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Abstract  In the flow under pressure, through ducts whose roughness, diameter and length values are previously known, 
the knowledge of the equation of velocities distribution and the final behavior of the shear stress, presented in the flow, are 
fundamental in the understanding of the hydrodynamic laws present in this process. The evaluation of the distributed 
hydraulic load loss based on the universal formula of Darcy-Weisbach, whose attainment of the resistance factor ”f” lies over 
a classic logarithm model of vertical profile of velocities distribution, from Kármán-Prandtl, deserves special attention since 
this profile of velocities presents two conceptual inconsistencies: one in the wall of the pipe, where the model would have to 
represent null speed, and another one in the axle of the pipe, where the model would have to represent the null shear stress. 
For in such a way, the interest for a better representation of the factor of resistance based on the new model of distribution of 
velocities considered by Chiu (1993), from the Maximization of the Entropy consisted by the Theory of the Information, 
where the classic model restrictions do not appear, is opportune and encouraged the modeling work with the use of the 
adjustments already established by Nikuradse, resulting in one new analytical model for the “f“ representation. 
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1. Introduction 
When a fluid travels a trajectory in contact with a solid 

surface, such as in pressurized ducts, or yet, when a solid 
body moves through a fluid mass, the resistance 
characteristic to this displacement is consequence of the 
viscosity that exists among the layers of the fluid mass in 
question. The fluid layer adjacent to the solid surface is 
always in rest – or it possesses the velocity of the referred 
surface – in relation to the fluid mass in movement, and this 
viscosity manifests due to the existence of the molecular 
attractions among the particles of this mass in relative 
displacement, permanently and fully developed [5, 6]. 

In the laminar flow, with small Reynolds number, the 
resistance coefficient is proportional to 1 eR  and, from 
certain velocity, known as critical velocity, the flow 
develops swirls or whirls and is converted into a turbulent 
flow. 

Originally, within the physics phenomena description, the 
Hydraulics of Forced Ducts used to treat their magnitudes in 
a clearly deterministic way, relegating to secondary plans  
the proceedings trough which they occur for the obtaining  
of such  results,  that indeed reveal  average  values  of  
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experimental determinations and must be currently presented 
under a more probabilistic focus, where the representation of 
such values is accompanied by an average and a variance, 
considering in this way the uncertainty of any sample 
average [6, 7]. 

Considering this conception as innovative and more 
adequate to the treatments with the determinations of the 
hydraulic magnitudes in contiguous environment, under this 
conception, formulated the distribution of velocities in 
pressurized ducts and recommended it as an alternative to the 
modeling of new conceptions that relate the resistance factor 
(friction) with the entropy [3]. 

In this way, through Chiu proposal, it is possible to discuss 
the evaluation of the distributed hydraulic load loss, based on 
the Darcy-Weisbach universal formula, where the classic 
form of the “friction” factor attainment lays over a logarithm 
model of velocities profile distribution that presents in its 
conception two conceptual inconsistencies: the first in the 
pipe wall where the model would have to present null 
velocity, and the other in the pipe axle where the model 
would have to present a null shear stress [5, 6]. 

2. Theoretical Development 
Originally, the resistance factor (friction) was a Julius 

Weisbach (1806-1871) contribution, Eq. 1, identified from 
the ratio between the mean velocity “ u ” and the shear 
velocity (friction) “ *u ” of the flow. The latter corresponds to 
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the velocity at which the flow changes locally from laminar 
(viscous) to turbulent, and it is conceptually related to the 
existence of a shear stress “ 0τ ” in the water-pipe interface 
[6]. 

In this way, a fluid mass moving in a permanent way 
trough a control volume in a circular cylindrical duct, 
describes the relation:  

*

8u
u f

=                 (1) 

whose “friction” velocity is conceptually defined as: 

0
*u

τ
ρ

=                 (2) 

being: 

0τ - the shear stress in the water-pipe interface ( 2N m ); 
u ∗ - shear velocity, “friction” ( m s ); 

ρ - specific mass of the fluid ( 3kg m ). 
If a fluid particle in the flow has a velocity “ V ”, its 

kinetic energy will be 21 2 ( )cW m V= . In this way the 
kinetic energy represented by weight unit, with 
“ v ”expressing the volume of the analyzed particle, is 
described by: 

( )
c

c
W

E
vγ

=                (3) 

Consequently, the position energy when expressed by 
weight unit is described by “ z ” and the work performed by 
the pressure by weight unit is described by “ P γ ”. 

