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Abstract  As described herein, we propose an unsupervised segmentation method for magnetic resonance (MR) brain 

imaging by hybridizing the self-mapping characteristics of 1-D Self-Organizing Maps (SOMs) and by using incremental 

learning functions of fuzzy Adaptive Resonance Theory (ART). The proposed method requires no operator to specify the 

representative points. Nevertheless, it can segment the tissues (e.g., cerebrospinal fluid, gray matter, and white matter) 

necessary for brain atrophy diagnosis. To evaluate the effectiveness of the proposed method, we specifically examine Fuzzy 

C-means (FCM) and Expectation Maximization Gaussian Mixture (EM-GM) with prior setting of the cluster number, and 

Mean Shift (MS) without prior setting of the cluster number. These experiments on the two metrics confirmed that our 

method can achieve higher accuracy than these conventional methods. Additionally, we propose a Computer-Aided 

Diagnosis (CAD) system for use with brain dock examinations based on case analysis of diagnostic reading. We construct a 

prototype system to reduce loads to diagnosticians during quantitative analysis of the degree of brain atrophy. Through field 

testing of 193 examples from brain dock examinations, we also demonstrate the possibility of efficiently supporting 

diagnostic work in the clinical field because the alternation of brain atrophy attributable to aging can be quantified easily 

irrespective of diagnosticians’ subjectivity. 

Keywords  Medical imaging, Medical image analysis, Image segmentation, Self-Organizing Maps (SOMs), Adaptive 

Resonance Theory (ART), Brain dock examination, Brain atrophy, Computer-Aided Diagnosis (CAD) 

 

1. Introduction 

With the recent progress of modalities such as magnetic 

resonance imaging (MRI) and X-ray computed tomography 

(CT), vast numbers of high-resolution medical images are 

being produced at clinical sites. These medical images are 

playing an important role in the diagnoses of various 

diseases. The MRI images clearly depict the soft tissues. 

Therefore, MR images have been an important information 

source for image diagnosis of the head, abdomen, etc. Brain 

matter, as assessed by MRI, can generally be categorized as 

white matter, gray matter, cerebrospinal fluid (CSF), or 

vasculature. Most brain structures are defined anatomically 

by the boundaries of these tissue classes. Therefore, a 

method to segment tissues into these categories constitutes 

an important step for quantitative morphology of the brain. 

For example, in brain dock examinations that have been 

spreading recently, diagnosticians have diagnosed the 

existence of brain diseases (brain tumor, cerebral  
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hemorrhage, cerebral infarction, etc.) using MR images of 

several decade slices obtained under different conditions. 

Because the characteristics of MR images are extremely 

complicated, diagnosticians in clinical fields cannot 

sufficiently use the information of MR images, actual cases 

such as misunderstandings of the meanings of categorized 

tissues have arisen [1]. Recent surveys of MR brain image 

segmentation methods [2, 3] have indicated that many 

difficulties such as in homogeneity and weak boundaries of 

brain tissues might be associated with the realization of 

accurate segmentations, despite being important tasks in 

clinical diagnostic tools. Additionally, it is a difficult and 

time-consuming task for human experts to combine 

information from several slices and multiple channels of MR 

brain images [4]. In fact, MR brain image segmentation 

persists as a challenging problem because of the complexity 

of brain structures. 

Comparative readings have been conducted to diagnose 

newly generated lesions and time-dependent changes of 

known lesions, but results have indicated that a danger exists 

of overlooking lesions that overlap with the normal structure 

[5]. After adjusting the registration of images obtained in 

different days, studies of methods of processing differences 

of image intensity values have also been conducted. 
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However, false images are generated because of image 

registration mismatches in details and changes of intensity 

based on interpolation of image positions [6]. A working 

group examined variations of diagnostic reading capabilities 

among doctors in many clinical facilities. That study 

revealed the existence of great variations in diagnoses using 

cerebral blood flow single photon emission computed 

tomography (SPECT). The accuracy of diagnostic reading of 

MRI is inferior to that of SPECT. Moreover, experiences in 

diagnostic reading and difficulties for differentiation have 

been reported as dispersive factors [7]. The few reports of 

computer-aided diagnosis (CAD) using MR brain images 

have involved the following: detection methods for the 

lacunar region using T2-weighted images [8]; automated 

extraction of brain tissues [9]; extraction boundaries of brain 

tumors using the three-dimensional region expansion 

scheme [10]. Most segmentation techniques have relied on 

multi-spectral characteristics of the MR images, although a 

few reports of studies have described segmentation from 

single-channel images. In many clinical applications, it is 

important to carry out classification of tissues solely from 

single-channel MR images [11]. By segmenting brain tissues 

into the significant regions for diagnosis such as the 

extraction of objective organ and disease region, the 

development of new application technologies can be 

expected. However, these are manual processes for most 

works at present. Even with the recent progress of computer 

image analysis techniques and MR technology, and despite 

considerable interest in clinical studies, no automated 

method for segmentation of brain tissue is available for 

clinical use. 

Normally, segmentation methods for MR brain images are 

evaluated based on their ability to differentiate between 

cerebrospinal fluid, white matter, and gray matter in a 

healthy brain. Otherwise, they are evaluated based on their 

ability to differentiate between normal tissues and 

abnormalities. Many segmentation techniques proposed in 

recent years have been approached with several solutions 

such as Particle Swarm Optimization [12], genetic 

algorithms [13], Adaptive Network-based Fuzzy Inference 

System [14, 15], Region Growing [16], Self-Organizing 

Maps (SOMs) using Fuzzy C-means [17], SOM-based 

strategies [18], Growing Hierarchical SOMs [19], and 

K-nearest Neighbors [20]. Although various approaches 

have been proposed, each method remains a challenging task 

in practical use, which entails complex parameter 

adjustments for determining the category boundaries of brain 

tissues. 

