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Abstract  The objective of this work is to propose a new approach to dimensioning of the conduits partially or totally 
filled. To dimension the conduit, the wetted section and the wetted perimeter have to be expressed under the forms 𝐴 = 𝛼𝐻2 
and  𝑃 = 𝛽𝐻. The study is based on the relationships universally known of the Darcy-Weisbach and of Colebrook-White. In 
this study, the new developed approach leads to an explicit solution and the ensuing results can be compared to the different 
exiting models. The maximum relative error obtained of the 80% calculated values does not exceed 0.25%. What enables us 
to say that this approach adapts well to manual and computing calculations. It was found that this new contribution is more 
accurate than the most equations available literature. 
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1. Introduction 
Flow in a conduit partially or totally filled is governed by a 

functional relationship of type 𝜑(𝑄, 𝐽,𝐷ℎ, 𝜀, 𝜂) = 0, where 
Q is the volume flow rate, J is the hydraulic slope in a section 
of the conduit or of the channel of length 𝑙 , 𝐷ℎ  is the 
hydraulic diameter, 𝜀  is the absolute roughness of the 
conduit wall and 𝜂 is the filling rate. The dynamic viscosity 
𝜇 and density of the fluid 𝜌 being known, so as the length 𝑙 
of the conduit and its absolute roughness 𝜀 (depending on 
the used material). Three types of problems occur: 
I-Determine the hydraulic slope J of the conduit knowing its 
diameter and an imposed volume flow. II-Determine the 
volume flow 𝑄 in the conduit knowing its diameter and a 
hydraulic slope imposed. III-Determine the hydraulic 
diameter 𝐷ℎ or geometric diameter of conduit D knowing 
the volume flow at ensure under an imposed hydraulic slope. 
In turbulent flow, the hydraulic slope is more or less exactly 
proportional to the square of the velocity (respectively 
volume flow rate). Also, the shear stress at the wall 𝜏𝑝 (for a 
noncircular cross section its mean value) is equal to 
 0.5𝜆𝜌𝑣2, where  𝜆 is a number depending on the particular 
conditions and mainly of the wall roughness, and 𝑣 is the 
mean velocity. The hydraulic slope in a section of conduit or 
of the channel of length 𝑙 must ensure the equilibrium of the 
tangential tensions at the wall surface. Therefore, v, J and 𝐷ℎ 
are related by the well-famous equation of Darcy [6] Rel. (1), 
that, applied to a conduit partially or totally filled, is written  
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in the form: 

𝐽 = 𝜆
𝐷ℎ

𝑣2

2𝑔
                         (1) 

According to the classification of the problems in the field 
of practical calculation of the conduits cited above, the 
problem of type III is the most frequently encountered in 
engineering problems (full circular pipe), and also the most 
difficult to solve. The general law of the linear load loss 
coefficient of Colebrook [5] Rel. (2) has an algebraic form 
which often leading to numerical calculations by iteration. 
Therefore, we use more frequently the graphic methods 
based on the use of the Moody diagram (Moody 1947). 

1
√𝜆

= −2𝑙𝑜𝑔 � 𝜀
3.71𝐷ℎ

+ 2.51
ℛ𝑒√𝜆

�                (2) 

The solution of the problems of type II and III is much 
more delicate since the available data don’t allow the initial 
calculation of the Reynolds number, nor that of the relative 
roughness in problem III. Jain, Swamee and Jain [17], 
Haaland [10], Imbrahim [12], Valiantzas [22], Diniz and 
Souza [7], Brkić [4], Giustolisi et al [8] and Li et al. [14] 
have established explicit relationships applicable to the first 
category of problems. For the second category of problems, 
an explicit solution was proposed by Hager [11] and Sinniger 
and Hager [16]. Regard to the third category of problems, 
approximate solutions have been proposed by certain authors 
for the resolution of the basic equation system of a turbulent 
flow in circular conduit in charge. Among the most 
significant studies those of Swamee and Jain [17, 18, 19], of 
Swamee and Rathie [20], of Swamee and Swamee [21], of 
Hager [11], of Bedjaoui and Achour [3], of Babajimopoulos 
and Terzidis [2], of Gulyani [9], of Bombardelli and Garcia 
[3] and Achour et al. [1]. The latter authors showed that their 
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study can be adapted to any form of conduits or channels in 
charge or open channel flow. 

