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Subduction Related Magmatism: Constrains from the
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Abstract The Trans Himalayan Lohit batholith in the eastern part of Arunachal Pradesh is dominantly quartz dioritic in
the southwestern part while the north eastern part is intruded by leucogranite dykes. This study reports the major and trace
element geochemistry of dominant intrusive phases along Lohit and Dibang river valleys of eastern Arunachal Pradesh. The
petrographic and geochemical studies characterize these rocks as typical metaluminous I-type granites with occasional mafic
(gabbroic) enclaves in the southwestern part. The north east part of the batholith shows fractionated and evolved and weakly
peraluminous granites. The rocks show heterogeneous Srisotopic ratios varying from 0.703876 to 0.714698 from south west
to north eastern part of the batholith. The observed geochemical data also indicate dominant cal-alkaline character of the
rocks. There is a gradual increase of LILE and depletion HREE fromthe gabbro-quartz diorite sequence to leucogranite with
highervalues of Siand decrease of Fe, Mg, Y, Yb. The quartzdiorites and the enclaves of gabbro are co genetic in nature with
low Ce/ YD ratios. The (La/Yb)y ratios for gabbro indicate varying degree of partial melting and stabilization of gamet in the
source. Involvement of subducted tonalitic sediments with the crustal melt may be responsible for the absence of Eu anomaly
in biotite leucogranites. The study indicates at least two magma source components involved in the petrogenesis: (1) less
differentiated mantle-wedge mafic magmas assimilated by lower crust of the Asian continent and (2) more evolved magma
fromthe melting of the upper continental Asian crust in the northeastern part.
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gabbro to granite although biotite and homblende bearing
granodiorite dominates in most part. The batholiths are
I-type Cordilleran batholith and probably emplaced during
100-40 Ma, the dominant phase being intruded at 60Ma[21].
Nd, Sr and Pb isotopic compositions of Ladakh and
Gangdese batholith indicate predominantly their mantle
derivation and U-Pb ages vary between 105 -45 Ma for these
batholiths[43]. The magma genesis, age relationships and
emp lacement history of Ladakh and Gangdese batholiths are
widely discussed[3, 8, 9, 10, 38, 51]. However, the Lohit
batholith of Arunachal Pradesh did not get much attention
and only a few published data are available[46, 40, 26, 15,
16]. The Lohit batholith is located in the eastern part the
Arunchal Pradesh at the eastern limb of the eastern syntaxis.
The batholith is about 100km in width and has a NW-SE
extension of about 250km[35] and extends from Tuting in
the upper reaches of Siang river, through upstream segments

1. Introduction

The Himalayan Mountain is the unique example of the
youngest continent to continent collision tectonics. The
boundary between the Indian and Eurasian plate is marked
by the Indus-Tsangpo Suture zone. To the north of the suture
zone, the trans- Himalayan batholith runs almost the entire
length of Himalaya from NW, through the Nepal Himalaya
and to the Myanmar to the east. The batholith from NW to
NE is variously named as Kohistan batholith in Pakistan,
Gangdese batholih in south Tibet and Lohit batholith in
Arunachal Pradesh[22, 26, 53, 44]. These Trans- Himalayan
batholiths of calc-alkaline nature are intrusives on the
southern edge of the Eurasian plate in the immediate north of
the ITSZ. The batholiths occur in a linear belt for about
2500km and 20-80km wide zone and represent an Andean

type magmatis m of the Tethyan oceanic crust under Eurasian
plate during late Cretaceous to Lower Eocene time[19,47].
Compositional variety of these batholiths ranges from
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of Dibang and Lohit river and extends further in the south
-east direction (Fig. 1). In the south western part, the
batholith is thrusted on the Tuting —Tidding suture zone,
which is considered as the continuation of the Indus Tsangpo
Suture Zone to the south east direction[47,13, 34, 2, 44,
15,17]. The batholith was studied initially by only a few
workers because of the inhospitable terrain and poor
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communication facilities. Previous studies have thrown
some light on the geology and geochemistry of the Lohit
batholith[46, 47, 40, 15, 16]. This paper highlights the
subduction related magmatis m of the Tethyan oceanic crust
under western edge of the Burmese plate on the basis of
major and REE geochemistry in the Lohit batholith.