Various methods have been proposed for the segmentation 

of head MR images [21-24]. Matsui et al. presented a method 

using Back-Propagating (BP) neural networks based on 

feature parameters selected by genetic algorithms [21]. 

Kawahara et al. used the short distance method on feature 

parameters that were extracted by deforming the texture 

region [22]. Sato et al. presented a method based on the 

attributed degrees extracted by fuzzy clustering [23]. In these 

methods, the operator must specify a representative point for 

each tissue to be segmented. Consequently, the segmentation 

result depends strongly on the subjective decisions of the 

operator. Moreover the methods reported by Matsui et al. are 

noteworthy: 400 points are used in the segmentation of the 

brain tissues and other tissues, as are 400 points in the 

segmentation of white matter (WM) and gray matter (GM). 

In the method described by Kawahara et al., 30 

representative points are used for brain tissue image 

extraction. These requirements heavily burden operators. 

Especially for neural network methods, the generalization 

ability is lowered. Furthermore, the network response is 

better for training data if the representative points set by the 

operator are fewer. 

However, segmentation without the necessity of 

specifying representative points is attracting attention. 

Various methods have been proposed [25-34]. Reddick et al. 

used SOMs for dividing, and segment tissue by the BP that 

uses weights of the SOMs for training data [25]. Alirezaie et 

al. presented a method that combined Learning Vector 

Quantization (LVQ) with a mapping layer of the SOMs [26]. 

Sammouda et al. performed segmentation using a Hopfield 

network, as well as a Bolzmann machine, and analyzed the 

two segmentation results [27, 28]. In these methods, MR 

images are taken with various signal parameters: 

T1-weighted, T2-weighted and proton density weighted 

images. Then the combination of their brightness values is 

used as the feature parameter. However, at clinical sites, MR 

images are rarely taken for the same slice with different 

signal parameters. Consequently, it is important in clinical 

applications that the tissues be classified based on a single 

parameter. 

We propose a method for unsupervised segmentation of 

MR brain images that particularly addresses the 

self-mapping characteristics of 1-D SOMs [35] and the 

incremental learning functions of fuzzy Adaptive Resonance 

Theory (ART) [36]. Additionally, we are developing a 

diagnostic support system as a CAD system for use with 

brain dock examinations. For reducing the diagnostician load, 

this system analyzes the degree of brain atrophy and lesion 

area quantitatively. We propose an image analysis technique 

based on nonlinear quantization with 1-D SOMs that can 

maintain the neighborhood region and integrating categories 

with Fuzzy ART. This method has the feature of quantifying 

them based solely on the image characteristics of the 

diagnostic reading object. Therefore, it is independent of the 

subjectivity of diagnosticians. 

This paper is organized as follows. Section 2 presents a 

description of our segmentation method used for brain tissue. 

Section 3 presents a description of the results and discussion 

of clinical images by analyzing the self-mapping 

characteristics of the 1-D SOMs. In section 4, we describe 

construction of the prototype system of CAD for brain dock 

examinations, and present the field test results of clinical 
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fields. Finally, section 5 presents conclusions. 

2. Segmentation Methods for Brain 
Tissues 

2.1. Characteristics of MR Image 

MRI is a technique that produces images of the proton 

density distribution and relaxation phenomena in biological 

tissues. Various images are obtainable as follows by varying 

the signal parameters. A T1-weighted image emphasizes 

differences in the longitudinal relaxation time of the protons 

in the tissues. A T2-weighted image emphasizes differences 

in the transversal relaxation time of the proton in the tissues. 

The proton density weighted image reflects the proton 

density. 

Among these, the T2-weighted image presents edema and 

tumors, which have a long transversal relaxation time, with 

high brightness. Such images are often used most frequently 

as an enlargement of the CSF region of the MR image [23]. 

Consequently, this study examines T2-weighted images in 

which the water content, such as cerebral fluid and 

pancreatic fluid, is imaged with high brightness, as the target 

image for tissue segmentation. 

Figure 1 shows the type of image regarded as the target of 

this method. Figure 2 portrays a brightness histogram. The 

MR image used for this study has resolution of 512 × 512 

pixels. The original data have 16-bit brightness level 

quantization, which is converted to 8-bit (256 levels) images 

by linear quantization. The first peak in the low brightness 

range of the histogram corresponds to the background region 

with low brightness; the second peak is the brain tissue. 

Although decisive features are few, it is interpreted as 

presented in Figure 1 as CSF with high brightness. 

 

Figure 1.  T2-weighted image 

The brain tissue is divisible into GM, which comprises 

neurons, and WM, which comprises axons. In T2-weighted 

images, the GM is located in the high brightness range and 

the WM is located in the low-brightness range in the brain 

tissue. The boundary between the GM and the WM is not 

clearly observable in the histogram. Actually, MRI shows 

different tissues with similar contrast. Therefore, it is 

difficult to discriminate tissues with such an obscure 

boundary from the histogram. 

 

Figure 2.  Histogram of brightness 

2.2. Proposed Method 

The determination of tissue boundaries presents a 

challenging task because the brightness characteristic is not 

readily apparent on a brightness histogram. Therefore, we 

hybridize SOMs and Fuzzy ART for the segmentation of 

brain tissues based solely on the brightness characteristics 

and distribution of MR images. The proposed method 

requires no specification of representative points by the 

operator. It segments brain tissues by self-learning of the 

image properties, such as the brightness distribution and the 

edge of brain tissues. This method includes features by 

which regions with obscure boundaries between tissues can 

be segmented based on topological mapping the feature 

parameters exhibited in the MR image. 

