of the same distribution seems unrealistic even if in light of 
the difference in insurance amounts. But, since in a 
collective insurance underwriting model, losses are not 
compared with individual risks. However they are 
considered together in a certain time interval, we can assume 
that they represent a sample of a single distribution, namely a 
mixture of different distributions of individual losses. 

Of course, each type of insurance and each portfolio 
corresponds to its (mixed) distribution of losses, depending, 
in particular, on the size of the insured amounts for 
individual risks, as well as insured events. Thus, the average 
loss from a fire in an industrial plant is much higher than 

from a fire in a residential building; both differ from average 
losses in motor third party liability insurance and motor third 
party insurance, which in turn differ from each other. But, as 
practice shows, loss structures in all types of insurance are 
very similar. Usually, there are many more small losses than 
large losses. "Concentration of losses" with increasing size 
of the loss increasingly decreases (it happens, very small 
losses are also small, but from the economic point of view 
they do not matter much). However, the quantitative ratio of 
large and small losses, as well as (in any case, inaccurate) the 
boundary between large and small losses for different types 
of insurance is different. 

For many practical problems, the adequacy of the model 
of loss size distribution in the field of large losses is most 
important. In our interests, it is possible to describe more 
accurately the large loss by the sought-for distribution of the 
loss size. This most important from an economic point of 
view, part of the distribution is almost always represented by 
too few observations. The correctness of modeling the size of 
the loss in a separate insured event often depends on the 
correct choice of the appropriate distribution. 

We list the typical requirements for families of 
distributions [3]: 

1.  The model should adequately describe the aggregate 
distribution. Hence, in particular, it follows that the 
distribution should not allow negative amounts of loss. 

2.  The model should not be too complicated; it is 
desirable that it contains a small number of 
parameters. 

3.  The model should correspond to the structure of 
losses. 

The most widely used in practice continuous distribution 
laws used to approximate the distribution of the amount of 
damage in a single insured event: 

- lognormal distribution; 
- logarithmic logistic distribution; 
- the logarithmic distribution of Laplace; 
- Pareto distribution with zero point. 
Let us consider the distributions applicable to modeling 

the size of the loss. Lognormal distribution is perfectly suited 
as a model for the amount of loss in a single insured event. 
Logistic distribution 

Less well-known, but similar to normal, logistic 
distribution has a density could be written as: 

( )
2

0
1 1

y y
c cf y e e

c

µ µ
σ σ

σ

−− −
− − 

 = +
 
 

, 

where µ is the average value of losing; 3c π= ; σ2 is the 
dispersion. Logistic distribution function could be written as: 

( )
1

0 1
y
cF y e

µ
σ

−−
− 

 = +
 
 

. 
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As a result of the transformation x = ey, we obtain the 
distribution function: 

( ) ( )
1 1

0 ln 1 1 1
a ax xF x F x

b b

− −− −      = = + = − +      
         

, 

x >0, 
where b=eµ is the scalar parameter; a=1/cσ. The density of 
the log-logistic distribution is given by 

( )
21

0 1
a aa x xf x

b b b

−−     = +    
     

, x >0. 

The Laplace distribution 
The Laplace distribution with distribution function      

f (y)=0.5a⋅e-a |y-µ | is also symmetric and true for all real 
arguments. The distribution consists of two symmetric 
relatively µ exponential distributions. The Laplace 
distribution function could be written as: 

( )
( )

( )

1 ,
2

11 ,
2

a y

a y

e y
F y

e y

µ

µ

µ

µ

−

− −

 ≤= 
 − ≥


 

After the transformation x=ey we obtain the logarithmic 
Laplace distribution b=eµ 

( ) ( )0

1 ,0
2

ln
11 ,
2

a

a

x y b
b

F x F x
x y b
b

−

   < ≤  
  = 
  − >   

 

The right-hand side of this distribution after normalization 
is known as the Pareto distribution. The density of the 
logarithmic Laplace distribution could be written as 

( )

1

1

, 0
2

,
2

a

a

a x x b
b b

f x
a x x b
b b

−

− −

   < ≤  
 = 

   >   

 

Sites of small and medium losses are not accurately 
approximated by this distribution, but in the field of large 
losses the model is acceptable and even slightly 
overestimates the frequencies. 
Pareto distribution 

The less suitable left-hand part x≤b of the logarithmic 
Laplace distribution can be replaced by a distribution 
suitable for describing small losses, for example, gamma or 
inverse Gaussian distributions. The simplest way to set the 
Pareto distribution on the interval (0;b) is to shift it to the left 
by the value b. Then the Pareto distribution with the 
distribution function: 

F (x) =1-(x/b)-a, x≥b, 

is transformed into a Pareto distribution with a zero point 
with a distribution function: 

( )
( )

11 1
1

a

a
b xF x

b x b

−+ = − = − 
  +

, x≥b. 

