
International Journal of Ecosystem 2014, 4(4): 197-202 
DOI: 10.5923/j.ije.20140404.06 

 

Conservation of a Resource-Consumer Systemby 
Imposing Taxation on Pollution 

Jiwei He1,2 

1School of International Trade and Economics, University of International Business and Economics, Beijing, 100029, China 
2School of Mathematics and Physics, North China Electric Power University, Baoding 071003, China 

 

Abstract  This paper studies the effects of pollution taxation on population in a polluted environment. We improve the 
classical Gallopin resource-consumer model, and assume that pollution taxation is imposed on toxicant emitters if the 
emission exceeds the amount permitted. We give some sufficient conditions under which the species in Gallopin system 
persists or becomes extinct. The threshold between persistence and extinction in some cases is obtained. We also verify 
these results with the help of numerical simulation. 
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1. Introduction1 
Uncontrolled contribution of toxicant to the environment 

has led many species to extinction and several others at the 
verge of extinction. It has been shown that toxicant can 
decrease the birth rate, increase the death rate and reduce 
the carrying capacity of the environment. One efficient way 
to control the environment pollution is imposing pollution 
taxation on toxicant emitters. In this paper, we introduce a 
mathematical model to analyze the effects of pollution 
taxation on Gallopin system in a polluted environment.  

The study of deterministic dynamic population models 
with toxicant effects was established by Hallam and his 
colleagues in the 1980s [1, 2, 3]. This model has been 
improved by many scholars [4, 5, 6]. Srinivasu [7] 
improved the model of Hallam by considering the direct 
effects of the toxicant in the environment on the population, 
and determined aclean-up policy to be implemented at the 
source of pollutants in order to conserve a population. He et 
al [8] studied the survival of a single species in the polluted 
environment, considering the organism’s uptake of toxicant 
from the environment and egestion of the internal toxicant 
to the environment. He and Ma [9] studied a Gallopin 
resource-consumer model, and obtained the threshold 
between the persistence and extinction of the consumer.  
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Buonomo [10] et al studied the effects of variation of the 
population amount on the toxicant concentration in the 
organism and environment. He and Wang [11, 12] 
improved the ordinary differential equation system induced 
by Buonomo [10], and also applied to the Gallopin resource 
- consumer system. He [13] studied the effects of taxation 
on a single logistic species in the polluted environment.  

This paper improves the classical Gallopin resource - 
consumer system in a polluted environment, on the 
assumption of the living organisms absorbing part of the 
toxicant into their bodies so that the dynamics of the 
population is affected by this (internal) toxicant. It is 
assumed that pollution taxation is imposed on toxicant 
emitters if their emission exceeds the amount permitted by 
the government. This paper only discusses the conditions of 
the emission beyond the limit. It also considers the negative 
effects of taxation evasion. The sufficient conditions for 
persistence or extinction of the population are obtained, and 
some numerical simulation is given. 

2. The Model 
The study is relied on the hypothesis of a complete 

spatial homogeneous environment without migration. Let 
𝑥𝑥(𝑡𝑡) represent the population of the consumer species at 
time 𝑡𝑡, 𝑎𝑎(𝑡𝑡) denote the quantity of the resources at time 𝑡𝑡, 
𝐶𝐶0(𝑡𝑡) be the toxicant concentration in a body, 𝐶𝐶𝑒𝑒(𝑡𝑡) be 
the toxicant concentration of the environment at time 𝑡𝑡, and 
𝐼𝐼(𝑡𝑡) be the pollution taxation imposed on the emitters. A 
single species resource-consumer model of Gallopin system 
[9, 14, 15] in a polluted environment is improved as follows 
(𝑀𝑀1):  

𝑑𝑑𝑑𝑑 (𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑥𝑥(𝑡𝑡)(𝑟𝑟0 − 𝛼𝛼𝐶𝐶0(𝑡𝑡) − 𝑏𝑏𝑏𝑏𝑒𝑒−
𝑛𝑛𝑛𝑛 (𝑡𝑡)
𝑥𝑥(𝑡𝑡) ),    (1) 
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𝑑𝑑𝑑𝑑 (𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑡𝑡) − 𝜔𝜔𝜔𝜔(𝑡𝑡)(1 − 𝑒𝑒−
𝑛𝑛𝑛𝑛 (𝑡𝑡)
𝑥𝑥(𝑡𝑡) ),        (2) 

𝑑𝑑𝐶𝐶0(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝐶𝐶𝑒𝑒(𝑡𝑡) − (𝑔𝑔 + 𝑚𝑚)𝐶𝐶0(𝑡𝑡),         (3) 

dCe(t)
dt

= −𝑘𝑘1𝐶𝐶𝑒𝑒(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝑔𝑔1𝑥𝑥(𝑡𝑡)𝐶𝐶0(𝑡𝑡) 

                  −ℎ𝐶𝐶𝑒𝑒(𝑡𝑡) + 𝑢𝑢(𝑡𝑡) − 𝜌𝜌𝜌𝜌(𝑡𝑡),           (4) 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝜃𝜃(𝐶𝐶𝑒𝑒(𝑡𝑡) − 𝐴𝐴) − 𝜃𝜃0𝐼𝐼(𝑡𝑡).          (5) 

In this model, 𝑓𝑓(𝑡𝑡) is the continuous growth rate of the 
resource in the absence of the consumer. 𝑢𝑢(𝑡𝑡) , the 
exogenous toxicant input rate, defined on  [0, +∞), is a 
bounded non-negativecontinuous function, and 
sup𝑡𝑡≥0 𝑢𝑢 (𝑡𝑡): = 𝑢𝑢1 > 0. 𝑟𝑟0,𝛼𝛼, 𝑏𝑏,𝜔𝜔,𝑛𝑛, 𝑘𝑘,𝑔𝑔,𝑚𝑚, 𝑘𝑘1,𝑔𝑔1,ℎ,𝜌𝜌  are 
positive constants. 𝑟𝑟0 is the intrinsic growth rate of the 
species in the absence of the toxicant in the environment. 𝛼𝛼 
represents the species response to the toxicant present in the 
organism. 𝑘𝑘 denotes an organism’s net uptake rate of the 
toxicant from the environment. 𝑔𝑔  and 𝑚𝑚  represent the 
egestion and deputation rates of the toxicant in an organism. 
The constant 𝑘𝑘1 is given by 𝑘𝑘𝑚𝑚0/𝑚𝑚𝑒𝑒 , where 𝑚𝑚0 and 𝑚𝑚𝑒𝑒  
represent the average mass of an individual in the 
population and the total mass of the medium in the 
environment, respectively. Similarly 𝑔𝑔1 = 𝑔𝑔𝑚𝑚0/𝑚𝑚𝑒𝑒 . ℎ 
denotes the loss rate of the toxicant in the environment due 
to natural degradation. 𝜌𝜌  is the taxation repulsion 
coefficient. 𝜃𝜃 is the coefficient of the taxation imposed on 
the emitters. Taxation is imposed only if 𝐶𝐶𝑒𝑒  exceeds the 
permitted limit 𝐴𝐴 (For convenience sake, we assume 𝐶𝐶𝑒𝑒  
always exceeds 𝐴𝐴, the limit is up to which there is bare 
harm to the population.). 𝜃𝜃0  denotes some practical 
difficulties(such as tax evasion) on implementing the tax 
system. The initial values are 𝑥𝑥(0) > 0,  𝑎𝑎(0) > 0,  0 ≤
𝐶𝐶0(0) < 1,  0 ≤ 𝐶𝐶𝑒𝑒(0) < 1,  𝐼𝐼(0) ≥ 0. 