The proposed method consists of three steps. The first step 

is to extract the intracranial region from the MR image as a 

region of interest (ROI). The second step is nonlinear 

quantization with 1-D SOMs for the intracranial region. The 

third step is to integrate the number of nonlinear quantization 

into proper categories with Fuzzy ART. 

The detailed procedures are described below. 

2.2.1. Extraction of Intracranial Region 

Figure 3 shows that we remove the skull and dura mater 

regions from the original image to extract cerebral 

parenchyma (GM and WM) and CSF regions for 

segmentation. For removing these regions, we first transform 

the gray level image to the binary image using Otsu’s method 

[37], which comprises the background, skull, dura mater, and 

intracranial regions. Subsequently, we extract the largest 

object in the binary image as an intracranial region without 

skull regions. Nevertheless, dura mater sometimes remains 

in the intracranial regions because dura mater is distributed 

between the skull and intracranial regions. It has different 

distributions depending on the target image. 
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(a) Initial contour superimposed on original image  (b) Contour of cerebrum surface superimposed  (c) Target image for segmentation 

Figure 3.  Contour extraction process of cerebrum surface. 

 

Figure 4.  Window of adjusting the outline to brain surface 

In this study, we use Level Set Methods (LSMs) [38] to 

extract intracranial regions without dura mater, and use the 

initial contour of the target image in Figure 3(a). Then the 

level set functions are initialized according to this initial 

contour to perform the LSM procedure in Figure 3(b), Figure 

3(c) shows that the image of intracranial region for 

segmentation can be extracted. However, a case exists in 

which the removal of skull and scalp region is difficult, by 

the individual difference of the brain structure and the 

delicate change of the image characteristic. In this case, the 

brain surface contour can be extracted with only the slightest 

interaction with diagnosticians, as portrayed in Figure 4. 

Increase, decrease, and transfer of the nodes forming the 

brain surface contour can be realized with a simple mouse 

operation, in Figure 4, these nodes are displayed in the 

yellow circle. 

2.2.2. Nonlinear Quantization with 1-D SOMs 

In the T2-weighted image, the boundaries between brain 

tissues such as CSF and gray, gray and white are not clear 

because the brightness distribution of each tissue is 

delicately different and because each tissue forms a peculiar 

dynamic range in the brightness histogram. That is to say, a 

subtle distinction exists according to subjects as presented in 

Figure 5. Therefore, we use the nonlinear self-mapping 

capability of SOMs to quantize the brightness distribution 

from topological relations among tissue properties for 

obtaining proper categories of brain tissues. 

The number of created categories depends on the number 

of mapping layer units with 1-D SOMs. In this study, our 

segmentation targets are three tissues: CSF, GM, and WM. 

The segmentation results are not correspondent to these 
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tissues if the mapping layer units are fewer than five units 

because 1-D SOMs can not maintain the neighborhood 

region of the own specific characteristics for forming 

topological relations among these tissues adequately. 

Otherwise, when the mapping layer units are more numerous 

than the necessary condition for quantizing a peculiar 

dynamic range of each tissue, the 1-D SOMs with 

unnecessary mapping space do not function effectively and 

cause obscure complexities for reasonable segmentation. 

While spreading the mapping space of 1-D SOMs, the 

reasonable quantization of each tissue is conducted based on 

the brightness distribution of the own peculiar dynamic 

range. Consequently, based on our preliminary examination, 

this study adopts a new critical policy that the number of 

mapping layer units with 1-D SOMs is set to 15, representing 

the brightness distribution of each tissue. This setting is three 

times the smallest mapping space that can be maintained in 

the neighborhood region. 

Figure 6 shows that the pixels under consideration are 

selected randomly from the target image and the local block 

is defined. As feature parameters of the local block, we 

calculate the average brightness value of the block, which 

shows tissue continuity, differences of maximum brightness 

values, and differences of minimum brightness values that 

give tissue boundaries. The brightness of the pixel under 

consideration and the calculated feature parameters are input 

to the 1-D SOMs to perform self-learning. After learning, the 

quantization levels are determined based on the weight 

vector of the pixel under consideration to the average 

brightness value given as one feature parameter in the local 

block. The brightness values to be mapped are calculated for 

all pixels in the target image. For determination of the 

quantization level of each pixel, the feature parameters used 

in learning are input again to the 1-D SOMs and the winner 

unit is determined. Then, the brightness value is assigned 

based on the quantization level that corresponds to the 

winner unit labeled in the self-learning process. Figure 7(a) 

shows a result of nonlinear quantization of the brightness 

histogram with 1-D SOMs having 15 units of the mapping 

layer. 

The following learning algorithm is used in the SOMs. 

1) Let wij (1<= i<= n, 1<= j <=m) be the weights at time t 

from input layer unit i to mapping layer unit j. The 

weights are initialized using a random variable. 

2) Let xi (1<= i<= n) be the input data at time t to input 

layer unit i. 

3) Calculate the Euclidean distance dj between xi and wij. 

    
2

1

I

j i ij
i

d x t w t


  
 
  

            (1) 

4) Find the mapping layer unit c which minimizes dj. 

5) Update the weights included in the neighborhood 

defined by Nc(t): 

          1ij ij i ijw t w t t x t w t        (2) 

where α(t) is the learning coefficient (0< α(t) <1). 

6) Repeat steps 2)–5) until the maximum number of 

learning operations is reached. 

In this method, the initial value of α(t) is set as 0.3. The 

initial value of Nc(t) is set as 3/4 of the number of mapping 

layer units. It is designed so that both values decrease 

linearly with time. The learning operations are set 

empirically as 1,000,000. 