Outline geology of Lohit batholith

The eastern Himalayan syntaxis consists of three tectonic
units: (1) the Himalayan part in the south west (ii) the
Tuting-Tidding Suture Zone (TTSZ) and (iii) the magmatic
part in the north east, named as the Lohit batholith (Fig.2).
The Lohit batholith is thrusted overthe TTSZ along the Lohit
Thrust[35]. The TTSZ represent the neotethyan oceanic crust
and encompasses various lithologies like actinolite-schist,
chlorite—quartz-phyllite,  graphite-phyllite,  crystalline
limestone, gametiferous amphibolite and dykes and sills of
serpentinite. The litho-package of the TTSZ shows NE
dipping imbricate faulting and has a thrust contact with the
Himalayan belt in the south west[42, 1, 16, 12]. The suture
belt has a NW-SE extension and in the NW part, it is
traceable as continuous belt in the upstream part of the
Dibang river, however, it is again discontinuous in the
further NW direction and reappears at Tuting, the upper
reaches of the Siang river. The batholith is about 100km in
thickness in the Lohit valley; however along the NW
direction the thickness is reduced to about 70 km in the
Dibang valley and further reduced along the Siang valley. An
Andean type of calc -alkaline magmatism is represented by
the batholith due to the subduction of the neo -tethyan
oceanic crust beneath the Eurasian plate. The timing of the
subduction, whether late cretaceous or early Eocene is yet to
be constrained.

2. Petrography
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Quartz diorites are volumetrically more significant in the
Lohit batholith especially in the southwestern part. These are
dominated by hornblende, plagioclase, quartz and biotite.
The mafic constituents are more than 20 percent of the bulk
rock. The quartz diorites show subhedral granular texture
with sphene, apatite, zircon and iron oxides occurring as
accessory phases. Homblende dominated varieties are
homblende- biotite diorites. Alteration of homblende to
biotite is observed. The K-feldspar poor varieties grade in to
tonalite while the K-feldspar bearing varicties are
granodiorites. Gabbro occurs as enclaves consisting of
plagioclase and pyroxene phenocrysts. Trondhjemites occur
as tabular bodies and composed of Na rich plagioclase,
quartz and biotite. Towards the eastern part of Chingawanti,
granodiorites are observed, which grade in to granites on the
basis of model mineralogy. K-feldspars in these rocks are
coarse and frequently show fracturing due to brittle
deformation. Biotite, hornblende and opaques constitute the
mafic phase. Eastern part of the batholith, both in Lohit and
Dibang valleys, is dominated by leucogranites. In the Lohit
valley near Yasong and in the Dibang valley in Dambwen,
leucogranites are observed to be intruding the earlier quartz
diorites. Leucogranites are mainly composed of quartz,
K-feldspar, plagioclase, biotite, muscovite, epidote and
gamet. Both varieties of K-feldspar are found in leucogranite,
however, orthoclase is dominant compared to plagioclase.
Mafic minerals constitute <5% of the bulk rock in the
leucogranites. The sillimanite schist of the Yasong area in
the Lohit valley should represent the host rock lithology. The
prismatic sillimanite and biotite flakes define the foliation.
The foliation occasionally wraps around gamets. In some
leucogranites, quartz appears as equent strain free grains.
Among the acid intrusives, dacite and rhyolite dominates,
consisting k-feldspar, plagioclase and quartz phenocrysts.
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Figure 2. Geologicalmap of area (modified after Mishra, 2009[33] ; Gururajan and Chowdhury,2007)[15]. The investigation is carried out inthe Lohit and
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Figure 3. K,O versus SiO; binary diagram of Lohit batholith using the classification scheme of Peccerillo and Taylor (1976)[37]
3. Geochemlstry while trondhjemites are collected from Chingawanti. Quartz
. diorites are exposed even beyond Walong up to Tilam

3.1. Sampling

Samples of gabbro, quartz diorite, trondhjemite and
leucogranites are collected from both of the Lohit and
Dibang valleys. In the Lohit valley, starting from Payapani
up to Lautool, both gabbro and quartz diorites are collected

(Fig.2). Leucogranites are collected lkm north east of
Samdul to 1.5km northeast of Yasong. In the Dibang valley,
gabbro and quartz diorites are collected from Angolian up to
Anini while quartz diorites are exposed up to Dambwen and
Mipi and samples are collected from different locations
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along these two sections (Fig.2). Trondhjemites are collected
from Angolian. Leucogranites are exposed from 2km SSW
of Dambwen along the Dri river valley and samples are
collected along this route up to Dambwen (Fig.2).

3.2. Analytical Techniques

About 50 fresh unweathered samples are ground to make
fine powder in a tungsten ball mill grinder. These samples
are analysed for major, trace and rare earth elements (REE)
at Wadia institute of Himalayan Geology, Dehradun, India.
Geochemical analyses were performed using standard XRF
techniques, analysed by wavelength dispersive XRF system
(Siemens SRS 3000). The calibration of the XRF system was
done by matrix correction based on intensities[28].
International standards used are JGI and JG 2 and quality of
the analysis was monitored. Analytical accuracy on XRF is
better than 5% for major oxides and 12% for trace elements
and precession on maximum observed standard deviation is
better than 2%[41]. The set of 50 samples also analysed for
REE using ICP-MS (Perkins —Elmer SCIEX) with 0.6 g of
the sample following a procedure of acid digestion that
involved repeated treatment with HF-HCLOy in the ratio 2:1.
Dissolved samples in the acid mixture underwent two or
three treatments until a clean solution is obtained. The
residue is than dissolved in IN HNO; and 100ml solution is
than ready foranalysis. The relative standard deviation (RSD)
for most REE analysed on ICP-MS is better than 10%[24].
Geochemical values for major trace and REE for each
individual rock type are given in Tables la-d.