Hence, the total hydraulic load to which a fluid particle 
present in a putatively permanent and frictionless flow is 
subjected, translates effectively the conservation energy 
principle described by Bernoulli as [5, 6]. 

2

2
P VH z

gγ
= + +              (4) 

The variation of this load between two sections of a liquid 
stream, 1 and 2, was expressed by D. Bernoulli as: 

2 2
2 2 1 1

2 1 2 1( ) ( )
2 2

P V P VH hf z z
g gγ γ−∆ = = + + − + +    (5) 

Later, and evolving from the studies from Antoine de 
Chézy of 1769, whose formulation characterizes the velocity 
of free flow and performs dimensional analysis by expanding 
its use for tubes, Darcy-Weisbach proposed the expression 
for the calculation of the load loss “ hf ” present in the flows, 
therefore applying dimensional analysis and expanding its 
use to pipes. It is known as universal formula and is 
expressed as [5]. 

2 2

2 5
8

2
L V f L Qhf f
D g D gπ

= =           (6) 

being: 
hf - hydraulic load loss measured ( m ), among sections of 

a pipe separated by a distance L ; 
L  - pipe length ( m ); 
V  - average velocity of the flow in the section ( 2m s ); 
D  - internal diameter of the pipe in ( m ); 
f  - shear factor (friction), dimensionless; 
g  - gravitational acceleration ( m s ); 

Q  - flow in the transversal section of the pipe ( 3m s ). 

3. Analysis of the Expressions  
The classical deductions of Theodore Von Karmam and 

Ludwig Prandtl describe that the resistance coefficient for 
smooth ducts is directly proportional to the square of the 
ratio of “ *u u ”, and since the studies of Johann Nikuradse 
of 1932 it is known that This factor is generically dependent 

on both the Reynolds number, e
uDR
υ

= , and the duct 

roughness related to it diameter k D , as: 

,uD kf f
Dυ

 
=  

 
              (7) 

Thus for the laminar type flows determined by 
2500eR ≤ , the shear factor is defined as dependent only on 

the Reynolds number: 
64

e
f

R
=                  (8) 

To the flows with 4000eR > , called turbulent, are 
presented divided in three types whose shear factor is 
expressed individually in each one, as: 

1. Turbulent hydraulically smooth with 14eR f
D k

≤ , 

and “ f ” modeled by: 

10
1 2,512log

ef R f

 
= −   

 
          (9) 

2. Turbulent hydraulically rough, with 200eR f
D k

≥ , 

and “ f ” modeled by: 

10
1 2log

3,71
k

Df
 

= −  
 

        (10) 

3. Turbulent hydraulically mixed, with 14 200eR f
D k

< < , 

and “ f ” modeled by the Colebrook/White expression: 
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10
1 2,512log

3,71 e

k
Df R f

 
= − +  

 
       (11) 

[5], [6]. 

4. Modifications and Adaptations of the 
Equations 

The Eq. 8 has origin from the Louis Marie Henri Navier 
and George Gabriel Stokes studies, in the second half of the 
XIX century, which identified the presence of molecular 
forces in the fluid mass and admitted that in a permanent and 
fully developed flow the existence of tensions causes 
deformations that are defined by the velocity spatial 
variations, and the Eqs. 9, 10 e 11 were obtained based on the 
velocity distribution model proposed by Von 
Kármán-Prandtl in the beginning of the following century [5, 
6]. 

Despite of the consolidated success in the use of these 
three equations for the determination of the shear factor in 
turbulent flows, it is opportune to describe in detail its 
conceptual "inconsistencies", where basically the 
expressions used to estimate “ f ” were conceived on the 
basis of a model of Velocity distribution that presents 
inaccuracies in three main characteristics: 

[ ]0 ln ( )u K u C R r= ∗ −         (12) 

when “ r R= ”, at the water-tube interface, ( )u r →−∞ , 
which characterizes a limitation of this speed distribution. 

1.  Another weakness of this equation is the lack of a 
mathematical formulation for estimates of the shear 
factor when the Reynolds number occurs in the 
interval between (2500 and 4000), transition region 
between laminar and turbulent flow regimes. 

2.  In addition, in the center of the tube, where 0r = , the 
derivative “ du dr ” is different of zero, implying a 
shear stress is other than zero, where physically it 
should be null.  