Some notations defined:  

𝑀𝑀𝑎𝑎 = 𝑎𝑎(0) + � 𝑓𝑓
+∞

0
(𝑡𝑡)𝑑𝑑𝑑𝑑, 𝑀𝑀𝑥𝑥 =

𝑏𝑏𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏 − 𝑟𝑟0

𝑀𝑀𝑎𝑎 ,

⟨𝑣𝑣(𝑡𝑡)⟩ =
1
𝑡𝑡
� 𝑣𝑣
𝑡𝑡

0
(𝑠𝑠)𝑑𝑑𝑑𝑑,

 

𝑀𝑀𝑦𝑦 = �𝑒𝑒
𝑟𝑟0+𝑛𝑛𝑛𝑛−𝑏𝑏𝑏𝑏

𝑏𝑏𝑏𝑏 , 𝑏𝑏𝑏𝑏 > 𝑟𝑟0 + 𝑛𝑛𝑛𝑛,
1, 𝑏𝑏𝑏𝑏 ≤ 𝑟𝑟0 + 𝑛𝑛𝑛𝑛.

� 

Definition 1. A population 𝑥𝑥  is said to be weakly 
persistent if limsup 𝑡𝑡→+∞ 𝑥𝑥 (𝑡𝑡) = 0; it goes to extinction if 
lim 𝑡𝑡→+∞ 𝑥𝑥 (𝑡𝑡) = 0. 

We have the following lemmas similar to lemma 1 and 
lemma 2 in Ref. 9.  

Lemma 1. For model (𝑀𝑀1) , the field 
S = {(𝑥𝑥(𝑡𝑡),𝑎𝑎(𝑡𝑡),𝐶𝐶0(𝑡𝑡),𝐶𝐶𝑒𝑒(𝑡𝑡), 𝐼𝐼(𝑡𝑡)): 𝑥𝑥(𝑡𝑡) > 0,𝑎𝑎(𝑡𝑡) > 0,  
𝐶𝐶0(𝑡𝑡) > 0,𝐶𝐶𝑒𝑒(𝑡𝑡) > 0, 𝐼𝐼(𝑡𝑡) > 0} is an invariant set. 

Lemma 1 shows that if the initial values of model (M1) 
are in set S, then the solutions are always in S. 

Both 𝐶𝐶0(𝑡𝑡) and 𝐶𝐶𝑒𝑒(𝑡𝑡) in model (M1) are concentrations 
of the toxicant, so the inequalities  

0 ≤ 𝐶𝐶0(𝑡𝑡) ≤ 1,  0 ≤ 𝐶𝐶𝑒𝑒(𝑡𝑡) ≤ 1 

must be satisfied to be realistic. These limitations should be 
reflected in some conditions among the coefficients of 
model (M1). These conditions are shown in the following 
lemma. 

Lemma 2. For model (𝑀𝑀1), if 𝑔𝑔 ≤ 𝑘𝑘 ≤ 𝑔𝑔 + 𝑚𝑚,  𝑢𝑢1 < ℎ, 
then 0 ≤ 𝐶𝐶0(𝑡𝑡) ≤ 1, 0 ≤ 𝐶𝐶𝑒𝑒(𝑡𝑡) ≤ 1 for all 𝑡𝑡 > 0. 

If the continuous growth rate of the resourcesatisfies 
some conditions, then the amount of the resource, 
population and pollution taxation must be limited. 

Lemma 3. For model (𝑀𝑀1) , if ∫ 𝑓𝑓+∞
0 (𝑡𝑡)𝑑𝑑𝑑𝑑 <

+∞,𝑏𝑏𝑏𝑏 − 𝑟𝑟0 > 0 , then 𝑎𝑎(𝑡𝑡) ≤ 𝑀𝑀𝑎𝑎 , lim sup𝑡𝑡→+∞ 𝑥𝑥 (𝑡𝑡) ≤
𝑀𝑀𝑥𝑥  and lim sup𝑡𝑡→+∞ 𝐼𝐼 (𝑡𝑡) ≤ 𝜃𝜃

𝜃𝜃0
. 

Proof. Equation (2) means 𝑑𝑑𝑑𝑑 (𝑡𝑡)
𝑑𝑑𝑑𝑑

≤ 𝑓𝑓(𝑡𝑡). Then  

𝑎𝑎(𝑡𝑡) ≤ 𝑎𝑎(0) + � 𝑓𝑓
𝑡𝑡

0
(𝑠𝑠)𝑑𝑑𝑑𝑑 ≤ 𝑎𝑎(0) + � 𝑓𝑓

+∞

0
(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝑀𝑀𝑎𝑎 . 

From equation (1), we have  

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

≤ 𝑥𝑥(𝑡𝑡)�𝑟𝑟0 − 𝑏𝑏𝑏𝑏�1 −
𝑛𝑛𝑛𝑛(𝑡𝑡)
𝑥𝑥(𝑡𝑡)

�� 

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) − (𝑏𝑏𝑏𝑏 − 𝑟𝑟0)𝑥𝑥(𝑡𝑡) 
≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑀𝑀𝑎𝑎 − (𝑏𝑏𝑏𝑏 − 𝑟𝑟0)𝑥𝑥(𝑡𝑡) 

Based on the standard comparison theorem, we get  

lim sup
𝑡𝑡→+∞

𝑥𝑥 (𝑡𝑡) ≤
𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏𝑏𝑏 − 𝑟𝑟0
𝑀𝑀𝑎𝑎 = 𝑀𝑀𝑥𝑥 . 

