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Abstract  This article considers the structure of interest rate, applied for d iscounting of risky cash flows. The purpose of 
the article is a presentation of ways of reflecting inflat ion and risks in the calculation of risk d iscount rate. In introduction on 
base of well-known dependences is shown that risk premium depends on inflation rate and (for mult iplicative-type models) 
risk free rate. In  the first part of the art icle three Interest rate algebras are presented. They describe the attitude between 
nominal d iscount rate, risk free rate, inflat ion rate and risk-premium. Th is algebras can presents in additive-type or 
multip licat ive-type versions and have given risk premium value without detailed description the structure of risk premium. 
The second part of the paper has more detailed attitude between risk premium, risk free rate and mathematical expectation of 
losses because of bankruptcy/default. It is shown that the obtained dependences are slightly different and depends on the 
initial p reconditions calculation: the principle of arb itration or  the princip le of certainly equivalent. 
Keywords  Interest Rate, Risk Free Rate, Risk Premium, Probability of Losses  

 

1. Introduction 
There are many different interpretations for structure of 

interest rate: unbiased expectations theory, liquidity 
preference theory, liquid ity premium. Also exist many 
different models for d iscount rate valuation, such as CAPM, 
MCAPM, APM and etc. However most of this models don’t 
give possibility of d irect connection between such 
parameters as inflation, real rate and risk premium. This 
article contains a version of interest rate algebra sets 
developed by the author and applicable for the interpretation 
of structure for risk-free (in first part) and risky (in second 
part) interest rates.  

According to the established tradition, the analysis of the 
structure of interest rate for the purpose of its subsequent use 
in discounting exercises involves the following relations:  

Irving Fisher Expression [1]: 
,1)1()1( −+⋅+= irr r          (1) 

where, r – nominal rate of interest, 
rr – real rate of interest, 
i – the rate of inflation fo r the period, 
Furthermore, decomposition of an interest rate into a 

risk-free component and the risk premium can be expressed 
as [2], [3], [4], [5]: 

,prrr f +=                (2) 

where, r – the interest rate specific to future cash flows  
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from a project (asset) with a certain investment risk,  
rf – interest rate on risk-free investments, 
pr – risk premium for bearing the risk of investing into 

similar pro jects (assets). 
Thus, the work of the classics of investment theory affords 

the conclusion that the level of interest rate is a function of 
the risk-free rate (net of inflat ion), the rate of inflation, and 
the risk premium component: 

,pr+i+r=r rafr               (3) 

1,111 −⋅⋅ )pr+(i)+()r+(=r rmfr       (4) 

where, r – is a nominal rate of interest applicable for 
discounting cash flows from a risky investment project (i.e. 
risky cash flows), 

rfr  – real (net of inflation) risk-free rate of interest,  
prra – risk premium applicable in an additive-type model, 

as in (3), g iven a separate accounting for the inflationary 
component,   

prrm - risk premium applicable in a mult iplicative-type 
model, as in (4), given a separate accounting for the 
inflationary component, 

rfr  –  the value of the real risk-free rate. 
It is evident that there exist the following relat ions 

between prra and prrm :   

,
1 )r+(

irpr
=pr

fr

frra
rm

−
             (5) 

.ir)r(1 frf ++= mra prpr       (6) 
where, rf – the value of the nominal risk-free rate. 

If we decompose the real interest rate rr  in expression (1) 
into the risk-free real rate and the (net of inflation) risk 



 International Journal of Finance and Accounting 2013, 2(4): 220-224 221 
 

premium (prextra
r) 1  , the following transformation of the 

expression obtains:  
For the additive decomposition of the real rate (rr = rfr  + 

prextra
ra): 

i),+(pr+r=

i)+(pr+ir+i+r

=i)+)(pr+r+(=r
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rafrfr
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rafr

1
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111 −

=     (1a) 

For the mult iplicative decomposition of the real rate  
(rr = (1 + rfr)(1 + prextra

rm) – 1): 

.11
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The last components in expressions (1a) and (1b) are the 
observed (ex ante) risk-premia fo r the respective (i.e. 
additive or mult iplicative) models. These expressions show 
that the inflation exerts immediate influence on the ex-ante 
risk premium. Moreover, Expression (1b) indicates that the 
ex-ante risk p remium is also affected by the value of the 
implied real risk-free rate.   