 

Figure 5.  Brightness distribution of each brain tissue 

 

Figure 6.  Outline of proposed method 

2.2.3. Integrating Categories with Fuzzy ART 

Fuzzy ART is a theoretical model of incremental learning 

neural networks that enables the retention of stability and 

plasticity together [36]. Figure 6 shows that we use the 

weight vectors of mapping layer units with 1-D SOMs for 

training data of Fuzzy ART. The quantization levels are 

defined with the magnitude of these weight vectors. The 

mapping layer units of 1-D SOMs are arranged according to 
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the learning algorithm of neighborhood region, from a high 

brightness level to a low brightness level or vice versa. The 

brightness levels quantized nonlinearly by 1-D SOMs do not 

accommodate brain tissues such as CSF, GM, and WM, 

depending on the number of mapping layer units of 1-D 

SOMs. The main reason is that the brightness distribution of 

one brain tissue belongs to several quantization levels; 

particularly those of GM and WM tend to differ according to 

target images. Figure 7(b) shows the integration results of 

quantization levels with Fuzzy ART. Using Fuzzy ART after 

nonlinear quantization with 1-D SOMs, segmentation results 

corresponding to brain tissues are obtained while 

maintaining a relation between categories based on 

approximate brightness. 

 

(a) Histogram of nonlinear quantization with 1-D SOMs 

 

(b) Histogram of categories integrated with fuzzy ART 

Figure 7.  Brightness histogram of MR brain image 

Brain tissues are classifiable into GM, which comprises 

neurons, and WM, which comprises axons. In T2-weighted 

images, the GM is located in the high-brightness range and 

the WM is located in the low-brightness range in the brain 

tissue. The mapping labels are based on the relative 

brightness in T2-weighted images of the brain: among the 

tissues in T2-weighted images, the CSF is the brightest, 

followed by GM, then WM. The remaining tissue areas are 

least bright. The mapping labels are defined in the above 

order in accordance with the magnitude of the weight vectors. 

Then Fuzzy ART enables integration of the mapping labels 

into reasonable brain tissues with a constant scale of the 

vigilance parameter that controls the classification 

granularity. Focusing on GM regions of segmentation results, 

the singular region along the boundary between CSF and 

WM is observed to be matched with the anatomical brain 

structures by a diagnostician. Consequently, based on our 

preliminary examination, we set the vigilance parameter as 

0.875. 

After learning, the mapping colors are determined based 

on the weight vector of the pixel under consideration to the 

average brightness value given as one feature parameter in 

the local block. The mapping colors are based on the relative 

brightness value in T2-weighted images of the brain: Among 

the tissues in T2-weighted images, the CSF is the brightest, 

followed by the GM, then the WM; all others are least bright. 

The mapping colors are defined in the above order in 

accordance with the magnitude of the weight vectors. The 

map layer units are labeled. The brightness values to be 

mapped are calculated for all pixels in the target image. In 

determining the mapping value of each pixel, the feature 

parameters used in learning are input again to the SOMs. The 

winner unit is determined. Then, the brightness value is 

assigned based on the mapping color that corresponds to the 

winner unit. 

3. Results and Discussion 

3.1. Results 

Figure 8 shows segmentation results applied to the 

proposed method. In observing Figure 8, it is apparent that 

the CSF is extracted accurately following the high brightness 

region on the target image. The GM forms a continuous 

band-shaped region along the boundary between the WM 

and the CSF. These observations agree with the anatomical 

knowledge of brain structures. The WM includes small noise 

components, forming a continuous region. The boundary 

with the GM is also clear. These results agree with the 

anatomical knowledge of brain structures. Figure 9 shows a 

histogram for each tissue in the segmentation result. The 

histogram corresponds to the brightness histogram presented 

in Figure 2. It is apparent that the brain tissue, which forms a 

single distribution in the brightness histogram of the whole 

image, is classified using the proposed method into WM and 

GM. 

 

Figure 8.  Segmentation result 
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Figure 9.  Histogram of brightness classified by tissue 

In addition, the application of the proposed method was 

tried in clinical image of two examples taken at Akita 

Kumiai General Hospital. The clinical image presented in 

Figure 10(a1) represents a case of a patient, a 51-year-old 

man in whom the there was no indication of brain atrophy 

according to the diagnosis. Figure 10(a2) shows the 

segmentation result. In this clinical image, the contrast 

resolution is generally low, and the boundary between the 

GM and the WM is especially obscure. Using the proposed 

method, however, the tissues are classified in accordance 

with the anatomical knowledge of the structure. The clinical 

image in Figure 10(b1) represents a case, a 75-year-old 

woman, who was diagnosed as having progressive cerebral 

atrophy. Segmentation results presented in Figure 10(b2) 

show recognizable enlargement of the CSF, especially in the 

frontal lobe. 

    

     (a1) Original image              (a2) Segmentation result 

(a) 51-year-old (male) 

    

     (b1) Original image          (b2) Segmentation result 

(b) 75-year-old (female) 

Figure 10.  Segmentation results of the clinical MR images 

3.2. Labeling of Mapping Layer Units 

When the target unit fulfilling the requirements is chosen 

from the mapping results of the SOMs, it is extremely 

important to analyze the image of weight vectors having a 

topological relation of each unit in the mapping layer. 

Regarding utilization of the mapping results, the operator 

generally carries out meanings for them in many cases. 

However, the image of weight vectors after learning shows 

clearly what the mapping layer units have learned on the 

target image. 

