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Abstract The paper investigates to study components of seismicity and prevailing tectonic stress regimes of the
considered region by analyzing the earthquake data that occurred during the last 200 years (from 1808 to 2008). For the
purpose, northeast India Himalaya and its adjoining regions have been divided into five active regions namely Eastern
Syntaxis, Arakan-yoma fold belt, Shillong plateau, Himalayan Frontal arc and Southeastern Tibet by taking into
consideration the spatial distribution of seismicity its tectonic complexity. The minimum compressive stress is almost
horizontal in the Tibet which indicates that the earthquake generation process is due to the flow of materials in east-west
direction. The prevailing regional stress conditions at shallower levels in compression as well as in extension zones extend
up to the deeper levels in to the upper mantle especially in southeastern Tibet and Arakan-yoma region. The present
findings provide additional information on the seismicity, tectonics, the faulting pattern and the associated ongoing

geodynamic processes in the region.
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1. Introduction

Focal mechanism solution determines the nature and
orientation of the stress field that prevailed in the
preliminary generation of an earthquake. It is the analytical
result of waveforms generated by an earthquake which
eventually provide information about the mode in which the
seismic energy is released in the hypocentral zone and
facilitates to understand the physical and the tectonic
conditions. It commonly refers to fault orientation, the
seismic slip in relation to plate movement, stress release
patterns and the geodynamic process of seismic wave
generation. To understand the stress pattern and the
geodynamic processes in the eastern segment of Himalayan
collision zone and its adjoining regions, a total of 94 focal
mechanism solutions have been considered in the present
research work. Thirty four focal mechanism solutions have
been determined in present work. The remaining 60
solutions are compiled from already published literatures
(e.g.[31,[41.[51.[15],[17],[18],[20],[22],[26], Centroid
Moment Tensor (CMT) solution). Rastogi et al.[22]
determined eleven focal mechanism solutions of
earthquakes occurred in Assam-Burma region using P-wave
first-motion direction data and reported that the dominant

* Corresponding author:

dayasfeq@iitr.ac.in (D. Shanker)

Published online at http://journal.sapub.org/geo

Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved

modes of deformation are thrust faulting in the region.
Chandra[3] determined eighteen focal mechanism solutions
for the earthquakes occurred in Himalayan region using
P-wave first motion data and reported thrust faulting pattern
in northeast India region. Singh and Shanker[25] have
stated that the effect of Tibetan plateau on Burmese Arc
tectonics and seismicity distribution cannot be ignored.

Several thrusts, lineaments, folded belts are found to be
responsible for the earthquake generation in this region. It is
believed that high seismic activity in the region is due to
northward as well as eastward movement of the Indian plate
toward the Eurasia and Burma plates, respectively.

2. Physiographic Location of Study
Region

The Himalayan mountain belt extends from Nanga Parbat
(8138 m) in the west to Namche Barwa (7775 m) in the
east[14]. This belt trends mostly in NW-SE with a length
2400 km and width vary from 200 to 250 km covering Nepal
and some parts of India, China, Bangladesh, Bhutan and
Burma. The Himalaya is bounded by Tibetan plateau to the
north and Indus- Ganga -Brahmaputra plain to the south.
Northeast India Himalaya and its adjoining regions, the
eastern part of Himalaya, are focused here to identify the
present state of geodynamic processes by using focal
mechanism solutions (Fig 1). This region has been
considered as complex from geologic and tectonic points of
view[1, 7, 9, 19]. The region is seismically potential zone as
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several large/great damaging earthquakes have occurred in
the past. The earthquakes in this region are reported to be
associated with MCT, MBT, thrusts, faults and lineaments.
The main Himalayan seismic belt is mostly confined with the
MCT and MBTJ[20]. The Indo-Burma region forms complex
geology and tectonics. On the basis of physiographic
structure, Burma territory has been divided as Eastern

(called Indo-Burma Range). Bengal basin lies to the west of
Indo-Burma range. The Arakan-Yoma, Manipur, Naga Hills,
Lushai and Patkai are the most prominent structure in the
Indo-Burma range. The northernmost part of Indo-Burma arc
joins with the Himalayan belt and the joint region is outlined
a complex structure that forms Syntaxis called Eastern
Syntaxis.