2. Geometric Properties 
Considering the Fig.1 for a flow section of given 

geometric form: 
Either: 
𝐴𝑖, 𝑃𝑖 , 𝜂𝑖 and 𝐻 are respectively, the wetted section, the 

wetted perimeter, the maximum filling ratio of the zone of 
rank i and the height of the conduit. 

Also: 
𝛼𝑖, 𝛽𝑖 and ℎ𝑖 are respectively, the relative coefficient of 

the wetted section, the relative coefficient of the wetted 
perimeter and the maximum water height of the zone of rank 

i. The formulas presented below are to perform the 
calculation of geometric elements at one and three depth 
zones of some usual cross-sections: Table 1 oval section, 
Table 2 horseshoe section and Table 3 circular section. 

Ovoid section 

Table 1 presents the formulas of geometric elements of an 
ovoid section composed of three zones of heights.  
Horseshoe cross section 

Table 2 presents the formulas of geometric elements of a 
horseshoe form section composed of three zones of heights.  
Circular section 

The calculation formulas of geometric elements of a 
circular section can be deduced from formulas of a horseshoe 
section by replacing 𝑡 = 1 (cf. Table 3). 

Table 1.  The calculation formulas of geometric elements of three depth zones of an ovoid section 

a 

0 < 𝜂 ≤ 1
15

 or 0 < ℎ ≤ 𝐻
15

  

𝜃 = 1 − 6𝜂 

𝛼 =
𝑐𝑜𝑠−1𝜃 − 𝜃√1 − 𝜃2

36
 

𝛽 =
𝑐𝑜𝑠−1𝜃

3
 

b  

1
15

< 𝜂 ≤ 2
3
 or 𝐻

15
< ℎ ≤ 2𝐻

3
 

𝜃 =
2
3
− 𝜂 

𝛼 = 0.3359 − 2𝑠𝑖𝑛−1𝜃 − 𝜃 ��1 − 𝜃2 −
4
3
� 

𝛽 = 1.5961 − 2𝑠𝑖𝑛−1𝜃 

c 

2
3

< 𝜂 ≤ 1 or 2𝐻
3

< ℎ ≤ 𝐻 

𝜃 = 𝜂 −
2
3

 

𝛼 = 0.5105 −
1
9
𝑐𝑜𝑠−13𝜃 +  𝜃�

1
9
− 𝜃2 

𝛽 = 2.6433 −
2
3
𝑐𝑜𝑠−13𝜃 

Table 2.  The calculation formulas of geometric elements of three depth zones of a horseshoe form section 

a 

0 < 𝜂 ≤
𝑡
2

(1 − 𝑐𝑜𝑠𝜃) 

𝜌 = 𝑐𝑜𝑠−1 �
𝑡 − 2𝜂
𝑡

� 

𝛼 =
𝑡2

4
𝜌 �1 −

𝑠𝑖𝑛2𝜌
2𝜌

� 

𝛽 = 𝑡. 𝜌 

b 

𝑡
2

(1 − 𝑐𝑜𝑠𝜃) < 𝜂 ≤
1
2

 

𝜌 = 𝑠𝑖𝑛−1 �𝑡−2𝜂
𝑡
�  ; 𝐸 = 𝑠𝑖𝑛2𝜌 

𝛼 =
𝑡2

4
�𝐶 − 𝜌 −

𝐸
2

+  
2(𝑡 − 1)

𝑡
� �𝐸) 

𝛽 = 𝑡(2𝜃 − 𝜌) 

c 

1
2

< 𝜂 ≤ 1 

𝜌 = 2𝑐𝑜𝑠−1(2𝜂 − 1)  

𝛼 =
1
4
�𝐶. 𝑡 +

1
2

(𝜋 − 𝜌 + 𝑠𝑖𝑛𝜌)� 

𝛽 =
1
2

(4𝑡𝜃 + 𝜋 − 𝜌) 

Note: 𝑡 = (𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜃 + 1)−1, 𝐶 = 2𝜃 + 1 − 𝑠𝑖𝑛2𝜃 − 𝑐𝑜𝑠2𝜃 and 𝜂 = ℎ
𝐻

 

Table 3.  The calculation formulas of geometric elements of one depth zone of a circular section 

0 < 𝜂 ≤ 1 𝑜𝑢 0 < ℎ ≤ 𝐻 

𝜃 = 𝑐𝑜𝑠−1(1 − 2𝜂) 

𝛼 =
𝜃
4
�1 −

𝑠𝑖𝑛2𝜃
2𝜃

� 

𝛽 = 𝜃 
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3. Diameter Calculation (Governing Equations) 
Circular section filled 