Based on the average brightness value given as one feature 

parameter in the local block, the segmentation carries out 

labeling of each unit in the mapping layer, based on the 

brightness properties of brain tissues in the T2-weighted 

image. Noticing the difference of maximum and the 

difference of minimum in the local block, both of their 

values are large, the unit in the mapping layer is defined with 

the mapping property that works effectively for boundaries 

between the tissues represented in edges. In other words, 

analyzing the mapping properties of the SOMs in detail, 

which are peculiar to the application problem, they can 

evaluate the validity of the feature parameters, and also 

specify the effective factors among the feature parameters 

for the labeling. Furthermore, by including them beforehand 

with the inputs of the SOMs, the labeling for the mapping 

layer units can be achieved easily. 

3.3. Effective Feature Parameters for Boundaries of 

Brain Tissues 

Many feature parameters are useful for segmentation in 

MR images. Among these, the brightness of the pixel under 

consideration is the most informative property. We 

investigate how the feature parameters (the average 

brightness value, the difference of maximum, the difference 

of minimum) affect the clarity of the boundary among tissues 

with the significant continuity of the brain tissue. To do so, 

we compare it to the segmentation result in which the 

distributions of brightness in the local block are used as the 

input. 

Figure 11(a) portrays segmentation results of four feature 

parameters: the brightness under consideration, the average 

brightness value, the difference of maximum, and the 

difference of minimum used as the input. When analyzing 

the characteristics of each feature parameter based on 

segmentation results of Figure 11(a), the difference of 

maximum contributes effectively to detect the boundary 

from the pixel under consideration to the tissue with higher 

brightness. Otherwise, the difference of minimum 

effectively detects the boundary of the tissue with lower 

brightness. In the T2-weighted image, for example, the GM 

forms the region surrounded by the CSF and the WM, which 

has the boundary of the CSF with higher brightness and the 

boundary of the WM with lower brightness. 

When we note the weight vectors of the map layer unit 

labeled in the GM, both the difference of maximum and the 

difference of minimum are large and close in comparison 
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with those of other map layer units. Therefore, the map layer 

unit is characterized strongly as reacting to both boundaries. 

In addition, for the map layer unit labeled in the CSF, the 

difference of minimum shows a high value in comparison 

with the difference of the maximum. The boundaries which 

the CSF faces the GM and the WM all exist in the lower 

brightness because the CSF in the T2-weighted image is 

imaged as regions with the highest brightness. 

Regarding the unsupervised learning result of these image 

properties, the map layer unit labeled in the CSF has the 

mapping characteristic featured on the difference of 

minimum, which works effectively for a boundary in the 

lower brightness. 

In segmentation results obtained using the distributions of 

brightness in the local block, as presented in Figure 11(b), 

the boundaries between tissues are not clearer than those in 

Figure 11(a). The mapping characteristic with the continuity 

of tissue has been emphasized. Especially, particularly 

addressing the CSF region that shows the degree of the brain 

atrophy, the boundary faced on the GM is not sharp, and the 

CSF is segmented as the round region. An expansion 

tendency on the CSF can be confirmed of the T2-weighted 

image, in comparison with high brightness region. These 

show that the distribution of brightness in the local block has 

the property that inhibits the clarity of the boundaries among 

these tissues. 

3.4. Adjustment of the Local Block Size 

The local block feature parameters are extremely 

important for segmentation. They depend on the local block 

size. Consequently, an additional experiment was conducted 

to study the local block size effect. The local block size is 

made to change from the first neighborhood of 3×3 pixels to 

the fifth neighborhood of 11×11 pixels. The segmentation 

results are presented in Figure 12. In the result based on the 

first neighborhood, a large amount of noise exists in the WM 

region. By enlarging the local block to the second 

neighborhood, the noise components in the WM region are 

reduced. When the local block is enlarged, the noise 

components are further reduced, but the region of the GM 

begins to shrink generally. Furthermore, an incorrect 

segmentation is produced around the anterior horn of the 

lateral ventricle, which is misinterpreted as background. The 

feature parameters in the local block should contain the 

informative property that can form the region with the 

brightness characteristic of the original image, which 

consists of the continuity of tissues and the boundary 

between tissues. They depend strongly on the local block 

size. Therefore, local block size optimization is necessary 

according to the image resolution and the image property of 

target tissues. Based on these observations, in the case of the 

image resolution, i.e., 512×512 pixels, the second 

neighborhood is the most effective. The local block size is 

set as 5 × 5 pixels for the present study. 

3.5. Experiments of Comparison with Conventional 

Methods 

The main contribution of this work is evaluation of the 

effectiveness of the proposed method, considering the 

conventional methods that are highly accurate in terms of 

usefulness as classification techniques. We specifically 

examine Fuzzy C-means (FCM) [39] and Expectation 

Maximization Gaussian Mixture (EM-GM) [40] with prior 

setting of the cluster number, then Mean Shift (MS) [41] 

without prior setting of the cluster number. 