Highlands, Central lowlands and Indo-Burma mountain belt

I | I )

T
LEGEND

Turan [] Trans Himalayan Plutons &= Elevation contour
B reogene granites Ophiolites
40 ] Sub Recent Volcanics (] Tertiary Volcanics
B Tien Shan /4 Main Throsts and .-D Shield Basement _
@ Foult Zooes L STUDY REGION
Tarim Basin o~ - Ka
Pami = n Nan Shan et Fauj;
Pamir T s ) —=
N Tsaidam Basin
&
= P
35 —= e ‘\..- Kun 1, -
dukus ; e Dl P —— 0 Fauly
andukus - \
Hin AIE Y o 2 €5
- N Kun™ Lun
-

o
C 'hung?w% Th ung

Tibetan Plateau

o,
o & ’:2’-’)
N %
y R, Le
o N

70 80 E 90 100
Map of the Northeast India Himalaya and its adjoining regions (modified after[20]). The map includes the Himalayan arc, Tibetan plateau and
surrounding regions showing major tectonic— structural features. MCT (Main Central Thrust); MBT (Main Boundary Thrust); MFT (Main Frontal Thrust)

Figure 1.

3. Seismicity and Stress Pattern

The Northeast India and the Eastern segment of the Himalaya is seismically one of the most active regions in the world
where several large and two great earthquakes have occurred during the past hundred years. Several thrusts, lineaments,
folded belts are found to be responsible for the earthquake generation in this region. A total of 560 earthquakes have been
listed in the database during the period 1808 to 1962 in the considered region. Gupta et al.[10] have considered the great
Shillong earthquake (1897) as the demarcation between the historical and recent seismicity of northeast India region. The
seismicity pattern of this region has been studied by a number of researchers[10, 12, 13, 23, 25]. Considering the spatial
distribution of earthquakes for the period 1808-2008 and using the information from[8], five seismically active zones are
delineated in the northeast India Himalaya and its adjoining regions (Fig. 2.) as: Eastern Syntaxis (I), Arakan Yoma Fold Belt
(II), Shillong Plateau (I1I), Himalayan Frontal Arc (IV) and Southeastern Tibet (V).

The seismicity and stresses acting in Himalayan region are very complex. Eastern and western Syantaxis of the Himalaya
show comparatively high seismic activity to that of the central section. Four great earthquakes have occurred in this
Himalayan belt during the last one hundred years which are 1897 (M 8.7, Shillong), 1905 (M 8.6, Kangra), 1934 (M 8.4,
Bihar —Nepal border) and 1950 (M 8.7, Assam). The high seismic activity in the region is due to northward as well as
eastward movement of the Indian plate toward the Eurasia and Burma plates respectively.

Chouhan and Srivastava[6] studied the focal mechanism solutions of earthquakes in northeastern India region using
P-wave first motion directions data only for two years (1965-1966) and reported strike-slip faulting in northern part and thrust
faulting in the southern part of Burmese mountains, and strike-slip faulting with Dauki fault and Disang thrust. Verma
et al.[27] determined six focal mechanism solutions and observed normal as well as thrust faulting in Burma region and
reported compressive stress axis nearly vertical than horizontal. Pure thrust faulting in Shillong area and pure thrust and strike
faulting in Tura area were observed by composite focal mechanism of microearthquakes[12]. Singh and Shanker[25]
determined six focal mechanism solutions in Bengal Basin using P-wave first motion data and observed thrust faulting.
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Figure 2. Seismicity of Northeast India Himalaya and its adjoining regions from 1808 -2008 over the major tectonic features MCT, MBT, IBR, and
Shillong plateau. Roman letters I to V indicate seismically active regions delineated in the present study

4. Data Analysis

Focal mechanism solutions are determined by using
P-wave first motion directions data of short as well as long
periods from the catalogue of the International Seismological
Centre (ISC) bulletin for the earthquakes with magnitudes
mb 4.7-6.1 occurred from 1964-2008 in northeast India
Himalaya and its adjoining regions. P-wave velocity
structure model of Bhattacharya et al.[2] for the region is
used to estimate the angle of incidence at each seismological
station. Data related to ray parameter is taken from P-wave
table of Herrin et al.[11] and estimated the angle of incidence
of the ray at each recording station. The first motion
directions of P—wave were plotted on an equal area
projection of the lower hemisphere using the estimated
values of angle of incidence (i) at the azimuth (Az) of each

seismological station. The orientations of the nodal planes
and the direction of P (pressure), T (tension) and B (null)
axes were determined by using Wulff’s stereographic
projection net. The azimuth and the plunges of the P, T and B
axes and the orientation of nodal planes were measured in
degrees from the north and the horizontal, respectively. For
all the solutions, a double couple source has been assumed
for the interpretation of earthquake mechanism.