Analogously, from equation (5) we obtain 

lim sup
𝑡𝑡→+∞

𝐼𝐼 (𝑡𝑡) ≤ 𝜃𝜃/𝜃𝜃0. 

3. Main Results 
The problem we are interested in is to find the conditions 

under which the population in model (𝑀𝑀1) is persistent or 
goes to extinction. 

Theorem 1. For model (𝑀𝑀1), if 𝑔𝑔 ≤ 𝑘𝑘 ≤ 𝑔𝑔 + 𝑚𝑚,𝑢𝑢1 < ℎ 
and lim inf𝑡𝑡→+∞ 𝑓𝑓 (𝑡𝑡) > 0 , lim inf𝑡𝑡→+∞⟨𝑢𝑢(𝑡𝑡)⟩ < (ℎ +
𝜌𝜌𝜌𝜌
𝜃𝜃0

) 𝑟𝑟0(𝑔𝑔+𝑚𝑚)
𝑘𝑘𝑘𝑘

− 𝜌𝜌𝜌𝜌
𝜃𝜃0
𝐴𝐴 , then the population 𝑥𝑥(𝑡𝑡)  will be 

weakly persistent. 
Proof. If the conclusion of theorem is false, i.e. 

lim𝑡𝑡→+∞ 𝑥𝑥 (𝑡𝑡) = 0, there will be a contradiction.  
Firstly, we will show that  

lim inf
𝑡𝑡→+∞

 ⟨𝐶𝐶0(𝑡𝑡)⟩ <
𝑟𝑟0

𝛼𝛼
. 

Equations (3), (4) and (5) can be rewritten as:  
C0(t)−C0(0)

t
= k⟨Ce(t)⟩ − (g + m)⟨C0(t)⟩,   (6) 

Ce(t) − Ce(0)
t

= −k1⟨Ce(t)x(t)⟩ + g1⟨C0(t)x(t)⟩ 

−ℎ⟨𝐶𝐶𝑒𝑒(𝑡𝑡)⟩ + ⟨𝑢𝑢(𝑡𝑡)⟩ − 𝜌𝜌⟨𝐼𝐼(𝑡𝑡)⟩.   (7) 
𝐼𝐼(𝑡𝑡)−𝐼𝐼(0)

𝑡𝑡
= 𝜃𝜃⟨𝐶𝐶𝑒𝑒(𝑡𝑡)⟩ − 𝜃𝜃𝜃𝜃 − 𝜃𝜃0⟨𝐼𝐼(𝑡𝑡)⟩ .     (8) 

Since 𝐶𝐶0(𝑡𝑡) and 𝐶𝐶𝑒𝑒(𝑡𝑡) are bounded, then 
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lim
𝑡𝑡→+∞

⟨𝐶𝐶𝑒𝑒(𝑡𝑡)𝑥𝑥(𝑡𝑡)⟩ = lim
𝑡𝑡→+∞

⟨𝐶𝐶0(𝑡𝑡)𝑥𝑥(𝑡𝑡)⟩ = 0. 

From expression (6) (7) and (8), we can obtain that  

lim inf
𝑡𝑡→+∞

⟨𝑢𝑢(𝑡𝑡)⟩ = �ℎ +
𝜌𝜌𝜌𝜌
𝜃𝜃0
� lim inf

𝑡𝑡→+∞
⟨𝐶𝐶𝑒𝑒(𝑡𝑡)⟩ −

𝜌𝜌𝜌𝜌
𝜃𝜃0
𝐴𝐴. 

= (ℎ +
𝜌𝜌𝜌𝜌
𝜃𝜃0

)
𝑔𝑔 + 𝑚𝑚
𝑘𝑘

lim inf
𝑡𝑡→+∞

⟨𝐶𝐶0(𝑡𝑡)⟩ −
𝜌𝜌𝜌𝜌
𝜃𝜃0
𝐴𝐴. 

Then lim inf
𝑡𝑡→+∞

⟨𝐶𝐶0(𝑡𝑡)⟩ < 𝑟𝑟0
𝛼𝛼

 follows immediately according 
to the conditions of the theorem.  

Since lim inf
𝑡𝑡→+∞

𝑓𝑓(𝑡𝑡) > 0, there exist 𝑡𝑡1 > 0 and 0 < 𝛿𝛿 ≤
𝜔𝜔𝜔𝜔𝜔𝜔(𝑡𝑡1) such that 𝑓𝑓(𝑡𝑡) > 𝛿𝛿 for 𝑡𝑡 ≥ 𝑡𝑡1. Taylor’s theorem 

enables us to write 𝑒𝑒−
𝑛𝑛𝑛𝑛 (𝑡𝑡)
𝑥𝑥(𝑡𝑡) ≥ 1 − 𝑛𝑛𝑛𝑛 (𝑡𝑡)

𝑥𝑥(𝑡𝑡)
. Then from 

equation (2) we have 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

≥ 𝛿𝛿 − 𝜔𝜔𝜔𝜔(𝑡𝑡)�1 − �1 −
𝑛𝑛𝑛𝑛(𝑡𝑡)
𝑥𝑥(𝑡𝑡)

�� 

= 𝛿𝛿 − 𝜔𝜔𝜔𝜔𝜔𝜔(𝑡𝑡),    𝑡𝑡 ≥ 𝑡𝑡1. 

The solution of the differential equation 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛿𝛿 − 𝜔𝜔𝜔𝜔 ⋅ 𝑣𝑣, 
starting from (𝑡𝑡1,  𝑎𝑎(𝑡𝑡1)), is  

𝑣𝑣(𝑡𝑡) =
𝛿𝛿
𝜔𝜔𝜔𝜔

+ (𝑎𝑎(𝑡𝑡1) −
𝛿𝛿
𝜔𝜔𝜔𝜔

)𝑒𝑒−𝜔𝜔𝜔𝜔 (𝑡𝑡−𝑡𝑡1). 

Then from a standard comparison theorem, we have 
𝑎𝑎(𝑡𝑡) ≥ 𝑣𝑣(𝑡𝑡),  𝑡𝑡 > 𝑡𝑡1 . Since 0 < 𝛿𝛿 ≤ 𝜔𝜔𝜔𝜔𝜔𝜔(𝑡𝑡1) , then 
𝑣𝑣(𝑡𝑡) ≥ 𝛿𝛿

𝜔𝜔𝜔𝜔
=: 𝑎̄𝑎 > 0,  𝑡𝑡 ≥ 𝑡𝑡1. That is 𝑎𝑎(𝑡𝑡) ≥ 𝑎̄𝑎 > 0,  𝑡𝑡 ≥ 𝑡𝑡1. 