The application of the probability concepts in hydraulic of 
flows, initiated by Chao Lin Chiu in 1987, resulted in the 
attainment of a new equation for the distribution of velocities, 
therefore improving the mathematical modeling of this 
physical occurrence.  

Under a new optic, this new approach allowed the 
determination of the shear tension model; the in suspension 
sediments concentration model; and the profiles 

determination model of transversal sections in rivers and 
open channels [1, 2]. 

Once developed the expression describing the distribution 
of velocities in flows, Chiu in 1993 also presented a new 
mathematical formulation to better model the shear factor, 
“ f ”, based on a more realistic velocity distribution model, 
and thus overcome the deficiencies presented by the classical 
distribution law, Eq. 12, and represents for Hydraulic 
Engineering an important advance, for continuing to solve 
well the challenges by the flows under the pressure, and also 
because it generalizes the equations enlarging the horizon for 
the mathematical modeling workers in Hydraulics [6, 7]. 

This new distribution, in turn, proves to satisfy both free 
flow and flow under pressure, and the coordinate “ξ ”, when 
for a circular cylindrical tube, takes the form 

2

1 r
R

ξ  = −  
 

              (13) 

In the tube axis, where “ maxu u= ", “ 0r = ” and 
“ max 1ξ = ” are present, and at the interface water-tube, 
where “ 0u = ”, “ r R= ” and “ 0 0ξ = ” are used. Thus, the 
final form of velocity distribution in forced ducts formulated 
by this author in 1993, takes the form: 

2
max

2( ) ln 1 ( 1)(1 )Mu ru r e
M R

 
= + − − 

 
     (14) 

This equation indicates that for “ r R= ” (at the interface 
water-pipe), we have “ ( ) 0u R = ”, and for “ 0r = ”, in the 
tube axis, we have “ max(0)u u= ”, and another interesting 
result resulting from this distribution, is the average velocity 
in the section, as another interesting result due to this 
distribution expressed by the author for: 

2 2
0

1 ( )2
RQu u r rdr

R R
π

π π
= = ∫         (15) 

with u(r) given by Eq. 14 which and that implies in the 
important result: 

max

1
1

M

M
u e

u Me
= −

−
           (16) 

The entropy parameter “ M ” univocally defines the ratio 
between “ maxu u ”, and can to vary from zero (laminar flow) 
up to infinity, a value at which the velocity distribution 
becomes uniform, in other words, which “ maxu u≡ ”. 

 

Figure 1.  One-dimensional laminar flow in pressurized duct 
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When the right side of Eq. 16 is analyzed for, this member 
has a limit of 1/2 indicating that "" which reveals a classic 
result for laminar flow in a circular cylindrical tube, Figure 1. 
For, however, the limit of Second member is equal to 1, 
indicating that in this condition "", confirming the fact that 
the velocity distribution profile tends to a uniform geometry 
as there is an increase in the degree of turbulence of the flow 
and consequently of the parameter “ M ”, given to the 
increase in Reynolds number. 

The “ f ” factor obtained based on the new distribution of 
velocities was established by Chiu from the generalization of 
the Newton law for viscosity, valid only for laminar flow and 
that relates the shear tension with the transversal gradient of 
velocity. Chiu proposed the same relation between these 
magnitudes for the turbulent flow condition and that, when 
applied to the interface fluid-pipe, acquires the form: [1, 2]. 

0 T
r R

du
dr

τ ρ υ
=

= −             (17) 

Where “ Tυ ” is the turbulent viscosity and understood as a 
property of the flow regime state of turbulence, and not only 
as a molecular property of the fluid. In this way, in the 
regions not affected by the flow turbulence we understand 
that “ Tυ υ≡ ”. With the gradient “ du dr ” obtained from 
the distribution “ ( )u r ”, Eq. 14 can be written: 

2
max

2

2( 1)( )

1 ( 1) 1

M

M

reudu R
dr M re

R

−
= −

  + − −  
   

    (18) 

in which for “ r R= ”, is transformed in: 

max2 ( 1)M

r R

u edu
dr MR=

− −
=         (19) 

This result, when substituted in Eq. 17, expresses the shear 
tension close to the pipe internal wall as: 

max
0

2 ( 1)M
Tu e

MR
ρ υ

τ
−

=          (20) 

From this Eq.20, and knowing the relation given by Eq. 2, 
Chiu expresses “ 2

*u ” by: 

20 max
*

2 ( 1)M
Tu e

u
MR

τ υ
ρ

−
= =        (21) 