To investigate the current geodynamic status and stress
pattern in northeast India Himalaya and its adjoining regions
considering 94 focal mechanism solutions (Fig. 3). And
source parameters and focal mechanism solution parameters
for these earthquakes are furnished in Table 1. The
distribution of inferred faulting patterns from focal
mechanism solution of these earthquakes, in relation to
major tectonic features, is shown in Fig. 4 at their epicenter
locations.
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Figure 3. Spatial distribution of ninety-four mainshocks occurred during 1963-2008 in Northeast India Himalaya and its adjoining Southeast Tibet region

selected for focal mechanism solutions and seismotectonic studies

5. Statistic of Faulting Patterns

The tectonics of Northeast India and its adjoining Eastern
Himalaya, Southeastern Tibet and Burma regions is quite
complex in which mixed faulting pattern is observed. It may
be seen from Table 2. that the thrust environment is very
much dominant in all the regions except Southeastern Tibet
which is dominated by normal faulting. The tectonics of
Arakan-yoma region is even more complex in which almost
equal percentage of normal as well as thrust faulting occurs
from shallow to intermediate depths. The nodal planes of
thrust events orient predominantly in N to NE directions, and
it is NW-SE to E-W direction of nodal planes for normal
faulting events similar to that of the Southeastern Tibet.
Thrust environment is predominant in Himalayan Frontal arc,

Shillong plateau and Eastern Syntaxis regions but a few
normal and strike-slip faulting have also occurred. The
different tectonic regimes as observed from north to south
are (1) extensional in Tibet region, (2) compression in
Eastern Himalaya; and (3) both extensional and
compressional in Arakan-yoma region to the south. The
faulting pattern in the adjoining Tibet is totally different than
Himalayan compression belt where normal faulting is
predominant with north-south trending nodal planes leading
to east-west flow of materials. The data furnished in Table 2
also suggest that most predominant mode of energy release
in Eastern Himalaya is due to thrust faulting, and due to both
normal as well as thrust faulting in Arakan-yoma regions,
whereas mechanism for energy release in the Southeastern
Tibet is solely due to normal faulting.
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Figure 4. Spatial distribution of faulting patterns of the ninety-four mainshocks occurred in Northeast India Himalaya and its adjoining regions during

1963-2008

6. Discussion and Conclusions

It has already been established that the great Himalayan mountain range was formed as a result of the collision of two mega
tectonic plates India and Eurasia. This collision, which happened some 65 million years ago, was brought about by the
northward movement of the Indian plate that resulted in closing of the vast intervening Tethyan Ocean. Many scientists have
already pointed out that collision of the Indian plate with the Eurasian plate, which occurred in the Late Tertiary[16, 21], is
the sole cause for the faulting pattern being observed in the Himalaya and its adjoining region.
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Table 2. Frequency distribution of different types of faulting observed in five delineated seismogenic regions in the Northeast India Himalaya and its

surrounding Tibet region using ninety four focal mechanism solutions

Delineated Seismogenic Focal depth Number of focal mechanism Frequency of different faulting patterns
Regions range (km) solutions Thrusts Normal | Strike-slip Strike-slip with
shallow Intermediate Thrusts | Normal

Eastern Syntaxis (Region I) 12-41 12 0 4 2 1 3 2
Arakan-Yoma (Region II) 10-145 24 19 18 7 4 4 10
Shillong Plateau (Region III) 29-50 8 0 4 -- 1 1 2
Hima&*‘g"i:ﬁwl Are 7-82 16 1 10 1 1 3 2
Southeast Tibet (Region V) 10-96 11 3 1 11 2 -- --
Total 71 23 37 21 9 11 16