Then lim inf𝑡𝑡→+∞ 𝑎𝑎 (𝑡𝑡) =:𝑚𝑚𝑎𝑎 > 0.  
For any 𝑒𝑒𝑥𝑥 > 𝑥𝑥, then 𝑒𝑒−𝑥𝑥 < 1

𝑥𝑥
. So equation (1) implies 

that  
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

≥ 𝑥𝑥(𝑡𝑡)�𝑟𝑟0 − 𝛼𝛼𝐶𝐶0(𝑡𝑡) − 𝑏𝑏𝑏𝑏 ⋅
𝑥𝑥(𝑡𝑡)
𝑛𝑛𝑛𝑛(𝑡𝑡)

� 

≥ 𝑥𝑥(𝑡𝑡)�𝑟𝑟0 − 𝛼𝛼𝐶𝐶0(𝑡𝑡) −
𝑏𝑏𝑏𝑏
𝑛𝑛𝑎̄𝑎

𝑥𝑥(𝑡𝑡)� ,   𝑡𝑡 > 𝑡𝑡1. 

Dividing this inequality by 𝑥𝑥(𝑡𝑡) and then integrating it 
from 𝑡𝑡1 to 𝑡𝑡, we can get that 

ln 
𝑥𝑥(𝑡𝑡)
𝑥𝑥(𝑡𝑡1)

≥ 𝑟𝑟0(𝑡𝑡 − 𝑡𝑡1) − 𝛼𝛼� 𝐶𝐶0

𝑡𝑡

𝑡𝑡1

(𝑠𝑠)𝑑𝑑𝑑𝑑 −
𝑏𝑏𝑏𝑏
𝑛𝑛𝑎̄𝑎

� 𝑥𝑥
𝑡𝑡

𝑡𝑡1

(𝑠𝑠)𝑑𝑑𝑑𝑑, 

1
𝑡𝑡 − 𝑡𝑡1

ln 
𝑥𝑥(𝑡𝑡)
𝑥𝑥(𝑡𝑡1) +

𝑏𝑏𝑏𝑏
𝑛𝑛𝑎̄𝑎

⋅
1

𝑡𝑡 − 𝑡𝑡1
� 𝑥𝑥
𝑡𝑡

𝑡𝑡1

(𝑠𝑠)𝑑𝑑𝑑𝑑 

≥ 𝑟𝑟0 − 𝛼𝛼 ⋅
1

𝑡𝑡 − 𝑡𝑡1
� 𝐶𝐶0

𝑡𝑡

𝑡𝑡1

(𝑠𝑠)𝑑𝑑𝑑𝑑. 

Then we take the upper limit on both sides of the last 
inequality,  

lim sup
𝑡𝑡→+∞

1
𝑡𝑡 − 𝑡𝑡1

ln 
𝑥𝑥(𝑡𝑡)
𝑥𝑥(𝑡𝑡1)

+ lim sup
𝑡𝑡→+∞

𝑏𝑏𝑏𝑏
𝑛𝑛𝑎̄𝑎

⋅
1

𝑡𝑡 − 𝑡𝑡1
� 𝑥𝑥
𝑡𝑡

𝑡𝑡1

(𝑠𝑠)𝑑𝑑𝑑𝑑 

≥ 𝑟𝑟0 − 𝛼𝛼 ⋅ lim inf𝑡𝑡→+∞
1

𝑡𝑡−𝑡𝑡1
∫ 𝐶𝐶0
𝑡𝑡
𝑡𝑡1

(𝑠𝑠)𝑑𝑑𝑑𝑑.      (9) 

The following expression is obvious to be obtained:  

⟨𝐶𝐶0(𝑡𝑡)⟩ =
1
𝑡𝑡
� 𝐶𝐶0

𝑡𝑡

0
(𝑠𝑠)𝑑𝑑𝑑𝑑 

=
1
𝑡𝑡
� 𝐶𝐶0

𝑡𝑡1

0
(𝑠𝑠)𝑑𝑑𝑑𝑑 +

𝑡𝑡 − 𝑡𝑡1

𝑡𝑡
⋅

1
𝑡𝑡 − 𝑡𝑡1

� 𝐶𝐶0

𝑡𝑡

𝑡𝑡1

(𝑠𝑠)𝑑𝑑𝑑𝑑. 

Which leads to  

lim inf
𝑡𝑡→+∞

⟨𝐶𝐶0(𝑡𝑡)⟩ = lim inf
𝑡𝑡→+∞

1
𝑡𝑡 − 𝑡𝑡1

� 𝐶𝐶0

𝑡𝑡

𝑡𝑡1

(𝑠𝑠)𝑑𝑑𝑑𝑑 <
𝑟𝑟0

𝛼𝛼
. 

The assumption lim 𝑡𝑡→+∞ 𝑥𝑥 (𝑡𝑡) = 0  gives that 
lim sup𝑡𝑡→+∞

1
𝑡𝑡−𝑡𝑡1

∫ 𝑥𝑥𝑡𝑡𝑡𝑡1
(𝑠𝑠)𝑑𝑑𝑑𝑑 = 0,then by inequality (9), we 

have lim sup𝑡𝑡→+∞
1

𝑡𝑡−𝑡𝑡1
ln 𝑥𝑥(𝑡𝑡)

𝑥𝑥(𝑡𝑡1)
> 0. This is impossible. In 

fact, from the assumption lim𝑡𝑡→+∞ 𝑥𝑥 (𝑡𝑡) = 0, we know that  

lim sup
𝑡𝑡→+∞

1
𝑡𝑡 − 𝑡𝑡1

ln 
𝑥𝑥(𝑡𝑡)
𝑥𝑥(𝑡𝑡1)

≤ 0. 

So the conclusion of theorem 1 is true.  
Theorem 2. For model (𝑀𝑀1), if the conditions of lemmas 

2 and 3 are satisfied and one of the following condition 
groups holds, then the population will go to local extinction.  

