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Abstract  This paper is divided into two parts: The first part is the modeling of the kinetic energy dissipation provided by 

the flood wave in the presence of different geometric shape roughness along the canal. We use a new version of Roe scheme 

named SRNH written in finite volumes method. This is to model the spread of a flood wave along the canal equipped with 

regularly spaced identical grooves which plays the role of macro roughness. Water flow is simulated on three different 

geometrical shapes; a smooth rectangular channel, channel with roughness as rectangular and trapezoidal grooves, note that 

wet surfaces are the same for all three configurations. The purpose of this simulation is looking for the form that realizes the 

maximum kinetic energy dissipation provided by the flood wave. The second part consists of modeling the influence of 

sediment transport in the presence of macro roughness, it is assumed that the bed of the channel moves with the free surface of 

the water. The bed is composed of fine sand size. For sediment transport we use Meyer-Peter-Muller model. Finally we 

observe the influence of macro roughness on the transport and deposition of sediments. 
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1. Introduction 

Surrounding Dissipation techniques have been used in 

various fields, among which there is the application of this 

technique in dam break, the impact of jets of weirs, the 

spillways that are present in many industrial hydraulic 

applications. In the case of large dams, spillways flood jets 

have very high speeds, especially during flood where 

drainage systems often operate at full capacity. The given 

kinetic energy has to be dissipated to prevent damage of 

hydraulic structures. A typical solution is the dissipation 

energy of the flood wave by the direct impact of roughness 

created on canal banks. 

Knowledge of the flow characteristics is fundamental to 

assess the stability of the structure or understand and 

simulate the protective structure development process. This 

analysis will help to avoid risks for projects located 

downstream of the water flow. In addition to the design of 

hydraulic structures we should take into account erosion bed 

phenomena in rivers. Such problems require knowledge of 

basic principles, especially the calculation of velocity fields 

and its influence against macro roughness placed along the 

canal and  erosion of  the bottom.  Several  engineering  
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techniques are used to increase the lifespan of the hydraulic 

structures, that include threshold stairs, single and double 

containment basins, macros roughness etc.  

In the first part of the paper, we study three different 

channel configurations, smooth rectangular channel, 

rectangular channel with five rectangular macro roughness 

arranged on different locations on the two banks and 

rectangular channel with five trapezoidal macro roughnesses. 

With the same sinusoidal flood wave through the three 

configurations, we compare the dissipation of kinetic energy 

created by the flood wave crossing the rough macros. In the 

second part, we conclude with the simulation variable 

background due to the erosion of the channel bed. 

2. Mathematical Formulation Model 
and Governing Equations 

The model usually used to describe the free surface flows 

is based on the two-dimensional Saint-Venant equations. 

These quite known models in the literature equations, are 

obtained by integrating the vertical dimensional 

incompressible Navier-Stokes equations under the 

assumptions of hydrostatic pressure and averaged velocities 

in the vertical level. Terms from the turbulence, viscosity, 

and the Coriolis forces are not considered in this study. The 

system can be set as conservative form: 
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where u and v are the depth-averaged water velocities in x 

and y direction, h the water depth, g the gravitational 

acceleration, oxS  and oyS  are respectively slopes 

following the direction x and y. They are defined by 
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z is the bottom topography, τbx and τby the bed shear stress 

in the x and y direction, respectively, defined by the 

depth-averaged velocities as: 

2 2
bx bC u u v   , 

2 2
by bC v u v       (2) 

where Cb is the bed friction coefficient, which may be  

either constant or estimated as 
2

b zC g C , where 

1 6
Z bC h n  is the Chezy constant, with bn  being the 

Manning roughness coefficient at the bed. To update the 

bedload, we consider the Exner equation given by 

(1 ) 0
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where p is the sediment porosity assumed to be constant, Qbx 

and Qby represent the bedload sediment transport fluxes in x- 

and y-direction, respectively. These fluxes depend on the 

type of sediment and for simplicity in the presentation, we 

consider the basic sediment transport fluxes [6] 
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with m and Ag are coefficients usually obtained from 

experiments taking into account the grain diameter and the 

kinematic viscosity of the sediment. In practice, the values of 

the coefficient Ag are between 0 and 1 depending on the 

interaction between the sediment transport and the water 

flow.  