 

(a1) CSF (left)           (a2) GM (middle)            (a3) WM (right) 

(a) Segmentation results using the four feature parameters in the local block 

 

(b1) CSF (left)            (b2) GM (middle)          (b3) WM (right) 

(b) Segmentation results using the distributions of brightness in the local block 

Figure 11.  Analysis of segmentation results with two input types for SOM 
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(a) 3×3 pixel              (b) 5×5 pixel               (c) 7×7 pixel               (d) 9×9 pixel               (e) 11×11 pixel 

Figure 12.  Segmentation results according to local block size 

 

Figure 13.  Comparison results with degree of F-value 

 

Figure 14.  Comparison results with degree of coincidence 



122 Kazuhito Sato et al.:  Unsupervised Segmentation of MR Images for Brain Dock Examinations   

 

 

For the experiments, men and women who had undergone 

brain dock examinations were selected randomly. All were 

in their 30s to 70s, constituting a total of 10 subjects of MR 

brain images. To evaluate the classification accuracy of brain 

tissues, under the supervision of a reading doctor, the 

operator manually extracted the CSF region that is a metric 

indicating the progress of the brain atrophy. Then he created 

ground truth images of 10 subjects. As metrics of the 

classification accuracy, we applied the degree of coincidence 

(Ci) and the F value, as calculated from the harmonic mean 

of degree of reproduction (Rp) and degree of compatibility 

(Co) shown in the following equations. 
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Therein, Rr is applied to the extracted region of each 

method; Rgt was extracted manually as the region of ground 

truth. In addition, # (R) is the number of pixels in region R. 

Figure 13 presents evaluation results of each subject for 

the classification accuracy using the F value. Figure 14 

shows the evaluation results obtained using Ci. In Figure 13, 

calculating the average value in 10 subjects, the proposed 

method is 82.9%, EM-GM is 68.9%, FCM is 64.8%, and MS 

is 47.6%. The proposed method showed the highest value. 

Furthermore, Figure 14 shows a similar trend: the proposed 

method was 71.4%, EM-GM was 53.7%, FCM was 49.3%, 

and MS was 33.7%. These results confirmed the high 

classification accuracy of our method in all cases. The 

method is more effective than conventional methods. 

4. Application to Brain Dock 
Examinations 

4.1. Analysis of Diagnostic Reading Service 

Although the human brain atrophies with age [23, 24], 

reportedly, brain atrophy correlates not only with aging but 

also with risk factors of cerebrovascular disorders such as 

drinking and blood pressure [25, 26]. In addition, usual aging 

alteration must be differentiated from unhealthy brain 

atrophy because many deformation diseases occurring with 

brain atrophy such as Alzheimer and Pick illness also exist. 

That is to say, evaluation of brain atrophy is an important 

index for use in brain image diagnosis. The cerebral 

parenchyma mainly comprise WM with GM. The GM 

consists of neuronal cell bodies; the WM consists of nerve 

fibers. As a result of the change of the blood vessel 

circumference structure, the GM volume decreases with 

aging, but the WM volume does not always decrease with 

aging [27]. Therefore, it is necessary that GM and WM be 

classified in addition to CSF, which shows the degree of the 

atrophy when brain atrophy is evaluated using image 

analysis. However, it is not easy to evaluate brain atrophy 

objectively; diagnosticians have been subjectively 

diagnosing it based on their experience alone. 

It is crucially important that the morphological diagnosis 

of the brain using MRI be carried out using the region of 

interest and the representative cross section as interactively 

set to ascertain brain atrophy. This research confronts many 

problems such as the following. The subject of the operator 

comes in for the selection of the cross section used as the 

region of interest and the change in the outside of the setting 

region can not be detected. In addition, much time is 

necessary for analyses because handling of the large amounts 

of data in interactive analysis is not possible. As the most 

representative tool for automatic analysis of the 

morphological change of the brain, Statistical Parametric 

Mapping (SPM) is used [28]. Actually, SPM detects the local 

morphological change of the brain for research purposes. 

However, in usual clinical practice, it is difficult for SPM 

carries out sufficient analyses of brain images with gaps 

shown. Therefore, an image having thin slice thickness 

(about 1.5 mm) from three-dimensional imaging modes and 

interpolation without gaps is necessary for SPM. 

Automatic processing by the simple operation only of 

inputting MR images is extremely important for evaluation 

of the objective brain atrophy widely in clinical fields such as 

brain dock examinations. According to differences between 

imaging parameter and strength of static magnetic field, 

image quality and signal strength distribution of the MR 

image greatly change. Therefore, improved efficiency and 

optimization of the diagnostic reading work must be done, 

considering variations among imaging devices and clinical 

facilities, in addition to differences among diagnosticians. 

4.2. Construction of a CAD System for Brain Imaging 

Based on use case analysis of the first diagnostic reading 

work related to preparation of the diagnostic image report, a 

prototype of a diagnostic image support system was 

constructed for use with our proposed method. The 

composition of a CAD system for brain dock examinations is 

presented in Figure 15. This CAD system has three 

characteristic functions: a browsing function that considers 

the operability of the operator; a comparative reading 

function that emphasizes the relevance to images in the 

diagnostic reading work; and an image analysis function 

which maps only the image characteristics of the diagnostic 

reading object. This CAD system produces medical images 

with header information that conforms to the Digital Image 

and Communication in Medicine (DICOM) 3.0 standard for 

objects. It makes all folders and files existing under working 

directory as browsing objects. 
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4.2.1. Browsing Function 

The top window of browsing is presented in Figure 16. 

The analysis of all header information related to the DICOM 

files (MR brain images) has finished on displaying window 

of Figure 16. The upper part of the browsing window is 

composed in order of the left side in each window of the 

patient list, study list, and series list. The right side of the 

lower browsing window is the thumbnail display region. The 

left side of the lower window is the region displaying the 

original image chosen in the thumbnail display region. In 

addition, it is possible to display anterior and posterior slice 

images of the original image. On the patient list window, the 

squeezing of patient information as an object is simply 

possible by choosing age and sex from the menu by adjusting 

the medical care purpose. The procedure of diagnostic 

reading is executed by choosing the patient ID first, and 

choosing the study ID next in the order which searches the 

series list of an object. In addition, the thumbnail images of 

slice positions are arranged as acquired by choosing a 

corresponding series ID from the series list. The example of 

Figure 16 is that of a case in which the axial image of 

T2-weighted image was chosen. 