(I) lim inf
𝑡𝑡→+∞

⟨𝑢𝑢(𝑡𝑡)⟩ > (ℎ+𝜌𝜌𝜌𝜌 /𝜃𝜃0)𝑟𝑟0(𝑔𝑔+𝑚𝑚)
𝑘𝑘𝑘𝑘

− 𝜌𝜌𝜌𝜌𝜌𝜌
𝜃𝜃0

, and  

�(ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚) > 𝑘𝑘𝑔𝑔1𝑀𝑀𝑥𝑥 ,
𝑘𝑘1𝛼𝛼 ≤ 𝑔𝑔1𝑟𝑟0.

� 

(II) lim inf
𝑡𝑡→+∞

⟨𝑢𝑢(𝑡𝑡)⟩ > (ℎ+𝜌𝜌𝜌𝜌 /𝜃𝜃0)𝑟𝑟0(𝑔𝑔+𝑚𝑚)
𝑘𝑘𝑘𝑘

+ 𝑘𝑘1𝛼𝛼−𝑟𝑟0𝑔𝑔1
𝛼𝛼

𝑀𝑀𝑥𝑥 −
𝜌𝜌𝜌𝜌𝜌𝜌
𝜃𝜃0

, and  

�(ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚) > 𝑘𝑘𝑔𝑔1𝑀𝑀𝑥𝑥 ,
𝑘𝑘1𝛼𝛼 > 𝑔𝑔1𝑟𝑟0.

� 

(III) lim inf
𝑡𝑡→+∞

⟨𝑢𝑢(𝑡𝑡)⟩ > (ℎ+𝜌𝜌𝜌𝜌 /𝜃𝜃0)𝑟𝑟0(𝑔𝑔+𝑚𝑚)
𝑘𝑘𝑘𝑘

− 𝜌𝜌𝜌𝜌𝜌𝜌
𝜃𝜃0

+ 𝐴𝐴
𝑘𝑘𝑘𝑘

, and  

�(ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚) ≤ 𝑘𝑘𝑔𝑔1𝑀𝑀𝑥𝑥 ,
𝑘𝑘1𝛼𝛼 > 𝑔𝑔1𝑟𝑟0.

� 

(IV) lim inf
𝑡𝑡→+∞

⟨𝑢𝑢(𝑡𝑡)⟩ > ℎ𝑟𝑟0(𝑔𝑔+𝑚𝑚)
𝑘𝑘𝑘𝑘

− 𝜌𝜌𝜌𝜌𝜌𝜌
𝜃𝜃0

+ 𝐵𝐵
𝑘𝑘𝑘𝑘

, and 

�ℎ(𝑔𝑔 + 𝑚𝑚) ≤ 𝑘𝑘𝑔𝑔1𝑀𝑀𝑥𝑥 ,
𝑟𝑟0𝑔𝑔1 ≤ 𝑘𝑘1𝛼𝛼

�, where  

𝐵𝐵: = max { 0,  𝐴𝐴}, 
𝐴𝐴 ≔ 𝑘𝑘(𝑘𝑘1𝛼𝛼 − 𝑟𝑟0𝑔𝑔1)𝑀𝑀𝑥𝑥 + 𝑏𝑏𝑏𝑏(𝑘𝑘𝑔𝑔1𝑀𝑀𝑥𝑥  
−(ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚))𝑀𝑀𝑦𝑦 . 

Proof. Assume that lim sup𝑡𝑡→+∞ 𝑥𝑥 (𝑡𝑡) > 0. From 
equation (1), we can get that  

1
𝑡𝑡

ln 𝑥𝑥(𝑡𝑡)
𝑥𝑥(0)

= 𝑟𝑟0 − 𝛼𝛼⟨𝐶𝐶0⟩ − 𝑏𝑏𝑏𝑏 �𝑒𝑒−
𝑛𝑛𝑛𝑛
𝑥𝑥 �,         (10) 

𝐶𝐶0𝑥𝑥 =
1
𝛼𝛼

(𝑟𝑟0𝑥𝑥 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒−
𝑛𝑛𝑛𝑛
𝑥𝑥 −

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

), 

⟨𝐶𝐶0𝑥𝑥⟩ = 1
𝛼𝛼

(𝑟𝑟0⟨𝑥𝑥⟩ − 𝑏𝑏𝑏𝑏 �𝑥𝑥𝑒𝑒−
𝑛𝑛𝑛𝑛
𝑥𝑥 � − 𝑥𝑥(𝑡𝑡)−𝑥𝑥(0)

𝑡𝑡
).  (11) 

From (8), we have  
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⟨𝐼𝐼(𝑡𝑡)⟩ = 𝜃𝜃
𝜃𝜃0
⟨𝐶𝐶𝑒𝑒(𝑡𝑡)⟩ − 𝜃𝜃

𝜃𝜃0
𝐴𝐴 − 1

𝜃𝜃0

𝐼𝐼(𝑡𝑡)−𝐼𝐼(0)
𝑡𝑡

   (12) 

Substitution of (11), (12) into (7) gives  

⟨𝐶𝐶𝑒𝑒⟩ =
1

ℎ + 𝜌𝜌𝜌𝜌
𝜃𝜃0

(−𝑘𝑘1⟨𝐶𝐶𝑒𝑒𝑥𝑥⟩ +
𝑔𝑔1

𝛼𝛼
(𝑟𝑟0⟨𝑥𝑥⟩ − 𝑏𝑏𝑏𝑏 �𝑥𝑥𝑒𝑒−

𝑛𝑛𝑛𝑛
𝑥𝑥 � 

−
𝑥𝑥(𝑡𝑡) − 𝑥𝑥(0)

𝑡𝑡 ) + ⟨𝑢𝑢(𝑡𝑡)⟩ +
𝜌𝜌𝜌𝜌
𝜃𝜃0
𝐴𝐴 +

𝜌𝜌
𝜃𝜃0

𝐼𝐼(𝑡𝑡) − 𝐼𝐼(0)
𝑡𝑡

). 