We can write the system of equations (1) as conservative 

form: 
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where W is conservative variables vector, F and G are the 

advective flow functions and S is the source term. 
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3. Solution Procedure for Bedload 
Equation 

The bedload formulate by equation (3) involves different 

physical mechanisms occurring within different time scales 

according to their time response to the hydrodynamics. In 

practice, the sediment transport of the bed occurs on a 

transport time scale much longer than the flow time scale, 

compare for example [2-4]. In the present work, we have 

adopted the quasi-steady approach studied in [3]. This 

approach consists of separately solving the shallow water 

equations (5) to an equilibrium state keeping the fixed bed 

followed by a sediment transport step where the bed is 

updated in (3) keeping the velocity field and fixed water 

height. Hence, to numerically solve equations (5) and (3), we 

apply a method early developed in [2, 3] for solving 

sediment transport equations using the bed discharge 

function (4). The method was also investigated by the 

authors in [1] for shallow water flows on fixed beds. Our 

focus in the current study is to check the performance of the 

method to for solve morphodynamic models in contracting 

channel flows. Therefore, we briefly describe the numerical 

method and we refer the reader to [1-3] for more details. 

The numerical solution of the equation system (5) has a 

lot of numerical difficulty and is still subject of much recent 

work. Indeed, the non-linear nature of this combined with 

its hyperbolicity excludes the use of analytical techniques 

for most practical problems, in addition, it can lead to 

discontinuous solutions (hydraulic jumps) even if the initial 

data is regular. On the other hand, the presence of the terms 

of steep slopes forms the irregularity of the bottom, and 

makes the most existing conventional schemes 

inappropriate. 

In this paper we use the Non Homogeneous Riemann 

Solver (SRNH). 
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4. Finite Volume Discretization Equation 

The finite volume formulation begins with the 

discretization of the computational domain with a finite 

volume control. Finite volume formulation is considered 

here "cell-centered" which assumes that the volume controls 

coincide with the triangles of the mesh and the unknowns 

variables are the mean states on each volume controls (see 

illustration below). 

 

Figure 1.  Cell-centered 

By integrating the system (5) on a volume control iT  and 

using the Green's divergence formula, the following 

complete system is obtained: 
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where the convective flow and distribution functions are 

defined by: 
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iT  is the triangle border of iT  and  ,x yn n n  the 

outer unit normal to iT . 

4.1. SRNH Scheme  

We use a numerical method of finite volume, based on a 

Non Homogeneous Riemann Solver (SRNH) recently 

developed in [1, 8] for non-homogeneous hyperbolic 

systems. The construction of the numerical scheme is based 

on the hyperbolicity of the system and the self-similarity of 

the solution. The SRNH scheme is formulated by 

considering only the hyperbolic part of the system (5) and the 

source term describing the background of the domain: 
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The algorithm has two stages: a predictor and corrector 

stage 
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ij  is the length of the edge ij  separates triangles iT  

and jT ,  ,
n
ij ijW nF  denotes the Jacobian of F 

calculated at the average state 
n
ijW  of Roe at time 

nt . 

 sgn ,
n
ij ijW n

 

  

F  represents the sign matrix of 

 ,
n
ij ijW nF . This matrix is determined by the projection 

of the Saint-Venant equations on the normal interfaces, it can 

reduce the components of the source term and write predictor 

step in one direction [1]. 

One feature of this solver is the ability to check the exact 

conservation property (also known as C-property) and 

ensures the positivity of the water level for unsteady flows. 

4.2. Second Order Extension 

Note that the discretization (8) is only first-order accurate. 