Multiplying “
2

u ” in both members of the Eq. 21, and 
replacing “ R ” by “ 2D ”, it has been: 

2

2
* max4 ( 1)M

T

u u MD
u u eυ

=
−

         (22) 

which the inverted form is expressed as: 

2
max*

2
4 ( 1)

( )

M

T

u eu
u Du u M
υ

−
=            (23) 

Knowing that: 
2

*
2 8

u f

u
=                (24) 

and that the ratio between the maximum and average speeds 
is: 

)1(
)1(max

−−
−

= MM

M

eeM
eM

u
u

      (25) 

and further, defining Reynolds in the state of full turbulence 
as: 

eT
T

uDR
υ

=                 (26) 

and, yet, replacing “
22

*u u ” from Eq. 23, “ maxu u ” from 

Eq. 25 and “ TuD υ ” from Eq. 25 into Eq. 24, Chiu, in 1993, 
obtained a new expression for the shear factor: 

232 ( 1)
( 1)

M

M M
eT

ef
R M e e

 −
=  

− − 
        (27) 

which written in a more compact form becomes: 
32 ( )

eT
f F M

R
=              (28) 

being: 
2( 1)( )

( 1)

M

M M
eF M

M e e
 −

=  
− − 

       (29) 

[2]. 

5. The Validation of the Entropic Model 
The validation and consistency of the expression, Eq. 27, 

can be checked by the identification and performance of the 
entropy parameter, “ M ”, in the classical flow regimes, as 
known, based on the velocity distribution studies of Von 
Kármán-Prandtl 
 Laminar flow: 

when 0M =  
T eT eR Rυ υ≡ ⇒ ≡  

For “ 0M = ”, the limit of ( )F M , from Eq. 29, after the 
use of the L'Hospital rule, is equal to 2, from which the 
classical expression of the shear factor for laminar flows is 
obtained: 

64

e
f

R
=  
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 Turbulent flow hydraulically smooth: 
In this type of flow, the conditions under which, 0M >  

and Tυ υ≡  within the viscous sublayer, adjacent to the wall 
where eT eR R≡ , where the friction factor is expressed by: 

32 ( )
e

f F M
R

=  

As in the hydraulically smooth turbulent flow the factor 
“ f ” is dependent only on the Reynolds number, it becomes 
evident from Eq. 28 that the entropy parameter “ M ”, is also 
consequently dependent only on the Reynolds number. 
 Turbulent flow hydraulically rough: 

In this type of flow, in turn, there is no region (even 
adjacent to the wall) without turbulence, which validates the 
assertion that Tυ υ> , such that “ f ” is expressed by 

32 ( )
eT

f F M
R

=  

For this case in particular, due to the flow nature, it is 
known that the shear factor must depend on only the relative 
roughness “ k D ” what allows the affirmation that both 
“ eTR ” and “ M ” depend only on “ k D ”, Eq. 27.  

 Turbulent flow hydraulically mixed: 
For this particular case, by the nature of the flow, it is 

known that the shear factor should only depend on the 
relative roughness “ k D ”, which allows the assertion that 
both “ eTR ” and “ M ” also depend only on “ k D ”. 

It is also possible to state that, for a hydraulically mixed 
flow, the parameter “ M ” must depend on both “ eR ” and 
“ k D ” and, additionally, the factor “ f ” in these conditions 
also expresses the same dependencies, proving univocal in 
relation to the entropy parameter “ M ”. 

6. The Numeric Adjustment 
At this point, the process developed by Chiu has been 

narrated up to here, it is evident the discomfort in the 
handling of Eq. 27, given the presence of the parameter “ M ” 
and the number of turbulent Reynolds “ eTR ”, two variables 
that are difficult to obtain in practice. 

In this way, by adding considerations to the mathematical 
treatment of Chao Lin Chiu involving the shear factor, this 
project insists on the relevance of knowing a conjecture that 
represents well the velocity distribution, already referenced 
by Kárman and Prandtl, as: 

max *4,045u u u= +            (30) 

where the maximum, medium and shear velocities, 

max *, ,u u e u , respectively, are related for any flow in 
turbulent regime.  

[2], [4]. 

On the other hand, in addition to knowing that other 
different values for the multiplying constant, such as 3.75 
and 4.07, can be found in the literature, it is therefore 
pertinent to look at the fact that physically, it is more 
important to know of the existence of a constant that 
multiplies “ *u ”, and which validates Eq. 30, than the 
knowledge of the value of the constant itself. This is because 
in knowing that there is a constant in the expression, 
experimentally, it is possible to approximate its value. 