Equation (6) implies that  

⟨𝐶𝐶0⟩ =
1

𝑔𝑔 + 𝑚𝑚�𝑘𝑘⟨𝐶𝐶𝑒𝑒⟩ −
𝐶𝐶0(𝑡𝑡) − 𝐶𝐶0(0)

𝑡𝑡
�, 

=
𝑘𝑘

(𝑔𝑔 + 𝑚𝑚) �ℎ + 𝜌𝜌𝜌𝜌
𝜃𝜃0
� 𝛼𝛼

(−𝑘𝑘1𝛼𝛼⟨𝐶𝐶𝑒𝑒𝑥𝑥⟩ + 𝑔𝑔1𝑟𝑟0⟨𝑥𝑥⟩ 

−    𝑔𝑔1𝑏𝑏𝑏𝑏 �𝑥𝑥𝑒𝑒
−𝑛𝑛𝑛𝑛𝑥𝑥 � + 𝛼𝛼⟨𝑢𝑢(𝑡𝑡)⟩ + 𝜌𝜌𝜌𝜌

𝜃𝜃0
𝐴𝐴𝐴𝐴) + 𝑜𝑜(1).  (13) 

Here 𝑜𝑜(1) is an infinitesimal, that is to say its limitation 
is 0 as 𝑡𝑡tends to infinity. Substituting into (10), we get  

(ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚)
𝑡𝑡

ln 
𝑥𝑥(𝑡𝑡)
𝑥𝑥(0) 

= �ℎ +
𝜌𝜌𝜌𝜌
𝜃𝜃0
� 𝑟𝑟0(𝑔𝑔 + 𝑚𝑚) + 𝑘𝑘𝑘𝑘1𝛼𝛼⟨𝐶𝐶𝑒𝑒𝑥𝑥⟩ − 𝑘𝑘𝑔𝑔1𝑟𝑟0⟨𝑥𝑥⟩ 

+𝑘𝑘𝑔𝑔1𝑏𝑏𝑏𝑏 �𝑥𝑥𝑒𝑒
−𝑛𝑛𝑛𝑛𝑥𝑥 � − 𝑘𝑘𝑘𝑘⟨𝑢𝑢⟩ − 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘/𝜃𝜃0 

−𝑏𝑏𝑏𝑏(𝑔𝑔 + 𝑚𝑚)(ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0) �𝑒𝑒−
𝑛𝑛𝑛𝑛
𝑥𝑥 � + 𝑜𝑜(1). 

By the use of 𝐶𝐶𝑒𝑒(𝑡𝑡) ≤ 1,  𝑡𝑡 ∈ 𝑅𝑅+, the above expression 
can be rewritten as  

𝑘𝑘𝑘𝑘⟨𝑢𝑢⟩ ≤ �ℎ +
𝜌𝜌𝜌𝜌
𝜃𝜃0
� 𝑟𝑟0(𝑔𝑔 + 𝑚𝑚) 

−𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘/𝜃𝜃0 + ⟨𝐹𝐹(𝑎𝑎, 𝑥𝑥)⟩ + 𝑜𝑜(1), 
where  

    𝐹𝐹(𝑎𝑎, 𝑥𝑥) ≔ 𝑘𝑘𝑘𝑘1𝛼𝛼𝛼𝛼 − 𝑘𝑘𝑔𝑔1𝑟𝑟0𝑥𝑥 + 𝑘𝑘𝑔𝑔1𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒
−𝑛𝑛𝑛𝑛𝑥𝑥  

− 𝑏𝑏𝑏𝑏(𝑔𝑔 + 𝑚𝑚)(ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)𝑒𝑒−
𝑛𝑛𝑛𝑛
𝑥𝑥 . 

Therefore  

𝑘𝑘𝑘𝑘 lim inf
𝑡𝑡→+∞

⟨𝑢𝑢⟩ ≤ �ℎ +
𝜌𝜌𝜌𝜌
𝜃𝜃0
� 𝑟𝑟0(𝑔𝑔 + 𝑚𝑚) 

−𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘/𝜃𝜃0 + lim sup
𝑡𝑡→+∞

⟨𝐹𝐹(𝑎𝑎, 𝑥𝑥)⟩ 

≤ �ℎ + 𝜌𝜌𝜌𝜌
𝜃𝜃0
� 𝑟𝑟0(𝑔𝑔 + 𝑚𝑚) − 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘/𝜃𝜃0 + max𝐷𝐷 𝐹𝐹 (𝑎𝑎, 𝑥𝑥), (14) 

where 𝐷𝐷 = {(𝑎𝑎, 𝑥𝑥):𝑎𝑎 ∈  [0,𝑀𝑀𝑎𝑎 ], 𝑥𝑥 ∈  [0,𝑀𝑀𝑥𝑥]}.  Let 

𝑦𝑦(𝑡𝑡) = 𝑒𝑒−
𝑛𝑛𝑛𝑛 (𝑡𝑡)
𝑥𝑥(𝑡𝑡) . Define  

𝐺𝐺(𝑥𝑥,𝑦𝑦) ≔ 𝐹𝐹(𝑎𝑎, 𝑥𝑥)  = 𝑘𝑘𝑘𝑘1𝛼𝛼𝛼𝛼 − 𝑘𝑘𝑔𝑔1𝑟𝑟0𝑥𝑥 + 𝑘𝑘𝑔𝑔1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
−𝑏𝑏𝑏𝑏(𝑔𝑔 + 𝑚𝑚)(ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)𝑦𝑦. 

Now we want to know the range of 𝑦𝑦(𝑡𝑡). Using equations 
(1) and (2),  

𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑎𝑎
𝑥𝑥
� =

1
𝑥𝑥2 �𝑥𝑥

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝑎𝑎
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�， 

≥
1
𝑥𝑥2 �𝑥𝑥𝑥𝑥(𝑡𝑡) − 𝜔𝜔𝑥𝑥2 �1 − 𝑒𝑒−

𝑛𝑛𝑛𝑛
𝑥𝑥 � − 𝑎𝑎𝑎𝑎 �𝑟𝑟0 − 𝑏𝑏𝑏𝑏𝑒𝑒−

𝑛𝑛𝑛𝑛
𝑥𝑥 �� 

≥
1
𝑥𝑥2 �𝑥𝑥𝑥𝑥(𝑡𝑡) − 𝜔𝜔𝑥𝑥2 �1 − 𝑒𝑒−

𝑛𝑛𝑛𝑛
𝑥𝑥 � − 𝑎𝑎𝑎𝑎 �𝑟𝑟0 − 𝑏𝑏𝑏𝑏𝑒𝑒−

𝑛𝑛𝑛𝑛
𝑥𝑥 �� 

≥
1
𝑥𝑥2 �−𝜔𝜔𝑥𝑥

2 �1 − 𝑒𝑒−
𝑛𝑛𝑛𝑛
𝑥𝑥 � − 𝑎𝑎𝑎𝑎 �𝑟𝑟0 − 𝑏𝑏𝑏𝑏𝑒𝑒−

𝑛𝑛𝑛𝑛
𝑥𝑥 �� 

≥ 𝜔𝜔(1 −
𝑛𝑛𝑛𝑛
𝑥𝑥
− 1) −

𝑎𝑎
𝑥𝑥

(𝑟𝑟0 − 𝑏𝑏𝑏𝑏(1 −
𝑛𝑛𝑛𝑛
𝑥𝑥

)) 

= (𝑏𝑏𝑏𝑏 − 𝑟𝑟0 − 𝑛𝑛𝑛𝑛)
𝑎𝑎
𝑥𝑥
− 𝑏𝑏𝑏𝑏𝑏𝑏(

𝑎𝑎
𝑥𝑥

)2. 