1.1. Interest Rate Algebra -1 (IRA-1) 

Expressions (1a) and (1b) demonstrate that the detailed 
study of the subject of interest rates leads to realization that 
the number of structural representations for interest rates is 
not exhausted merely by the expressions (1)-(4). This is due 
to the following factors: 
• A risk-free rate can be represented either in nominal (rf) 

or real (rfr) terms;  
• A risk-free rate may either include some residual risk 

elements (rf and rfr), or be netted of any such elements (rn f and 
rnfr);  
• The risk premium can be represented differently for the 

additive (pra) o r multiplicative (prm) interest rate models; 
• The risk premium can be represented in nominal (pr) or 

real (prr) terms; 
• The risk premium can be used in conjunction with 

“risk-free rates” which incorporate some residual risk 
elements - rf, rfr (in  this case the risk p remium shall be 
denoted with the “extra” superscript prextra), as well as in 
conjunction with absolute (“pure”) risk-free rates  - rnf, rn fr 
(in this case, the notation for such risk premia does without 
the «extra» superscript - pr).  

Having regard  to these circumstances, an attempt is made 
below to list all possible detailed specifications of the 
interest rate structure, which can be employed in the context 
                                                                 
1 To avoid double-counting in practical terms, only that part of the risk 
premium (prextra

ra) is to be accounted for in this exercise which is not already 
implicitly assumed in the risk-free rate, since risk-free rate metrics used in 
practice, arguably, admit of  the presence of a small element of risk in  them.    

of discounting for risky cash flows (in situations where the 
risk factor is incorporated in the discount rates, and not 
through adjusting the cash flows themselves, as the case may 
be): 

,pr+i+r=r ranfr              (7) 

,pr+r=r anfr                (8) 

,pr+r=r ranf               (9) 

,pr+r=r extra
afr                (10) 

,pr+i+r=r extra
rafr            (11) 

,pr+r=r extra
raf               (12) 

1,11 −)pr+)(r+(=r rmnf      (13) 

1,111 −i)+)(pr+)(r+(=r rmnfr  (14) 

1,11 −)pr+)(r+(=r extra
rmf       (15) 

1,111 −i)+)(pr+)(r+(=r extra
mrfr    (16) 

1,11 −)pr+)(r+(=r mnfr        (17) 

1,11 −)pr+)(r+(=r extra
mfr     (18) 
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=
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     (19) 

,pr+r=

pr+iα)(+iα+r=r

pranfpr

ranfr =⋅−⋅ 1
       (20) 

where: 
r – the nominal rate of interest/return that accounts for 

risks, 
rnfr - pure real risk-free rate (i.e . one net of all risks and 

inflation), 
rnf – pure nominal risk-free rate, 
i – the rate of inflation, 
rf  – nominal risk-free rate, that includes some residual 

elements of risk in pract ical terms (residual risk elements), 
rfr  – real risk-free rate with some residual risk elements, 
prrm – full risk premium in the multip licat ive 

representation, net of inflation, 
prm – fu ll risk premium in  the multiplicative representation, 

incorporating inflation, 
prra – fu ll risk premium in  the additive representation, net 

of inflation, 
pra – fu ll risk premium in the additive representation, 

incorporating inflation, 
prextra

m – partial risk premium over and above the residual 
risk elements in the risk-free rate rf ,  in the mult iplicative 
representation (incorporating inflation), 

prextra
rm – partial risk premium over and above the residual 

risk elements in the risk-free rate rf ,  in the mult iplicative 
representation (net of inflation), 

prextra
a - partial risk premium over and above the residual 
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risk elements in the risk-free rate rf , in the additive 
representation (incorporating inflation), 

prextra
ra – partial risk premium over and above the residual 

risk elements in the risk-free rate rf , in the additive 
representation (net of inflation), 

rfpr –  risk-free rate with partial account for in flat ion: rfpr = 
rfr  + αi , 

rnfpr – pure risk-free rate with partial account for inflation: 
rnfpr = rnfr + αi , 

prextra
pra –  partial risk premium over and above the 

residual risk elements in the risk-free rate rfpr ,  in the 
additive representation (with partial account for  inflation): 
prextra

pra= prextra
ra + (1 - α)i,  

prpra – risk premium with a partial account for inflat ion 
applicable in the additive models and to be used in 
conjunction with the rn fpr risk-free rate partially accounting 
for inflat ion: prpra =  prra +  (1 -  α)i , 

α – a share (fraction) of inflat ion reflected (included) in  
the risk-free rate,  

0 ≤  α ≤ 1, 
(1 – α) – the remain ing share (fraction) of inflat ion 

reflected (included) in the risk premium. 
It can be ascertained that Models in (19) and (20) reflect 

valid options for inflation accounting -- both in  relation to the 
risk-free rate and the risk p remium. 