Swamee and Jain [17] have obtained an approximate explicit solution of the pipe diameter with a relative error of ± 2%, Rel. 
(3). The latter is valid for the following initial conditions: 3 × 103 ≤ ℛ𝑒 ≤ 3 × 108,  2 × 10−6 ≤ 𝜀/𝐷 ≤ 2 × 10−2 𝑒𝑡  
10−6 ≤ 𝜀∗ ≤ 10−2 and 10−8 ≤ 𝜈∗ ≤ 10−3 

𝐷 = 0.66 𝜀
𝜀∗

[𝜀∗1.25 + 𝜈∗]0.04                                      (3) 

With; 

𝜀∗ = 𝜀 �𝑔𝐽
𝑄2
�
0.2

                                          (4) 

And, 

𝜈∗ = 𝜈(𝑔𝐽𝑄3)−0.2                                           (5) 

Where: 𝑄, 𝐽, 𝜀 , 𝜈  and 𝑔 are respectively the flow rate, the hydraulic slope, the absolute roughness, the kinematic 
viscosity of the fluid and the gravitational acceleration. 

Thereafter, Swamee and Rathie [20] have obtained an analytical solution of the diameter, it is in form of a convergent 
series based on the implicit equation of Lagrange. According to these authors, the use of the expression Rel. (6) with three 
terms ensures sufficient accuracy and respectively two terms is sufficiently precise for all practical purposes. 

�𝐷 𝜀∗
𝜀
�
−52 = 𝑑 + 0.9647𝐿𝑛 �0.1518𝜀∗

𝜈∗
𝑑
2
5 + 𝑑

3
5� × �−1 +

0.5788�0.1012𝜀∗+𝜈∗𝑑
1
5�

�0.1518𝜀∗+𝜈∗𝑑
1
5�𝑑

�                 (6) 

With; 
𝜀∗, 𝜈∗ (relations Rel. (4) and (5)) and d given by the following relationship 

𝑑 = 0.9647𝐿𝑛 � 1
(1.78𝜈∗)

�                                       (7) 

Furthermore, Swamee and Swamee [21] have presented the following equation Rel. (8) for the calculation of the diameter 
with a relative error oscillating between -2.75 and 2.75%. The error interval is valid for: 0 < ℛ𝑒 ≤ 3 × 108, 2 × 10−6 ≤
𝜀/𝐷 ≤ 2 × 10−2, 10−6 ≤ 𝜀∗ ≤ 10−2 and 10−8 ≤ 𝜈∗ ≤ ∞ 

𝐷 = 0.66 ��214.75 𝜈𝑄
𝑔𝐽
�
6.25

+ 𝜀1.25 �𝑄
2

𝑔𝐽
�
4.75

+ 𝜈𝑄9.4 � 1
𝑔𝐽
�
5.20

�
0.04

                    (8) 

Also, Babajimopoulos and Terzidis (2013) have presented an explicit method Rel. (9) for the diameter calculation. The 
obtained mean relative error is of the order of 0.36%, which is valid for: 104 ≤ ℛ𝑒 ≤ 108 , 10−5 ≤ 𝜀/𝐷 ≤ 5 × 10−2, 
4 × 10−6 ≤ 𝜀∗ ≤ 3 × 10−2 and 2.5 × 10−8 ≤ 𝜈∗ ≤ 2.5 × 10−4. 

𝐷 = 0.95887[−1.886𝑙𝑜𝑔(0.3829𝜀∗1.006 + 3.762𝜈∗1.001)]−0.4 𝜀
𝜀∗

                      (9) 

With; 𝜀∗, 𝜈∗ (relations Rel. (4) and (5)) 

 
 

𝐴1 = 𝛼1𝐻2;𝑃1 = 𝛽1𝐻 

0 <  𝜂 ≤ 𝜂1 

𝐻 

Figure 1.  Flow section composed of n zones 
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ℎ2 

ℎ𝑖 

𝐴2;𝑃2;  𝜂1 <  𝜂 ≤ 𝜂2 

𝐴𝑖 = 𝛼𝑖𝐻2;𝑃𝑖 = 𝛽𝑖𝐻 

𝜂𝑖−1 <  𝜂 ≤ 𝜂𝑖  

𝐴𝑛 = 𝛼𝑛𝐻2;𝑃𝑛 = 𝛽𝑛𝐻 

𝜂𝑛−1 <  𝜂 ≤ 1 
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4. Basic Equations 
By replacing the mean velocity 𝑣 in the Rel. (1) by the 

expression  𝑄 𝐴⁄ , hydraulic slope (unit head loss charge) is 
written as follows. 