In order to develop a second-order finite volume method, we 

use a MUSCL incorporating slope limiters in the spatial 

approximation and a two step Runge–Kutta method for time 

integration. The MUSCL discretization uses an 

approximation of the solution state W by linear interpolation 

at each cell interface ij  as 
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where ( , )T
i i jX x y  and ( , )T

j j jX x y  are the 

barycenter coordinates of cells Ti and Tj, respectively. Thus, 

the cell gradients are evaluated by minimizing the quadratic 

functional 

2

( )

( , ) ( ) ( )i i i j i j

j m i

X Y W x x X y y Y W


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where m(i) is the set of indices of neighboring cells that have 

a common edge or vertex with the control volume Ti. To 

obtain a TVD scheme, the VanAlbada slope limiter is 

incorporated to the reconstruction (9)–(10), see for instance 

[5]. 

The resulting scheme preserves the positivity of the water 

depth and it is a well balanced scheme, which is very 

important in the case of free surface flows on variables bed. 

A test on the equilibrium property of the SRNH scheme is 

performed in reference [1]. 

5. Numerical Results 

To verify the influence of macro roughness on the 

dissipation of kinetic energy through the channels, we solve 

the transportation of a sine flood wave along three channels 
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with different geometric shapes; smooth rectangular channel, 

rectangular channel with rectangular macro roughness and 

rectangular channel with trapezoidal macro roughness In 

Fig.2 we display the geometry of each configuration. 

 

(a) smooth channel, (b) with rectangular macro roughness,                  

(c) with trapezoidal macro roughness 

Figure 2.  Domain for the channel model 

In Fig. 3 we display the fine fixed triangular meshes. 

 

 

Figure 3 

The boundary conditions are Neumann type for speed and 

height. For the rest of the domain, sinusoidal flood wave is 

imposed: 
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5.1. Results for the Rectangular Channel with 

Rectangular Macro Roughness 

Firstly we consider the channel with rectangular macro 

roughness with zero slope and a rigid bottom. Fig. 5.1-a 

shows the flood wave velocity field captured at the entrance 

of the channel before the macro roughness. After the 

travelling of the sine wave along the channel, we see a 

consistent dissipation of the velocity amplitude. Indeed some 

of the dissipation speed is due to the diffusive nature of finite 

volume scheme, however the presence of obstacles along the 

canal also contribute to the reduction of the kinetic energy 

provided by the wave created by the speed weakening see fig 

5.1-b. 

Continues line: Initial configuration of the wave, diamond 

dotted line: wave at 50m, + dotted line: wave at 100m, 

rectangular dotted line: wave at 150m, X dotted line: wave at 

the output of the channel. 

Figure 5.1 c shows a section through the longitudinal axis 

of the channel, with the amplitude of the sine wave velocity. 

The solid line of the graph represents the amplitude of the 

velocity at the entrance of the channel, while the last of the 

outline symbol x represents the amplitude of the velocity at 

the outlet of the channel. It can be observed that the speed 

has dissipated, especially through the barriers on both sides 

constituting from the macro roughness. We also, we 

observes a series of secondary reflected waves, because of 

singularities (shock at the both sides of the channel). We can 

conclude that macro roughness could stifle the kinetic energy 

provided by the wave flood. 

 

Figure 5.1-a  
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Figure 5.1-b  

 

Figure 5.1-c  

5.2. Results for the Rectangular Channel with 

Trapezoidal Macro Roughness  

We carry the same simulation scenario as the rectangular 

roughness model. We assume that the trapeze and 

rectangular macro roughness have the same value of the wet 

surface. 

 

Figure 5.2-a  

 

Figure 5.2-b  

 

Figure 5.2-c  

Figure 5.2 a and Figure 5.2 b show the evolution of the 

velocity along the channel, Figure 5.2-c shows the 

dissipation rate of the flood wave along the canal. We note 

the presence of a series reflected waves downstream of the 

channel because of the roughness placed along the canal. 

Continues line: Initial configuration of the wave, diamond 

dotted line: wave at 50m, + dotted line: wave at 100m, 

rectangular dotted line: wave at 150m, X dotted line: wave at 

the output of the channel. 

5.3. Comparison of Three Configurations  

We compare the evolution of the sine wave through the 

three forms of channels. 