1.2. Interest Rate Algebra -2 (IRA-2) 

As the dealings in actual professional practice are for the 
most part limited to the observed “risk-free” rates which 
contain (or may contain) the admixtures of risk elements (in 
other words, we have no data on the values of pure risk-free 
market interest rates rnfr and rnf), practical value attaches only 
to those Expressions, out of the set of Expressions (6)-( 19), 
which do not contain pure risk-free rates  (rnfr and rnf), i.e. to 
Expressions (9)-(11), (14)-(15), (17)-(18). Since all these 
Expressions carry the “extra” superscript in the notation for 
risk premia, it now makes sense to do away with using this 
superscript for sheer practicality. To avoid confusion in what 
follows, let us make use of a new notation, removing the 
“extra” superscript and replacing lower-case letters with the 
capital ones (it  is possible, of course, to continue with using 
the lower-case letters -- bearing in mind that the applicable 
value of the risk premium is only partial, as some of its 
elements have actually been “woven” into the practically 
observed equivalent for the risk-free rate): 

,+i+r=R rafr Pr                (21) 

,+r=R raf Pr                (22) 

,+r=R afr Pr                 (23) 

1,Pr11 −)+)(r+(=R rmf           (24) 

1,1Pr11 −i)+)(+)(r+(=R rmfr         (25) 

1,Pr11 −)+)(r+(=R mfr             (26) 

,+r=R prafpr Pr               (27) 

where, R is an equivalent of r , Pr –  of pra
extra , and Prpra – of 

prpra
extra in terms of notation previously employed in the 

Expressions (7)-(20). 
As seen from the above expressions, IRA-2 assumes a 

complete absence of risk elements in  the risk-free rate. This 
option algebra, as well as IRA-1, allows for the possibility of 
presentation of models for valuing the discount rate in 
multip licat ive and additive forms. 

1.3. Interest Rate Algebra -3 (IRA-3) 

Having regard  to the fact that appraisers and investment 
analysts for the most part limit themselves to the 
consideration of addit ive-type interest rate models, the 
immediately preceding algebra of interest rates (IRA-2) can 
be further simplified by excluding from it all the 
multip licat ive-type models and leaving in only the additive 
models. Simultaneously, with the multip licat ive models no 
longer featuring in the algebra, we shall exclude from the 
ensuing expressions all “a” subscripts denoting the 
membership in the additive-type model class. As a result, 
this new, simplest, algebra set features only additive models 
in the following representations: 

,pr+i+r=r rfr                (28) 

,pr+r=r rf                  (29) 

pr,+r=r fr                  (30) 

,pr+r=

pr+α)i(+αi+r=r

prfpr

rfr =−1
    (31) 

where r is the equivalent of R, prr - of Prra,  pr  - of Prra, prpr 
- of Prpra in terms of notation previously used in the 
Expressions (21) – (23), (27), namely: 

r –  is the nominal rate of interest applicable for 
discounting after-tax cash flows from a risky investment 
project (risky cash flows), 

rfr  – real (i.e. net of in flat ion) risk-free interest rate 
(essentially reflecting the above mentioned “usurious” (i.e. 
“net-net-net”) interest),  

prr – real (net of inflation) risk premium, 
pr – nominal risk premium that includes the inflat ionary 

component, 
ά – a share (fraction) of inflat ion included (reflected) in  

the risk-free rate rfpr, 
(1 - ά) –  the remain ing share (fraction) of inflat ion 

included (reflected) in the risk premium prpr. 
As seen from the above expressions, in the General case, 

inflation can be taken into account as the risk-free rate and 
the risk premium. However, it is important to avoid double 
counting: in other words, inflat ion can only redistribute 
between the risk-free rate and a risk p remium. 

2. Accounting for Default and 
Insolvency Risks 
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Let us now take up the subject of the impact of risk on 
discount rates from a d ifferent standpoint. The 
lack-of-arbitrage-opportunities condition can be expressed 
as follows: 

,r=pk)(+)p(r fdd ⋅−−⋅ 11            (32) 

where, pd – probability of insolvency/default (or, of a 
shortfall in payments, put simply),  k –  losses given default 
(as a fraction of the amount outstanding),  

rf – risk-free rate,  
r1 – expected return on investment into shares, at a 

favorable outcome.  
On the basis of Expression (32), it  is possible to obtain an 

expression linking the above-mentioned expected return 
with the risk-free rate and the parameters of risk: 

.
11

d

df

p
kp+r

=r
−

⋅
                 (33) 