The density of a given distribution is given by the function 

( )
1

1
aa xf x

b b

− −
 = + 
 

, x≥0. 

In some types of insurance, the Pareto distribution with a 
zero point tends to slightly overestimate the frequency of the 
largest losses. In such cases, one can replace the 
transformation x =ey by a "weaker" transformation x =yt, t >1. 
Then the Weibull distribution is obtained from the unbiased 
exponential distribution with the distribution function F 
(y)=1-e-β  y. 
Distribution of cumulative damage in collective models of 
insurance underwriting. The recursive Panger formula 

Suppose N is the number of losses of a given portfolio in 
the time interval of interest (one year), and let X1, X2, ..., XN 
be independent equally distributed losses. Then the 
cumulative loss can be represented in the form 
Z=X1+X2+...+XN. The properties of the conditional 
mathematical expectation allow us to express the moments 
of the random variable Z in terms of the moments of the 
quantities N and Xi: 
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( ) ( ) ( )
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1

N

N n

N

N n

n

n

M Z M M X N

M X N M X M N

=

=

  
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   
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∑

∑
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( ) ( ) ( )
( ) ( )

N N

N N

D Z M D Z N D M Z N

M D X N D M X N

   = +   
          =   +     

 

( ) ( ) ( ) ( )( )2M N D X D N M X= + . 

From these formulas it follows that the square of the 
coefficient of variation is equal to: 

( )( ) ( )
( )( )

( )( ) ( )( )
( )

2
2 2

2

V XD Z
V Z V Z

M ZM Z
= = + . 

It is much more difficult to obtain the distribution G of the 
cumulative loss Z. In spite of the central limit law, one can 
hardly count on the convergence of Z with the increasing of 
M (N) to the normal value. Experience shows that even large 
portfolios are asymmetric, and the normal distribution 
substantially underestimates the probability of a large 
cumulative loss. Strictly speaking, the central limit theorem 
is valid only in the case of a Poisson distribution of the 
number of losses. If N has a mixed Poisson distribution, then 
the distribution of the quantity Z/M (Z) converges with 
increasing M (Z) to a mixing distribution (as follows from the 
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formula given earlier for V (Z)). 
The distribution G of the aggregate loss Z must be 

obtained from the distributions of the quantities N and X. 
Unfortunately, there is practically no other way of finding 
the distribution of the aggregate loss. For a straightforward 
adjustment of a distribution model, there is almost always 
not enough data, because every year gives only one 
observation, and the values of the cumulative loss of distant 
past years are in most cases not relevant. It is possible to 
express the distribution of G through the distributions pn=P 
(N =n) of the number of losses N and the F (x)=P (X <x) 
distribution of the loss amount X: 

( ) ( ) ( ) ( )*

0 0

n
n n

n n
G Z P Z z p P Z z N n p F z

∞ ∞

= =
= < = < = =∑ ∑ , 

where F*n denotes an n-fold convolution of distributions 
F(F*0(x)=0 at x<0 и F*0(x)=1 at x≥0). 

However, an explicit calculation of the infinite sum of the 
degrees of convolution is possible only in rare unrealistic 
cases, for example, when N has a geometric distribution (i.e., 
a negative binomial distribution with parameter r =1), and X 
is an exponential distribution. A much better approximation 
of the distribution of Z is achieved by unimodal 
right-asymmetric continuous distribution models with three 
parameters (instead of two). The values of the parameters 
should be determined from the conditions for the equality of 
the first three empirical moments to the corresponding 
theoretical moments. After all, the more points coincide, the 
more similar the distributions themselves are. As the 
simplest models, biased gamma, lognormal and inverse 
Gaussian distributions are allowed, with the third parameter 
in each case giving the zero point offset. 

The risk theory has generated many other analytical 
approximations, which in many respects lost their 
importance today against the background of achievements in 
the field of numerical approximation. Let's turn to the most 
popular numerical approximation is the recursive method of 
Paging. Before applying the method, it is necessary to 
approximate the distribution function F of the loss size X by 
an arithmetic discrete distribution 

___
F  whose carrier 

___
X  

takes only the values kh, k =0, 1, 2, ..., K with probabilities fk, 
where h>0 is the sampling step and f0+f1+…+fk=1. Contrary 
to the constant requirement X >0, here we purposely admit 
the value 

___
0X = , so that when passing from a continuous 

density to a discrete one, we have an additional probability 
weight of 0. 