If 𝑏𝑏𝑏𝑏 − 𝑟𝑟0 − 𝑛𝑛𝑛𝑛 > 0 , then the standard comparison 
theorem results in  

lim inf
𝑡𝑡→+∞

𝑎𝑎
𝑥𝑥
≥
𝑏𝑏𝑏𝑏 − 𝑟𝑟0 − 𝑛𝑛𝑛𝑛

𝑏𝑏𝑏𝑏𝑏𝑏
. 

If 𝑏𝑏𝑏𝑏 − 𝑟𝑟0 − 𝑛𝑛𝑛𝑛 ≤ 0, then at least lim inf𝑡𝑡→+∞
𝑎𝑎
𝑥𝑥
≥ 0. 

According to the meaning of 𝑀𝑀𝑦𝑦 , we have 
lim sup𝑡𝑡→+∞ 𝑦𝑦 (𝑡𝑡) ≤ 𝑀𝑀𝑦𝑦 . Thus max𝐷𝐷 𝐹𝐹 (𝑎𝑎, 𝑥𝑥) ≤
max𝐷𝐷′ 𝐺𝐺 (𝑥𝑥,𝑦𝑦), where  

𝐷𝐷′ = {(𝑥𝑥,𝑦𝑦): 𝑥𝑥 ∈  [0,𝑀𝑀𝑥𝑥],  𝑦𝑦 ∈  [0,𝑀𝑀𝑦𝑦 ]}. 

Let 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0. We get  

𝑝𝑝: =

⎩
⎪
⎨

⎪
⎧𝑥𝑥 =

(ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚)
𝑘𝑘𝑔𝑔1

,

𝑦𝑦 =
𝑟𝑟0𝑔𝑔1 − 𝑘𝑘1𝛼𝛼
𝑏𝑏𝑏𝑏𝑔𝑔1

.
� 

Since 𝑥𝑥 ≥ 0,𝑦𝑦 ≥ 0,  then 𝑟𝑟0𝑔𝑔1 ≥ 𝑘𝑘1𝛼𝛼 . The value of 
𝐺𝐺(𝑥𝑥,𝑦𝑦) at point 𝑝𝑝 gives  

𝐺𝐺(𝑝𝑝) = 𝑘𝑘1𝛼𝛼(ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚)/𝑔𝑔1 − 𝑟𝑟0(ℎ +  𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚) 

+(ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚)(𝑟𝑟0𝑔𝑔1 − 𝑘𝑘1𝛼𝛼)/𝑔𝑔1 

−(ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚)(𝑟𝑟0𝑔𝑔1 − 𝑘𝑘1𝛼𝛼)/𝑔𝑔1 

= (ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚)(𝑘𝑘1𝛼𝛼 − 𝑟𝑟0𝑔𝑔1)/𝑔𝑔1 ≤ 0 

Since 𝐺𝐺(0,0) = 0,  we can assert that max𝐷𝐷′ 𝐺𝐺 (𝑥𝑥,𝑦𝑦) 
must be taken on the boundary of 𝐷𝐷′ .  

When (ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚) > 𝑘𝑘𝑔𝑔1𝑀𝑀𝑥𝑥  and 𝑘𝑘1𝛼𝛼 > 𝑟𝑟0𝑔𝑔1 , 
then  

𝐺𝐺(0,𝑦𝑦) = −�ℎ +
𝜌𝜌𝜌𝜌
𝜃𝜃0
� 𝑏𝑏𝑏𝑏(𝑔𝑔 + 𝑚𝑚)𝑦𝑦 ≤ 0; 

        𝐺𝐺(𝑀𝑀𝑥𝑥 ,𝑦𝑦) = 𝑘𝑘(𝑘𝑘1𝛼𝛼 − 𝑟𝑟0𝑔𝑔1)𝑀𝑀𝑥𝑥

+ 𝑏𝑏𝑏𝑏𝑏𝑏�𝑘𝑘𝑔𝑔1𝑀𝑀𝑥𝑥 −  �ℎ +
𝜌𝜌𝜌𝜌
𝜃𝜃0
� (𝑔𝑔 + 𝑚𝑚)� 

≤ 𝑘𝑘(𝑘𝑘1𝛼𝛼 − 𝑟𝑟0𝑔𝑔1)𝑀𝑀𝑥𝑥 ; 
𝐺𝐺(𝑥𝑥, 0) = 𝑘𝑘(𝑘𝑘1𝛼𝛼 − 𝑟𝑟0𝑔𝑔1)𝑥𝑥 ≤ 𝑘𝑘(𝑘𝑘1𝛼𝛼 − 𝑟𝑟0𝑔𝑔1)𝑀𝑀𝑥𝑥 ; 

    𝐺𝐺�𝑥𝑥,𝑀𝑀𝑦𝑦� = 𝑘𝑘𝑘𝑘�𝑘𝑘1𝛼𝛼 − 𝑟𝑟0𝑔𝑔1 + 𝑏𝑏𝑏𝑏𝑔𝑔1𝑀𝑀𝑦𝑦� 
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−�ℎ +
𝜌𝜌𝜌𝜌
𝜃𝜃0
� 𝑏𝑏𝑏𝑏(𝑔𝑔 + 𝑚𝑚)𝑀𝑀𝑦𝑦  