Expression (33), in turn, is amenable for the quantification 
of the risk p remium: 

-given the additive specification for the risk-free rate and 
the risk premium: 
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- given the multip licative specification for the risk-free 
rate and the risk premium: 
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           (35) 

On the other hand, the relation between the risky rate and 
risk parameters can be obtained from a different 
consideration: 

,
1
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1
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d
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r +
⋅−

=
+

            (36) 

where, the numerator in the right-hand side of this equation 
reflects the adjustment to expected cash flows that 
transforms them into their certainty equivalents. Solving 
Equation (36) for r results in the following expression for the 
risky rate: 

,
12 kp

kpr
r

d

df

⋅−

⋅+
=              (37) 

where r2 –  is the estimate for risky rate obtained on the basis 
of Condition (36). 

Expression (37) also allows for deriv ing an expression for 
the risk premium: 

- for the additive relat ion between the risk-free rate and the 
risk premium: 
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            (38) 

- for the mult iplicative relation between the risk-free rate 
and the risk premium: 
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Despite their similarity, The Expressions (33) and (37) are 
not identical. The author of this Paper is hard put to give a 
conclusive explanation to the disparity between the formulas, 
however, it can be assumed that its nature is associated with 
the fact that in  real life  the number of possible event 
scenarios is significantly above the two outcomes implied in 
the initial lack-of-arbitrage hypothesis.     

In this regard, and as of the writ ing, there is a reason to 
repose greater trust in the Expression (37).  

Subsequent to deriving these formulas, the author of this 
Paper found in the literature[6]2 an expression similar (even 
to the point of notation) to  one in  (33), which, as suggested in 
the source, can be used for estimating returns on risky bonds. 
The respective passage from the work of W. Sharpe is 
reproduced below:   

“How high should a default risk premium be for a bond? 
According to one model [7], the answer depends both on the 
probability of default and on the possible financial losses of 
bondholders given the default. Consider a bond whose 
probability of default is constant every year (provided that 
the payments for previous years have been met). Let the 
probability of default during a given year be denoted as pd. 
Assume that, if the payments are remiss on the bond, the 
owner of each bond recovers a part, equal (1 - λ), of its 
market price in effect a year ago. According to this model, 
the bond shall be fairly priced, if its yield to maturity, “y”, 
equals to: 

,
1 d

d

p
py

y
−
+

=
λ

 (15.43)           (40) 

where, y denotes the expected yield to maturity of the bond. 
The difference, d, between the expected y ield  to maturity “y” 
and the expected [baseline] yield y  has been previously 
alluded to as the default risk premium. Using the expression 
(15.4), we can see that this difference fo r fairly priced bonds 
should be equal to: 

                                                                 
2  In W. Sharpe “ Investments” (Russian edition, by Infra-M Publishers, 
Moscow, 2007). pp. 432-433, at the point where the work of Gordon Pye 
(Gordon Pye «Gauging the Default Premium», Financial Analysts Journal, 30, 
no.1 (January/February 1974), pp. 423-434) is being referenced.  
3 For the integrity of exposition, the numbering of formulas in the continuing 
quotation below is maintained in a double style—the original one (to the left), 
and one in conformity with the ongoing sequence in the present work (to the 
right).   
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  (15.5)  ”   (41) 

(end of the quote). 
In conclusion, it bears mentioning that cash flow 

discounting can be exercised in one of the two  following 
ways: 
• Each period payment is discounted using a discount rate 

specific to that period; 
• A single discount rate is used for all periods - which 

corresponds to the “duration” of expected cash flows. The 
problem encountered with this approach is the difficu lty of 
giving simultaneous/summary estimation to a set of rates in 
the form of an average expected interest rate (scoping over 
the investment horizon) – estimation which would not fail to 
reflect all the possible risks in the capital market.    

3. Conclusions 
On a final note, it is necessary to sum up the principal 

point covered in this paper. 
• First of all, the inflation exerts immediate influence on 

the ex-ante risk premium (see Expressions (1a), (1b));  
• Secondly, it should be noted that ex-ante risk premium is 

also affected by the value of the implied real risk-free rate 
(see Expression (1b));  
• Thirdly, the relationship between the discount rate and 

the risk has non-linear character (see Expressions (33), (37)); 
• Finally, model estimates of the risk premium should 

correspond to the applied model of the calculat ion of the risk 
discount rate (see Expressions (34), (35), (38), (39)). 

Received in this art icle the results can hope to reach a 
more accurate calculations and the avoidance of errors in 
estimating discount rates. 
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