𝐽 = 𝜆
𝐷ℎ

𝑄2

2𝑔𝐴2
                (10) 

Either 𝐴  and 𝑃  the geometric elements with a single 
depth zone Fig. (1). The hydraulic diameter 𝐷ℎ is expressed 
as a function of these two parameters by the relationship 
below. 

𝐷ℎ = 4𝛼
𝛽
𝐻                  (11) 

By posing the expression 𝐴 = 𝛼𝐻2  in the relationship 
(11), we get: 

𝐴 = 𝐷ℎ
2

𝑐
                     (12) 

With; 

𝑐 = 𝛼

�𝛽 4� �
2                   (13) 

By replacing Rel. (12) in (10), the hydraulic slope 
becomes: By replacing Rel. (12) in (10), the hydraulic slope 
becomes: 

𝐽 = 𝜆
2𝑔

𝑄𝑐2

𝐷ℎ
5                  (14) 

With; 
𝑄𝑐 = 𝑐𝑄                  (15) 

ℛ𝑒  is the Reynolds number which can be expressed as 
follows: 

ℛ𝑒 = 𝑄𝑐
𝜈𝐷ℎ

                  (16) 

Subsequently, the elimination of 𝜆 and ℛ𝑒√𝜆 in the Rel. 
(2) is done by using the relationships (14) and (16). As a 
result, 𝐷ℎ can be expressed by the following relationship. 

𝐷ℎ = 𝑎0.4 �−2𝑙𝑜𝑔 � 𝜀
3.71

𝐷ℎ−1 + 𝑏𝐷ℎ−1.5��
−0.4

    (17) 

With; 

𝑎 = 𝑄𝑐
(2𝑔𝐽)0.5                 (18) 

And; 

𝑏 = 2.51𝜈
(2𝑔𝐽)0.5                (19) 

Admitting that values of ε, a and b are given, relation (17) 
shows that the value of the hydraulic diameter Dh cannot be 
explicitly determined. Indeed, the relation (17) is implicit 
vis-a-vis of Dh, because this one is contained in both the left 
and right members of the relationship. The Determining of 
the diameter Dh therefore requires an iterative method in the 
case where the relation (17) is used. 

Proposed Relationship 
A number of 226980 exact values of 𝐷ℎ was generated by 

the numerical solution of the Rel. (17) with the conditions: 
3 × 103 ≤ ℛ𝑒 ≤ 107,  10−6 ≤ 𝜀/𝐷 ≤ 2 × 10−1 , 10−5 ≤
𝐽 ≤ 10−2  and 0.5 × 10−3 ≤ 𝑄𝑐 ≤ 10 . All the necessary 

coefficients for the prediction of the hydraulic diameter were 
obtained. Firstly, by the optimization method of nonlinear 
equations using approximation technique, and secondly, by 
minimizing the maximum relative error. The relationship (20) 
given below predicts the hydraulic diameter 𝐷ℎ𝑝 with the 
desired accuracy. 

𝐷ℎ𝑝 = 0.8𝜀0.95 + 0.514𝑎0.383         (20) 

By introducing the relationship (20) in the second term of 
relationship (17), we obtain a relationship Rel. (21) 
expressing the estimation of hydraulic diameter Dhe. 

𝐷ℎ𝑒 = 𝑎0.4 �−2𝑙𝑜𝑔 � 𝜀
3.71

𝐷ℎ𝑝−1 + 0.67𝑏0.95𝐷ℎ𝑝−1.5��
−0.4

 (21) 

In order to better specify the reliability of the explicit 
relation (21), we have compared at that mentioned by the 
implied relationship (17), taken as the reference. Assuming 
that, for each value ε, a and b implicitly Q, J and ε are fixed 
and chosen in the range of application conditions, equation 
(17) gives, after an iterative method, an exact value and that 
proposed by equation (21) affects an approximate value of 
the hydraulic diameter. 
The relative error 

Statistical analysis of the 226980 values estimated by the 
Rel. (21) and those obtained numerically by Rel. (17) shows 
that: a maximum relative error of the order of 0.6% and a 
minimum relative error of the order of 7.5 × 10−9%. On the 
basis of these two extreme errors, a calculation of the partial 
and cumulative frequencies is performed from the relative 
error orderly into ten (10) centered class. Figure 2 shows that 
50% of the values obtained by Rel. (21) have lower relative 
errors than 0.09% and more of 80% of values have relative 
errors lower than 0.25%. Note that, the probability of 
obtaining a relative error greater than 0.45% is 3%. 
Furthermore, an average error of 0.17% is recorded. 