≤ 𝑘𝑘𝑀𝑀𝑥𝑥�𝑏𝑏𝑏𝑏𝑔𝑔1𝑀𝑀𝑦𝑦 + 𝑘𝑘1𝛼𝛼 − 𝑟𝑟0𝑔𝑔1� 

−�ℎ +
𝜌𝜌𝜌𝜌
𝜃𝜃0
� 𝑏𝑏𝑏𝑏(𝑔𝑔 + 𝑚𝑚)𝑀𝑀𝑦𝑦  

= 𝑘𝑘(𝑘𝑘1𝛼𝛼 − 𝑟𝑟0𝑔𝑔1)𝑀𝑀𝑥𝑥  

+𝑏𝑏𝑏𝑏�𝑘𝑘𝑔𝑔1𝑀𝑀𝑥𝑥 − �ℎ +
𝜌𝜌𝜌𝜌
𝜃𝜃0
� (𝑔𝑔 + 𝑚𝑚)�𝑀𝑀𝑦𝑦  

≤ 𝑘𝑘(𝑘𝑘1𝛼𝛼 − 𝑟𝑟0𝑔𝑔1)𝑀𝑀𝑥𝑥 . 
So max𝐷𝐷′ 𝐺𝐺 (𝑥𝑥,𝑦𝑦) ≤ 𝑘𝑘(𝑘𝑘1𝛼𝛼 − 𝑟𝑟0𝑔𝑔1)𝑀𝑀𝑥𝑥 ,  and since 

𝐺𝐺(𝑀𝑀𝑥𝑥 , 0) = 𝑘𝑘(𝑘𝑘1𝛼𝛼 − 𝑟𝑟0𝑔𝑔1)𝑀𝑀𝑥𝑥 ,  then max𝐷𝐷′ 𝐺𝐺 (𝑥𝑥,𝑦𝑦) =
𝑘𝑘(𝑘𝑘1𝛼𝛼 − 𝑟𝑟0𝑔𝑔1)𝑀𝑀𝑥𝑥 . 

Similarly, when  
(ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚) > 𝑘𝑘𝑔𝑔1𝑀𝑀𝑥𝑥 , 𝑘𝑘1𝛼𝛼 ≤ 𝑔𝑔1𝑟𝑟0, 

max𝐷𝐷′ 𝐺𝐺 = 0; 
when (ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚) ≤ 𝑘𝑘𝑔𝑔1𝑀𝑀𝑥𝑥 , 𝑘𝑘1𝛼𝛼 > 𝑔𝑔1𝑟𝑟0, 
max𝐷𝐷′ 𝐺𝐺 = 𝐴𝐴; 
when (ℎ + 𝜌𝜌𝜌𝜌/𝜃𝜃0)(𝑔𝑔 + 𝑚𝑚) ≤ 𝑘𝑘𝑔𝑔1𝑀𝑀𝑥𝑥 , 𝑘𝑘1𝛼𝛼 ≤ 𝑔𝑔1𝑟𝑟0, 
max𝐷𝐷′ 𝐺𝐺 = max { 0,𝐴𝐴}. 
Using inequality (14), it contradicts with the conditions of 

theorem 2 accordingly. 

4. Numerical Simulation 
The relations obtained from the theorems are well 

consistent with the actual data observed. In application of 
MATLAB software package, graphs are plotted for different 
values obtained in order to confirm the conclusion we have 
acquired above. Set 𝑟𝑟0 = 2,𝛼𝛼 = 1, 𝑏𝑏 = 1,𝜔𝜔 = 2,𝑛𝑛 = 1,
𝑓𝑓(𝑡𝑡) = 1 + 𝑒𝑒−𝑡𝑡 ,𝑘𝑘 = 1,𝑔𝑔 = 1,𝑚𝑚 = 2,ℎ = 1,𝜃𝜃0 = 0.5,𝐴𝐴 =
0.2 , and the initial values are  𝑥𝑥(0) = 0.5,𝑎𝑎(0) =
0.2,   𝐶𝐶0(0) = 0.1,𝐶𝐶𝑒𝑒(0) = 0.1, 𝐼𝐼(0) = 0 . The following 
Figure 1 describes the behavior of the population for 
different exogenous toxicant input rate 𝑢𝑢 in the absence of 
pollution taxation, Figure 2 shows the behavior of the 
population in the presence and absence of pollution taxation.  

 
Figure 1.  The long behavior of population when 𝜌𝜌 = 0 

 
Figure 2.  The long behavior of population when 𝑢𝑢 = 3 

Figure 1 and Figure 2 show that the amount of the 
population decreases with the increase of the exogenous 
toxicant input rate, and even goes to extinction. However, 
when the pollution taxation is imposed on the toxicant 
emitters, the amount of the population increases to 5.25 from 
1.5 rapidly. 

 
Figure 3.  The long behavior of population when 𝜌𝜌 = 2,𝜃𝜃 = 3 

 
Figure 4.  The long behavior of population when 𝜌𝜌 = 2,𝑢𝑢 = 10 
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Figure 3 denotes the behavior of the population for 
different rate of emission of toxicant. We can observe that 
when 𝑢𝑢  increases from 3 to 10, there will be a sharp 
decrease of the amount of the population. Nevertheless, 
when the heavy taxation (𝜃𝜃 = 22)  is imposed on the 
emitters, the balanced amount of the population will return to 
5.25 from 1.4 quickly (Figure 4). The taxation coefficient 𝜃𝜃 
is the key parameter which needs to be chosen very carefully 
in order to maintain the equilibrium level of population. 

5. Conclusions  
The main focus of this paper is to analyze the long 

behavior of Gallopin resource-consumer system, when the 
population is affected by toxicant emitted into the 
environment by external sources. It is further assumed that 
the cumulative rate of emission is reduced due to the levy of 
taxation. The model (𝑀𝑀1) reduces to the system in [9] if 
there is no pollution taxation. Conditions which guarantee 
the persistence or extinction of the system are also given. 
The threshold between persistence and extinction is 
lim inf𝑡𝑡→+∞⟨𝑢𝑢(𝑡𝑡)⟩ = �ℎ + 𝜌𝜌𝜌𝜌

𝜃𝜃0
� 𝑟𝑟0(𝑔𝑔+𝑚𝑚)

𝑘𝑘𝑘𝑘
− 𝜌𝜌𝜌𝜌

𝜃𝜃0
𝐴𝐴,  when the 

conditions of theorem 1 and (I) of theorem 2 are satisfied. In 
[9] this threshold is lim inf𝑡𝑡→+∞⟨𝑢𝑢(𝑡𝑡)⟩ = ℎ𝑟𝑟0(𝑔𝑔+𝑚𝑚)

𝑘𝑘𝑘𝑘
.  By 

numerical simulation, it is shown that the amount of 
population decreases as the cumulative rate of the emission 
of the toxicant from external sources increases. So we need 
to control the emission rate of toxicant from external sources. 
Moreover, we note that when taxation are imposed on 
emitters of toxicant, the amount of population increases and 
shift more near to the level when the ecosystem is in the 
absence of toxicant. 
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