The original image is expanded and displayed when the 

slice image of the attention is chosen from the thumbnail 

display region. Simultaneously, anterior and posterior slice 

images are displayed. Change of the slice position can be 

realized in the simple operation of clicking the anterior or 

posterior slice, whereas the expanded original image is 

observed carefully. 

 

Figure 15.  System structure 

 

Figure 16.  Browsing window 
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4.2.2. Comparative Reading Function 

Comparative reading is undertaken to choose a 

"comparative reading" menu button of the browsing window. 

The condition is switched to comparative reading window in 

the identical slice cross section (axial, coronal, sagittal) 

presented in Figure 17. The left side in the window presented 

in Figure 17 is a T2-weighted image. The right side is the 

FLAIR image, in addition, both images are the same slice 

position in identical axes. When the object of comparative 

reading is switched, comparative reading which optionally 

changed image types, slice directions, modality, etc. is 

possible by choosing corresponding series ID from the series 

list, which are displayed respectively in the upper part in the 

left window and right window. The change of the slice 

position is executed merely by clicking thumbnail images 

displayed under the series list. In addition, slice positions in 

right and left change: they are linked. Therefore, 

diagnosticians are expected not to undergo stress for useless 

operations such as ordering and rearranging images. 

Consequently, they can concentrate on their original 

diagnostic reading work. 

4.2.3. Comparative Reading Function 

This image analysis function has features by which the 

brain tissue of the diagnostic reading object can be classified 

automatically, merely by learning image characteristics such 

as edge and brightness distributions. No intervention of 

diagnosticians is necessary. In the application of this image 

analysis function, extraction of the lesion area in 

comparative reading and quantification of the brain atrophy 

with aging can be realized because segmentation of the 

region in which the boundary of brain tissues is unclear 

becomes possible. In the example of T2-weighted image 

presented in Figure 18, the boundary of CSF imaged as a 

high brightness region and GM, and the boundary of WM 

and GM, although these boundaries are indistinct to confirm 

on original image in the visual observation, the boundaries 

between tissues can be confirmed clearly in the segmented 

image. 

 

Figure 17.  Window of comparative diagnostic reading 

 

(a) Original image                         (b) Segmentation image 

Figure 18.  Segmentation of brain tissue 
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Figure 19.  Case A of diagnostic reading using our proposed method 

 

Figure 20.  Case B of diagnostic reading using our proposed method 

Diagnostic reading of the analytical result can be executed 

using the comparative reading function. Figure 19 presents 

an example portraying the original image at the left side and 

the segmentation result of the brain tissue at the right side in 

the window. Diagnostic reading is possible, whereas the 

validity of the segmentation result is contrasted with the 

original image. By clicking the graphical representation 

button, it is possible to obtain the occupation proportion (%) 

of each tissue in making the intracranial region be 100. 

Simultaneously, diagnostic reading for multiple slice images 

is realized by putting a check in the thumbnail image 

displayed under the series list, as it is presented in Figure 20, 

by totaling the segmentation result of chosen each slice 

image, and by graphing the result. Therefore, a general 

tendency and partial tendency in an axial section of interest 

can be grasped by showing it in comparison to the 

segmentation result of 1 slice image of them at the right side. 

Still, these segmentation results can be output as a CSV-type 

style file. 

4.3. Field Test 

For medical examinees of brain dock examinations at 
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Akita Kumiai General Hospital, field tests were conducted of 

the effectiveness of this CAD system in the diagnostic 

reading work. MR images as a diagnostic reading object are 

the T2-weighted image and the FLAIR image taken in MRI 

modality (EXCELART1.5T; Toshiba Medical Systems 

Corp.). These are all axial images of slice gaps of 6 mm. The 

T2-weighted image emphasizes the difference in the 

transversal relaxation time between protons in the bio-tissues. 

It is used most frequently in the clinical field because it can 

present edema and tumors with high brightness despite their 

long transversal relaxation time. The MR image resolution is 

512 × 512 pixels, and the brightness level is 16 bit. 

The evaluation objects are MR images (6324 images) of 

193 patients (135 male, 58 female), who had medical 

examinations during brain dock examinations at Akita 

Kumiai General Hospital from January 2004 through 

November 2005. These image datasets were acquired in all 

identical imaging parameters. No change of the signal 

strength occurred by the difference of the parameters. For the 

193 examples, the breakdowns of age and sex are presented 

in Table 1. For all medical examinees of brain dock 

examinations, 193 examples, and the patient group who were 

diagnosed with the normal-range, we quantified the atrophy 

with age independence for 34 patients (23 male, 11 female). 

The results for all medical examinees are presented in Figure 

21. The result of a patient group of people diagnosed with the 

normal-range is presented in Figure 22. The height lines on 

each sample point show the standard deviation as a degree of 

dispersion. Table 2 presents results in which they are 

arranged. 

Table 1.  Details of age-group and sex of people with brain dock 

 

Table 2.  Details of standard variation with age-group 

 

 

Figure 21.  Aging tendency of brain atrophy overall 

 

Figure 22.  Aging tendency of brain atrophy vs. normal 

As shown in Figure 21, the proportion generally increases 

with age, when a degree of atrophy is noticed from the space 

of CSF. Especially, the tendency is pronounced for patients 

in their 70s. For patients in their 40s and 50s, the value of the 

standard deviation showing a variation of individual 

specificity is small, but in patients in their 60s and 70s, the 

values are large. Although the middle age layer (patients in 

their 30s, 40s, and 50s) shows only slight progress of the 

atrophy comparatively, individual specificity is not 

recognized, but there is clearly individual specificity in 

progress of the atrophy with the aging (patients in their 60s 

and 70s). No clear reference is possible because a difference 

exists in the sample numbers of each group. Especially, 
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patients in their 70s are few: only five. However, it can be 

estimated that atrophy appears remarkably with aging. By 

recommending and carrying out strict medical examination 

of brain dock examinations in patients beyond their 60s, 

when the progress of atrophy is remarkable, it can be 

expected that general atrophy occurring with aging can be 

found to be related to individual specificity. Comparative 

readings for the image set of the time series of each medical 

examinee is possible. 