Therefore, in this aspect, it can be conjectured the 
existence of a universal constant “ C ” satisfying the 
condition below, valid only for turbulent flows. 

max *u u C u= +             (31) 

and the value of this constant can be explicit as: 

max

*

u u
C

u
−

=              (32) 

Making use of the relation among u , maxu  and M , 
described by Chiu in the Eq. 25, we have:  

max

1 1
1 ( 1)

M M M

M M
u e M e e

u Me M e
− +

= − =
− −

    (33) 

from where it can be obtained: 

max
( 1)

1

M

M M
M eu u

M e e
 −

=  
− + 

       (34) 

Subtracting form the two members of Eq. 34 the value of 
“ u ” and then dividing both the members by “ *u ”, the 
following relation is obtained: 

max

* *

1
1

M

M M
u u u e M

u u Me e
   − − −

=    
− +   

      (35) 

Such as in Eq. 31, the first member of Eq. 35 is equal to 
“ C ”, and being the ratio ( *u u ) of the second member equal 

to 8 f . The Eq. 34 is transformed in: 

8 1
1

M

M M
e MC

f M e e
 − −

=  
− + 

         (36) 

In this way, the Eq. 36 can be rewritten as an expression 
generalized for the calculation of the “ f ” shear factor, 
dependent only on the parameter “ M ”, as: 

2

2
8 1

1

M

M M
e Mf

C M e e
 − −

=  
− + 

        (37) 

Here, it is important to stress that the universal constant 
“ C ”value deserves to be experimentally better exploited, 
making room to developments that explore better the 
velocities profile in these flows. Since this exploration goes 
beyond the scope of this work, it is suggested the adoption of 
the value described by Hunter Rouse in “Elementary 



6 Podalyro Amaral de Souza et al.:  The Flow Resistance Factor Treated by the Maximum Entropy Principle  
 

 

Mechanics of Fluids” in 1946, with 4,045C = , that 
substituted in the Eq. 37, provides the expression for “ f ”, 
as: 

2
1 1

2,0453 1

M

M M
e Mf

M e e
 − −

=  
− + 

       (38) 

This model is undoubtedly more complete than the 
traditional one deducted from the logarithmic velocities 
distribution, classically used in the universal formula of the 
distributed load loss in forced pipe. However, it brings yet 
with it self the same limitations and discomforts of the 
formulation presented by Chiu for the shear factor with the 
Eq. 27, that in spite of being unique and generic, with 
application both to laminar flows and to any turbulent flow, 
it also has the turbulent Reynolds explicit presence defined 
as: 

( )eT e
T

uDR R υ
υ υ

= =  

and the use of the “ M ” entropy parameter as 
“ 2 maxM Uλ= ”, where “ 2λ ” is one of the Lagrange 
multipliers used in the maximization operation. 

At first, Eqs. 27 and 38 enable the “ M ”, parameter 
elimination and also the attainment of a formulation for the 
“friction” factor that is dependent only on “ eTR ”, what 
already would translate the big advance due to the existence 
of a single parameter in the equation for the “ f ”. 
calculation. However, the algebraic structure of these 
equations revealed, after several attempts, an analytical 
“impossibility” for the elimination of the parameter, reason 
for which the use of a mathematical adjustment by minimum 
squares was chosen in the discard of this variable [1, 3]. 

Table 1.  Values of , eTM f e R  for turbulent flows 

Column (1) Column (2) Column (3) Column (4) 

M  f  
eTR  ln ( )eTR  

2 0,1338 1,1635.10 3 7,0592 

3 0,0746 3,7935.10 3 8,2410 

4 0,0443 1,2596.10 4 9,4411 

5 0,0280 4,1701.10 4 10,6383 

6 0,0189 1,3612.10 5 11,8213 

7 0,0134 4,3627.10 5 12,9860 

8 0,0099 1,3731.10 6 14,1326 

9 0,0076 4,2523.10 6 15,2630 

10 0,0060 1,2986.10 7 16,3794 

The task of “ M ” elimination, by adjustment, was 
preceded by the Table 1 assembly, following the order: 
  Values for “ 2, 3, ...,10M = ”were adopted forming the 

column 1; 
 With the adopted “ M ”, values, the correspondent “ f ”, 

values were calculated trough Eq. 38 generating the 

column 2;  
  With the “ M ” and “ f ”, values, the attainment of the 

respective “ eTR ” values was possible, with the use of 
Eq. 27, forming the column 3; 

  The ln eTR  values were placed at column 4. 