Figure 3 shows a perfect linear relationship between the 
exact hydraulic diameter calculated by the Rel. (17) and that 
estimated by the Rel. (21). The linear equation Fig. (3) has a 
coefficient of determination 𝑅2 that equals 0.99998 where 
this value judge a good linear regression between the two 
hydraulic diameters. 

Dimensioning of a conduit 
Note that for a flow section of shape described by Fig. (1), 

the dimension 𝐻  can be calculated by applying the 
following explicit relationship, issued from the combination 
of relations (11) and (21). 

𝐻 = 𝛽
4𝛼
𝑎0.4 �−2𝑙𝑜𝑔 � 𝜀

3.71
𝐷ℎ𝑝−1 + 0.67𝑏0.95𝐷ℎ𝑝−1.5��

−0.4
 (22) 

For the given values of the parameters 𝜀, 𝜈,𝑄, 𝐽,𝛼 and 𝛽 
the steps of calculating of the total height H of the conduit 
are then as follows: The relationships (18) and (19) allow to 
determine the coefficients 𝑎  and 𝑏  by replacing 𝑄𝑐  by 
(𝑐𝑄) where 𝑐 is given by relationship (13). Then, 𝜀 and 𝑎 
are introduced in the relationship (20) for predicting the 
hydraulic diameter 𝐷ℎ𝑝  which is than introduced in 
equation (22) for estimating the dimension H. 

 



 International Journal of Hydraulic Engineering 2015, 4(4): 95-102 99 
 

 

Figure 2.  Distribution of partial and of cumulative frequencies of the relative error (%) 

 
Figure 3.  Values of (Dhe) calculated by equation (21) compared to the exact values (Dh) calculated by equation (17) 
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Table 4.  Summary of the obtained results and the conditions of application of each formula 

Relationship 
ℛ𝑒 𝜀/𝐷 𝜈∗ 𝜀∗ 

N 
Min. Max. Min. Max. Min. Max. Min. Max. 

Rel. (3) 3.90x103 3.49x107 2.68x10-6 1.89x10-2 10-7 6.06x10-4 10-6 9.94x10-3 222356 

Rel. (6) 3.62x103 3.53x107 6.80x10-7 1.99x10-1 10-7 6.06x10-4 2.5x10-5 1.31x10-1 226980 

Rel. (8) 3.90x103 3.49x107 2.68x10-6 1.89x10-2 10-7 6.06x10-4 10-6 9.94x10-3 222356 

Rel. (9) 10x103 3.29x107 1.04x10-5 5.00x10-2 10-7 2.50x10-4 4.03x10-6 2.84x10-2 220482 

Rel. (22) 3.62x103 3.53x107 6.80x10-7 1.99x10-1     226980 

Note: N is the number of sorted values corresponding to the conditions of application of each formula. 

Table 5.  Summary of obtained results of some position parameters and the relative error dispersion for each formula 

Relationship 
Relative error (%) Cumulative frequency of the relative error (%) 

Min. Max. Mean 𝑭𝟐𝟓% 𝑭𝟓𝟎% 𝑭𝟕𝟓% 𝑭𝟖𝟎% 

Rel. (3) 0.0002 2.74 2.35 2.212 2.405 2.505 2.525 

Rel. (6) 0.0139 1.97 0.30 0.116 0.220 0.311 0.328 

Rel. (8) 0.0002 2.74 2.35 2.212 2.405 2.505 2.525 

Rel. (9) 0.000004 0.27 0.12 0.090 0.116 0.136 0.139 

Rel. (22) 0.000001 0.60 0.15 0.022 0.074 0.197 0.235 

 
Figure 4.  Distribution of cumulative frequencies of the relative error for three cross sections of usual forms 

Case of a circular conduit under pressure 

A number of 226980 exact values of the conduit diameter 
of circular form under pressure was calculated by solving 
numerically the rel. (17) by replacing 𝑄𝑐  by (𝑐𝑄)  with 
𝑐 = 4

𝜋
. Application conditions obtained are: 3.62 × 103 ≤  

ℛ𝑒 ≤ 3.53 × 107, 6.80 × 10−7 ≤ 𝜀/𝐷 ≤ 1.99 × 10−1 , 
10−5 ≤ 𝐽 ≤ 10−2  et 0.5 × 10−3 ≤ 𝑄 ≤ 100.  Then, the 
estimated values of the diameter are calculated on basis of 

application conditions of each formula. The obtained results, 
the applications for each formula and some position 
parameters and their relative error dispersion are respectively 
summarized in the tables 4 and 5. 