However, comparison of Figure 22 with Figure 21 shows 

that the value of the standard deviation in each generation is 

small, and the proportion of CSF in the middle age layer 

(patients in their 30s, 40s, and 50s) has been stabilized at a 

low value. In addition, when the breakdowns of patient 

group who were diagnosed with the normal range are 

analyzed, numbers of samples of the middle age layer can be 

ensured: patients in their 30s present 1 example, patients in 

their 40s present 15 examples and patients in their 50s 

present 16 examples. In contrast, the number of samples 

decreases sharply with the progress of aging: patients in their 

60s present 3 examples and patients in their 70s present 0 

examples. As one reason, cases diagnosed as asymptomatic 

cerebral infarction (lacunar infarcts) increase with age. 

In the aging society, most medical examinees have 

lifestyle-related illnesses as a background. Especially, 

preventive measures against cerebrovascular disorders 

become important, when hypertension, hyperlipidemias, 

diabetes, and cardiac diseases are diagnosed. Stimulating 

improvement of healthy lifestyles to prevent asymptomatic 

cerebral infarction (lacunar infarcts) can forestall or prevent 

symptomatic cerebral infarction. Consequently, as presented 

in Figure 21, quantitative detection of atrophy with aging is 

an important purpose for diagnostic imaging. 

Next, representative original images and the segmentation 

results in each generation are presented in Figure 22. The 

CSF is extracted appropriately along the high brightness 

region on the original image. The GM (GRAY) forms the 

banded region along the boundary between the WM 

(WHITE) and the CSF. These segmentation results agree 

with the anatomical structures of the brain. Furthermore, 

segmentation results agree with the anatomical knowledge 

that the brain atrophy concurs with the extension of third 

ventricle and lateral ventricle. From the viewpoint of a 

diagnostician evaluating the validity of the segmentation 

results, the following opinions were issued. Diagnostic 

reading in comparison the segmentation result of each tissue 

with the original image directly, and the mechanism which 

can link observing slice position in left window and right 

window, when they are necessary, these functions are very 

effectively interesting. 

The facts described above show that the burden to 

diagnosticians in the clinical field can be reduced. The 

effectiveness of this CAD system of brain atrophy in 

diagnostic image process was confirmed. In brain dock 

examinations, reproducibility of image diagnosis is obtained 

irrespective of the clinical facilities or imaging model. 

However, the present evaluation is merely that of results of 

MR images from an imaging model used at a specialized 

facility. In our future work, similar evaluation experiments 

must be conducted for other JA group facilities in Akita 

Prefecture. Moreover, it is necessary to clarify the actual 

conditions of variation among MRI devices and clinical 

facilities. 

5. Conclusions  

As described in this paper, we proposed an unsupervised 

segmentation method that hybridized 1-D SOMs and Fuzzy 

ART based solely on the brightness distribution and 

characteristics of MR brain images, without requiring 

specifications of representative points by the operator. 

Additionally, we have constructed the CAD system for brain 

dock examinations, estimating the degree of brain atrophy 

according to age. Based on viewpoints of the segmentation 

method for the brain tissues in MR head images, we analyzed 

characteristics of self-mapping in the 1-D SOMs with a 

narrow mapping space. The average brightness value, the 

difference of the maximum, and the difference of the 

minimum in the local block with the pixel under 

consideration as the center were effective as feature 

parameters to be input to the SOMs. Evaluation experiments 

showed that the tissues are classifiable. The continuity and 

boundaries of the brain tissues can be clarified, suggesting 

segmentation that agrees with the anatomical knowledge of 

brain structure. For diagnosticians who evaluate the validity 

of segmentation results, these segmentation results agree 

with the anatomical structures of the brain. Nonlinear 

quantization with 1-D SOMs and integrating categories with 

Fuzz ART produced reasonable segmentation results 

matching the judgments of brain-atrophy diagnosticians. 

The CAD system for brain dock examinations based on 

youth case analysis of the diagnostic reading work was 

proposed forderating of medical specialists in quantitative 

analysis of the degree of brain atrophy, and the prototype 

system was developed. The browsing function and 

comparative reading function of this CAD system offer the 

prospect that diagnostic reading work in the clinical field can 

be supported. Results of a field test of 193 examples of brain 

dock examination data from Akita Kumiai General Hospital 

showed the progress brain atrophy with aging. The following 

points were clarified. 

(1) Generally the proportion of CSF showing the degree of 

the atrophy with the aging increased. Especially in 

patients in their 70s, the tendency was remarkable. 

(2) For patients in their 40s and 50s, the standard deviation 

showing the variation of individual specificity was 

small, but the value was large for patients in their 60s 

and 70s. 

Although no great differences were found among 

individuals in terms of specificity, the middle age layer 

(patients in their 30s, 40s, and 50s) showed slight progress of 

atrophy, but clear individual specificity was apparent with 

aging (patients in their 60s and 70s). Image analysis 
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functionality must be improved to enable the automatic 

detection of asymptomatic cerebral infarction (lacunar 

infarcts) diagnosed mainly from brain dock examinations. 

Field tests will be conducted continually. 
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