In a first moment, and with the objective of determining a 
third expression that best relates the equations 27 and 38 
trough the discard of the entropy parameter, the adjustment 
was sought with the help of an EXCEL sheet among the “ ” 
values (column 2) and the “ eTR ” turbulent Reynolds values 
(column 3), that after several attempts showed incongruent 
results. It denounced these responses inconsistency as 
characteristics inherent to the adjustments among very small 
numbers (shear factor) and very large numbers (turbulent 
Reynolds). This lead to new attempts for the         
adjustment among more coherent values correlating thus 
“ ” and “ ln eTR ” (column 4), revealing an equation with 

determination index 2 0,9995R = , represented in the form: 
3,703

4,0758
ln eT

f
R

 
=  
 

             (39) 

Such as Eq. 38, this equation is applicable only to the 
turbulent type flows. Because of that, it is conclusive to 
affirm that, in the case of hydraulically smooth turbulent 
flow, whenever the viscous sub layer overcomes the 
hydraulic roughness “ k ”we have the condition “ 1Tυ υ = ” 
close to the pipe wall, what reduces “ eTR ” (turbulent) to 
“ eR ” (usual) and, in these conditions, the Eq. 38 acquires the 
form: 

3,703
4,0758
ln e

f
R

 
=  
 

            (40) 

Hence, once the proposal represented by the conjecture 
“ max *u u C u= + ”, is accepted, the theory of maximum 
entropy allows the obtaining of the Eq. 40, for the “ f ” 
determination, in the hydraulically smooth turbulent flow 
condition, without the need of any experiments. 

In the other turbulent flow conditions, hydraulically rough 
or mixed, the Eq.39 should allow the shear factor 
determination if the turbulent Reynolds number, “ eTR ”, is a 
known value. Since the relation between eTR  and eR  is 

given by T
eT eR R υ

υ
= , the determination of “ eTR ” comes 

from the “ eR ” knowledge and, with more difficulties, from 

the ratio between the molecular viscosity and the “ Tυ
υ

” 

turbulent viscosity. 
In this way, the hydraulically rough turbulent flow 

corresponds to a limit condition that occurs for big values of 
the dimensionless “ eR ”. At this point then, the shear factor 

f

f
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starts to depend only on the hydraulic roughness relative to 
the pipe diameter “ k D ”. In this flow regime condition, the 
“ k ” roughness value is much superior to the viscous sub 
layer thickness, making the extremities of the pipe wall 
imperfections, whose roughness composes “ k ”, as the only 
source responsible for the turbulence generation, as Figure 2 
illustrates. 

 

Figure 2.  Representation of the internal walls imperfections of a generic 
pipe. The imperfections are bigger than the limit 

Under these circumstances, in hydraulically rough 
turbulent flow, the dependence between the “ f ” factor and 
the relative roughness of the pipe “ k D ” is known. This 
relation was established at first from the classical experience 
of Johan Nikuradse, that involved roughnesses produced by 
“uniform” sand grains, internally fixed to the pipes walls, 
with previously known diameters, with the “ D k ” values 
equal to 30; 61,2; 120; 252; 504; 1014 and relating them with 
the correspondent “ f ” factor values, through the expression 

10
1 2 log

3,71
k

Df
 

= −  
 

, Eq. 10,  

[6, 7] 
If in this hydraulically rough turbulent flow condition the 

shear factor is dependent only on “ D k ”, as above 
mentioned, it is reasonable that the Eq. 39 is kept valid and 
becomes to be rewritten with a algebraic structure closer to 
mathematical relations traditionally known for the “ f  “, as:  

3,703

4,0758

1ln
b

f
D

m k

 
 
 

=  
   
       

        (41) 

or in the form: 

1
3,703

1 4,0758ln
bD A

m k
f

   = =  
   

       (42) 

where the “ b  ” exponent and the “ m ”coefficient must be 
determined so that the Eq. 41 represents the best Nikuradse 
data as possible.  