Figure 5.3 a shows a comparison of the dissipation of the 

kinetic energy at the entrance and exit of the channel for the 

three test cases (rectangular channel with macro rectangular 

and trapezoidal roughness and smooth channel). There is a 

slight difference between dissipation trapezoidal and 

rectangular, We confirm with the numerical simulation of 

the velocity field that the channels with the five macro 

roughness dissipates the kinetic energy with a rate of 10% 

more than the smooth channel. 
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Figure 5.3-a 

Legend (Channel outlets: smooth channel, Channel outlet: 

channel with rectangular roughness, Channel outlet: channel 

with trapezoidal roughness, Channel inlet: initial wave.) 

 

Figure 5.3-b 

For clarity, we zoom the basis of wave, see Figure 5.3b. 

The incident wave is decomposed after passing along the 

singularities in a main transmitted wave and a series of 

reflected wave, we note that the reflected wave in the case of 

rectangular channel with macro roughness is slightly larger 

than the channel with macro trapezoidal roughness that 

explains the slight difference in the rate of dissipation. This 

is very physical because the trapezoidal shape presents a 

progressive geometric change while the rectangular presents 

a steep geometric change. 

6. Flow with Sediment Transport 
Results 

To check the proposed finite volume, we use a 

morphodynamic Grass model (4) in a hydraulic structure 

with rectangular roughness, for more details, see reference [7] 

which deals with represents a comparison of unstructured 

finite-volume morphodynamic models in contracting 

channel flows. Here, the parameter m= 3 and Ag = 0.001 

resulting in a relatively slow interaction between the bedload 

and the water flow. We carry the same simulation scenario as 

in flow without sediment transport.  

Figure 6-a represents the curve of tub of the sine wave at 

the initial moment. 

For the first run, we observe that the flood wave on the 

surface of water in its movement causes on the bed of the 

canal a transport of matter (erosion) quickly followed by a 

deposit see figure 6-b. 

 

Figure 6-a.  Flood wave at the initial moment (with flat bottom) 

 

Figure 6-b.  Evolution of the bed of the channel after 2 seconds 

Now, we're going to miss the flood wave through the first 

macro roughness. We can see in figure 6c that the erosion 

and the deposition on the contraction and non-contraction 

zone, are well resolved in terms of location and propagation 

celerity. This can be explained by the variation of the kinetic 

energy in the vicinity of macro roughness. The area contract 

fact increases the speed, which crates erosion, however, in 

the enlarged zone the speed decreases and the material 

deposit phenomenon happens.  

In comparing the two configurations, the transport in the 

smooth channel and channel with macro roughness is done in 

the same way at the entrance of the canal (smooth part) and 

the erosion is well pronounced, but once the flood wave 

passes through the first macro roughness we observe a 

phenomenon of erosion (the speed of the wave increases in 

the area shrunk) followed abruptly by a deposit of sediment 

in the extended area. However t in a smooth channel, the 

inertia of the wave carries the eroded sediment from the 

channel input and are removed slowly along the see figure 

6e. 
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Figure 6-c.  Evolution of the canal bed during the passage of the flood 

wave in macros roughness 

 

Figure 6-d.  Longitudinal sections at the channel vertical center y = 5m for 

the bed using the Meyer-Peter 

 

Figure 6-e.  Comparison of the transport of sediment in smooth channel 

and channel with macro roughness at the bed using the Meyer-Peter 

7. Conclusions 

The hydraulic characteristics of the flow such as the speed 

and the free surface of the water (curve of tub), the transport 

of sediments are of the necessary data for the Design of 

hydraulic structures (geometry, shape).  

We have simulated numerically the dissipation of the 

kinetic energy of waves of flood. The problem was the 

search for the geometry of the hydraulic structure capable of 

dissipating the flood wave. To do so we used three types of 

channels, a smooth channel and a channel with rectangular 

roughness placed along the channel, and a third one with the 

trapezoidal roughness shapes. It has been confirmed that the 

channels with the macro roughness placed on both sides of 

the shore channel significantly dissipates the kinetic energy 

provided by the flood wave. We have studied the influence 

of macro roughness on the erosion and the formation of 

deposits along the canal, the model of Grass is used. The bed 

of the canal is composed of grain of sand that moves through 

the flow of water. The numerical results confirm that the 

macro roughness decrease the erosion and serves as pockets 

of deposit of sediment. 
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