Orientations of pressure (P) and tension (T) axes derived
through focal mechanism solutions Table. 1 and Fig 4, help
in understanding the stress pattern of a region. The azimuth
and dip of the P- and the T- axes are determined through
focal mechanism solutions of earthquakes. In general, the
tension is related with the normal faulting and the
compressive stress with the thrust faulting and measurement
of P- and T-plunge determines the stress regime of a region.
The following criterion are considered to infer about
different stress regimes: (1) Extension Regime if T <45°and
P >45° (if T- plunge is less than 45° and P- plunge is greater
than 45°, the region is said to be an extension regime); (2)
Compression Regime if P <45° and T >45° (if P - plunge is
less than 45° and T- plunge is greater than 45°, the region is
said to be compressive regime); and (3) if both the axes of P-
and T- plunge are around 45°, the focal mechanism solutions
are said to be strike-slip in which motion occurs past each
other). In order to study the general characteristic of the
stress field of a region, the composite plot of P- and T -axes
will be more meaningful than deriving inferences using
individual event mechanisms. Such composite solutions
provide direct evidence for the main compressive stress field
in a region like Northeast India Himalayan region.

In the Eastern Syntaxis the events have shallow dipping
nodal planes striking NW-SE to E-W. Normal faulting is
observed at a depth of 29 km (events 3 and 6) with nodal
planes oriented along NE-SW to E-W indicating resultant
extension along NW-SE. It may be inferred that the Eastern
Syntaxis region of Himalayan range is under compression
from northwest and south directions. The general trend of
direction of extension from NW-SE to E-W is observed in
Arakan-yoma region by analyzing a total of 17 normal
faulting solutions (shallow as well as intermediate). Majority
of normal solutions (~65%) provided predominantly E-W
direction of extension which is especially confined in the
central portion of the fold belt bounded by 21° to 25.5° N
latitude along north-south direction whereas it is
predominantly NW-SE towards east and west of it. It is also
observed that the deeper level of extensional regime in the
central portion changes to shallow depths on either sides of it
(east and west). This trend suggests that the extensional
tectonic regime occur from shallow to intermediate depths

(up to 140 km) in the region which may be indicative of
presence of extensive fluid (magma chamber) at these depths.
The analysis of focal mechanism parameters reveals NE
oriented compression and E-W oriented extension pattern in
Arakan-Yoma region and these patterns exist right from
shallow to intermediate depths up to 140 km.

It is inferred that N to NE is the predominant direction of
compressive stresses currently acting in the Arakan-yoma
region whereas direction of extension is predominantly from
NW-SE to E-W. Compression and extension regimes
observed at different depth levels may be due to internal
relative motion of different blocks along the transverse faults
coupled with intermittent upward rise of magmatic materials
due to partial and differential melting in the subsurface of the
leading edge of the plate subducting into the asthenosphere.
The Shillong Plateau region consists of several faults with
three main directions of orientation i.e. NW-SE, NE-SW and
N-S. Several major faults are mapped in the Shillong plateau
region such as Dauki fault to the south, Chedrang fault and
Oldhan fault to the north, Kopili fault to the east and Dhubri
and Tista fault to the west. Seismic activity is observed to be
very feeble along these faults and strong activity is found to
occur slightly away from these faults. The region is also
traversed by several other faults/ lineaments especially in the
eastern, southern and western portions that surround the
plateau. Focal mechanism solutions of eight earthquakes
have been considered to study the stress pattern in Shilllong
plateau of which five solutions (events No. 20-24) of the
earthquakes (1982 -1992) are determined in the present work.
Majority of events with thrust faulting have moderate to
steep dipping nodal planes towards NW to N. Steep dip is
observed towards northwest and southeast of the plateau
whereas it is moderate dip within the plateau region. From
the interpretation of observed faulting patterns in Shillong
plateau, it can be inferred that the region is under
compression due to the stresses acting in N to NE directions.

The present geotectonic activity in the Himalayan
collision zone is the result of post collisional incident. The
results derived through focal mechanism solutions confirm
that the geological processes, that were responsible for the
formation of Himalaya, are still continuing. The orientation
of minimum compressive stress, reveal that the earthquake



152 A. Panthi et al.:

Revisiting State of Stress and Geodynamic Processes in Northeast

India Himalaya and Its Adjoining Region

generation process in Tibet is entirely different than that of
the Himalayan compression zone. And almost horizontal
minimum compressive stress in the Tibet is responsible for
the earthquake generation process due to the flow of
materials in east-west direction.
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