From a generic manner it is still possible to write the Eq. 
41 as: 

ln lnDA b m
k

 = − 
 

          (43) 

As described in the previous proceeding, the numerical 
adjustment of magnitudes present in this “ A “ expression 
and “ ln ( )D K ” allows the “ b  ” and “ m  ” values 
determination and reveals the first analytical structure for the 
“ f ” presented by this project trough the Eq. 41. For this, 
also trough the same process previously described, it 
followed the Table 2 assembly, with the following 
itemization: 
  Values of “ 3, 4, ...,7M = ” that are in column 1, were 

adopted;  
  With the adopted “ M  ” values, the correspondent “ f ” 

values were calculated trough Eq. 38, that form the 
column 2;  

  These “ f ” values allowed the determination of the 
“ k D ” values, with the use of Eq. 10, whose results are 
in the column 3; 

  In the column 4 are located the values of ( )D k ; 
  In the column 5 are the “ A ” values, defined by Eq. 42 

and calculated from the “ f  ” factor of column 2. 
  In the column 6 are the values of “ ln ( )D k ”. 

Table 2.  Values of , , ( ), ( ), , ln ( )M f k D D k A D k  for 
hydraulically rough turbulent flows 

Col. (1) Col. (2) Col. (3) Col. (4) Col. (5) Col. (6) 

M  f  k D  D k  A  ln ( )D k  

3 0,0746 0,0548 18,2328 8,2155 2,9032 

4 0,0443 0,0156 64,0490 9,4591 4,1596 

5 0,0280 0,0038 260,8754 10,7018 5,5640 

6 0,0189 0,0008 1177,3668 11,9112 7,0710 

7 0,0134 0,0002 5665,4101 13,0695 8,6421 

In this way, with the use of the EXCEL sheet, the 
adjustment of the curve generated for Y A=  (column 5) 
was achieved, and ln ( )X D k=  (column 6), attaining an 

equation that represented a 2 0,9967R =  determination 
index, and with the 0,843 ln ( ) 5,8933A D k= +  structure, 
that whenever equaled to Eq. 42, provides the 

0,843 0,0028.b e m= =   

7. Conclusions 
Finally, the suggested formula for the shear factor 

determination in hydraulically rough turbulent flows, based 
on the distribution of velocities, derived from the Maximum 
Entropy principle is: 
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0,0028
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D
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 
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   
       

     (44) 

In the hydraulically mixed turbulent flow condition, the 
shear factor can be determined by an expression that contains 
the arguments of the hydraulically smooth turbulent flow 
regime, Eq. 40, and of the hydraulically rough turbulent, Eq. 
44, following exactly the 1937 Colebrook-White suggestions 
that enable to write the expression that best represents this 
flow regime as: 

3,703

0,843

4,0758

1ln 0,0028
e

f
K
DR

 
 
 

=  
   − +       

  (45) 

It is relevant to stress that the Eq. 44 presents asymptotic 
behaviors revealing that, whenever eR →∞ , it is 
transformed in the Eq. 44. It translates a flow regime with 
dependencies only on the roughness relative to the pipe 
diameter, identified as hydraulically rough turbulent. On the 
other hand, whenever 0k D → , the Eq. 44 stays reduced 
to Eq. 40, valid to the flow regime dependent only on the 
Reynolds number, translating a hydraulically smooth 
turbulent regime.  

Therefore, restructuring the expression for the “ f ” factor 
calculation, that identifies a hydraulically mixed flow regime, 
it can be presented better as: 

3,703

0,843

4,0758

ln
1 0,0028 ( )

e

e

f
R
R k D

 
 
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  
  +  

   (46) 

Moreover, from the comparison between this equation 45 
and the Eq. 38 and, also, knowing that ( )eT e TR R υ υ= , an 

expression for the “ Tυ υ ” ratio between the turbulent and 
molecular viscosities is obtained, as: 

0,843

1 0,0028T
e

kR
D

υ
υ

 = +  
 

      (47) 

This expression, Eq. 46, is shown to be coherent with the 
forced flow physical mechanism, since whenever the “ k ” 
roughness is null, or insignificant, we have “ 1Tυ υ = ”. It is 
therefore a fact that characterizes the hydraulically smooth 
turbulent flow occurrence, where “ eT eR R= ”. 

Likewise, it is evident the need to work in future 
researches on the validation and consistence of the 
conjecture expressed by Eq. 31, in which “ C  ” is proven 
constant, followed by a posterior determination of its value. 
It is fundamental for the advance in the treatments with the 
mathematical modeling in the permanent and fully 
developed flows in pressurized ducts. 
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