A priori, Table 5 shows that the relationship (3) of 
Swamee and Jain [17] and the relation (8) of Swamee and 
Swamee [21] differ only in the writing of their expressions 
and their application conditions. In addition, the two 
expressions Rel. (3) and (8) gives important relative errors 
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compared to available other formulas. The relationship (6) of 
Swamee and Rathie [20] is approximately eight times more 
precise than the two preceding. Certainly, the relationship (9) 
of Babajimopoulos and Terzidis [2] offers better accuracy on 
the maximum value, the mean and the cumulative frequency 
to 80%. Also, the relationship (22) "case of a circular pipe" 
gives a good accuracy on the minimum value and the 
cumulative frequency to 50%. The mean relative error 
obtained by the present proposed relationship is reduced of 
50% comparatively than that calculated by the Rel. (6) but it 
is increased of 25% comparatively than that obtained by the 
Rel. (9). 
Case of a noncircular section under pressure 

The conditions of the numerical experimentation are 
identical to those applied for a circular section. The only 
difference lies on the taken values of α and β. The calculation 
was performed, on the one hand, α = 0.5105 and β = 2.6433 
for an oval section, and on the other hand, α = 0.8293 and β = 
3.2669 for a section in the shape of a horseshoe. Figure 4 
shows that the cumulative frequency distribution of the 
relative errors are almost identical between the two sections 
(ovoid form and horseshoe form) and the circular section. In 
front of this result, the dimensioning of such sections is 
performed at 80% of chance with a maximum relative error 
of the order of 0.25% and at 95% with a maximum relative 
error of the order of 0.40%. 

5. Conclusions 
The relationship proposed in this paper has been applied 

successfully to calculate the total height that serves to 
dimensioning a conduit. The total height H of a conduit is an 
important element in the conception, the exploitation and 
maintenance of pipes and channels. The calculation of this 
element is performed either by numerical methods, graphics, 
and analytical approaches or by the aid of explicit regressive 
equations. The explicit solutions are available in the 
literature for the calculation of the friction coefficient λ, and 
consequently, for the calculation the diameter D of the pipes 
under pressure. The maximum relative error of the proposed 
relationship is less than 0.25% for 80% of calculated values 
and a mean relative error of 0.17%. In the case of completely 
filled circular conduit, the relationship is well classified 
among the various explicit equations mentioned in this 
document where it has both simplicity and accuracy. The 
new approach proposed in the present study offers the 
possibility to solve problems linked to dimensioning of pipes 
and channels with high accuracy comparatively to those 
available in the literature. Consequently, it can be used 
successfully for practical purposes. 

List of Symbols 
Q = water discharge [m3s-1] 
Qc = flow calculation [m3s-1] 

J = hydraulic gradient [m] 
Dh = hydraulic diameter [m] 
Dhp = hydraulic diameter predicts [m] 
Dhe = hydraulic diameter estimated [m] 
D = geometric diameter [m] 
l = length of the conduit or of the channel [m] 
v = mean velocity [ms-1] 
g = Gravitational acceleration [ms-2] 
Re = Reynolds number [adimensional] 
Ai = wetted section of rank i [m] 
Pi = wetted perimeter of rank i [m] 
hi = maximum water height of the zone of rank i [m]  
H = height of the conduit [m] 
Symbols 
ηi = maximum filling ratio of the zone of rank i 
[adimensional] 
ε = absolute roughness [m] 
η = Dimensionless [m] 
µ = dynamic viscosity [Nm-2s-1] 
ρ = density of fluid [kgm-3] 
θ = cross-section angle [radians] 
α = coefficient of the wetted section [adimensional] 
β = coefficient of the wetted perimeter [adimensional] 
τp = shear stress [Nm-2] 
λ = friction factor [adimensional] 
ϕ = function [adimensional] 
Subscripts 
* = [adimensional] 
Max = maximum value  
Min = minimum value 
c = calculation 
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