Although in practice the size of the losses is always 
presented in a discrete form, it is advisable to first smooth out 
the imminent randomness (especially in the field of large 
losses) by continuous density and then again to discretize it. 
The discrete distribution is most conveniently constructed 
using the method of equality of local moments. First, from 
the conditions for the equality of the partial (local) moments 

( )
( )2i h

i i i i
i f

a b c d F x A
+

+ + = =∫ ;  

( ) ( )( ) ( )
( )2

1 2
i h

i i i i
i f

h i a i b i c x d F x B
+

+ + + + = =∫ ; 

( ) ( )( ) ( )
( )2

2 22 2 21 2
i h

i i i i
i f

h i a i b i c x d F x C
+

+ + + + = =∫  

one could determine probabilistic weights ai, bi, ci, i =0, 2, 
4, …, K-2 (K is the integer value) for values of losses ih, 
(i+1)h, (i+2)h. Solving this system with respect to ai, bi, ci 
leads to the following result: 

( ) ( )2
2

3 2
2 2 3 i i

i i
i B Ca i i A

h h
+

= + + + + ;  

( ) ( )2
2

2 2
2 i i

i i
i B Cb i i A

h h
+

= − + + − ; 

( ) ( )2
2

1 2
2 i i

i i
i B Cc i i A

h h
+

= + − + . 

Probabilities fk of discretization 
___
F  of distribution F are 

equal to: 

f0=a0, 
1

2

,
,

k
k

k k

b if k uneven
f

c a if k even
−

−


=  +

, fK=CK-2. 

If F has a probability mass to the right of kh (if the support 
of F takes values up to ∞), it is recommended to add one 
point z >Kh and distribute the probability A =1-F(K h) as 
follows: 

( )AKhz B Kh z C
a

Khz
− + +

=  in the point 0; 

( )
Bz Cb

Kh z Kh
−

=
−

 in the point Kh; 

( )
C BKhc
z z Kh

−
=

−
 in the point 1Cz h

B h
 

= + 
 

, 

where ( )
K h

B x d F x
∞

= ∫ , ( )2

K h

C x d F x
∞

= ∫ . 

The inequality z = Kh follows from the condition C> KhB. 
As a result, the mathematical expectations and variance of 
distributions 

___
F  and F coincide. 

The aggregate loss 1 2___ ___ ___ ___
... NZ X X X= + + +  has an 

arithmetic discrete distribution 
___
G  with step h and 

probabilities 
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___kg P Z k h = = 
 

, k =0, 1, 2, … 

The possibility of specifying a recursive formula for gk 
depends crucially on the possibility of recursive calculation 
of the distribution of the quantity N: 

pn =P(N=n), n =0, 1, 2, … 
The most common in practice loss distribution 

distributions are the Poisson distribution and the negative 
binomial distribution. The are given by the recursive 
formula: 

n⋅pn =(n⋅a+b) pn-1, 
where in the case of a Poisson distribution with the 

parameter λ: a=0, b =λ, and in the case of a negative 
binomial distribution with parameters a and p 

a=1-pb=(a-1) (1-p). 
In the actuarial literature it is proved that only four types 

of discrete distributions satisfy this recursion. They are 
binomial, geometric, negative binomial and Poisson. All of 
them were considered earlier. Now we formulate the 
recursive formula of the Panger. 

Let the distribution of the quantity of losses {p|n=0,1,…} 
satisfy the recursions: npn=(na+b) pn-1, N ≥1. Then the 
distribution {gk|k=0,1,…} of the total loss, obtained from the 
arithmetic discrete distribution {fk|k =0,1,…,K; fk=0,k >K} of 
the loss amount, are calculated using recursive formulas: 

0 1

1
1

k

k j k j
j

b jg a f g
f a k −
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⋅ = + −  
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0
0

00
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0

, 0;

, 0.
1

f b

b
a

p e a
pg a
f a +

 =
=  ≠


−

 

At a large portfolio volume, the value of g0 can be very 
small, which leads to zeroing of the series. In such cases, 
transformations of the type a =eln(a) are carried out. 

3. Conclusions 
In this paper we introduce an analytical approach to model 

aggregate distribution function of insurance underwriting. 
Based on the distribution function one can determine 
possible scathe and profit of financial operations. We 
compare several approaches of statistical description of 
financial operations. Based on the comparison we formulate 
recommendations on using of the distribution functions with 
comments on positive and negative their properties. 
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