3.3. Major Element Geochemistry
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Figure 4. A/CNK versus A/NK plots of Lohit gamitoids (Shand 1927)[39]

Geochemical data for the different rock types of Lohit
batholith are limited[42,16].Although the Lohit valley is
studied in the previous studies, the Dibang valley,
specifically its upstream section is not well covered. In the
present study both the Lohit and Dibang valleys are
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exhaustively covered. Samples of gabbro, quartz diorites,
trondhjemites, leucogranites, dacites and aplites were
selected for geochemical analysis. However, considering the
limited occurrences of dacites and aplites, most of the
geochemical characterization is based on the other major
rock types of the area.

Gabbro, quartz diorites, trondhjemites and leucogranites
form the bulk of the composition of the batholith with SiO,
content showing a considerable range (~40-80 wt%). All
samples belong to low to medim K calc-alkaline rocks on a
classification diagram[37] (Fig.3). However, a few samples
of leucogranite also plot in the high —K alkaline field. In the
ASI discrimination diagramthe granitoid plot dominantly in
the metaluminous field, where as some leucogranites also
plot on the I-S line (Fig.4).

The A/CNK (molar ratio of Al,O;/ (CaO+Na,0+K,0)
varies from 0.42 to 1.08. Almost all the samples contain
biotite and hornblende and therefore belong to I-type granitic
rocks[7]. Major element composition of different rock types
are characterized by variable amounts of SiO,, low to
medium contents of K,O, high content of A,O; and high
Na,0/K,0 ratios. Plotting together, their Ti0,, MgO, CaO,
A1,O3, MnO, Fe,05 and P,0; decreases while K,O and Na,O
increase with increasing silica content. In the total alkali
silica diagram (TAS) the composition of the granitoid range
from gabbro to granite with dominance in the diorite field
(Fig.5). Major element in trondhjemites however gives a
different concentration pattern. With the SiO, wt% varying
from~64to 75 wt% , A1,O3 is varying within a narrow range
of ~15 to 18wt%. These rocks are medium K in nature and
Na, 0> 3.30 wt% and Na,0/ K,O >2 except sample L59.
These medium K rocks are weakly peraluminous with
A/CNK value close to 1 and greater than 1 in case of L59. In
all of these samples MgO is less than 1. Granites of Yasong
area are characterized by very high SiO; (65.25-80.12 wt%).
Compared to gabbro, quartz diorites and trondhjemites, K,O
value in these granites is high which increase with increasing
silica content, whereas MgO, CaO and TiO, continually
decrease indicate they are weakly peraluminous. The plots
are straddling the line dividing I-type and S-type granites.

3.4. Trace Flement Geochemistry

The gabbro enclaves show lower concentration of
lithophile elements (Rb, Ba, Th, Sr) and REE.

Transitional elements like Ni is higher in concentration
while there is a significant depletion in Nb. Incompatiable
elements like Ba and Th show slight enrichment and
depletion of Rb is significant (Table2a-d). The (La/Yb)y
ratio varies between 0.61 to 8.48 and no significant Eu
anomaly is observed[25]. Nb and Zr depletion is evident in
the sample versus primitive mantle spidergram (Fig.6a)
where as Ta and Hf contents are also low in gabbro (ESM
Table 1A).



132 Tapos Kumar Goswami: Subduction Related M agmatism: Constrains from the REE Pattern in the
Lohit Batholith, Arunachal Pradesh, India
14
12 b ®  Gabbro
O Quartz diorite
4 Leucogranite
10 + v Trondhjemite
3
2 4l
= Monzo I
) -diorite &
+ 6P
=)
ﬂN
Granite
% 4l
Gabbroic " -
ran Gabbro | Dicrite Diorite Granodiorite
0 1 1 1 L I} 1 L L
35 40 45 50 55 60 65 70 75 80
Si0, (wt %)
Figure 5. T AS classification diagram ofthe granitoids usingthe classification scheme of (TAS Middlemost Plot)[31]
1000 & " 1000 -
:
& W0 | & w0
i | : i
= [ i =
p ] :
i 104 | z L
E ¢ 3 -
= L ] i
i 1 |
= 1 1 e "
0.1 a1
10000 T T ) ] 1000 — T T T 7 T T T T T T T
) 3 '
1000 |
& 1 & 100
! : .
¥ ow | ;
@ i -
B 1 f
; 3
7 | i
j 1
2.1
o1 L ! 1 1 'l L] 1 1 i i

Th

u

Kb

e ]

Ce

S

MNd

Figure 6. a-dMantle normalized spidergram for (a) Gabbro (b) quartz diorite (c) leucogranite (d) trondhjemite

Zr

i
5m



Geosciences 2013, 3(4): 128-141 133

1000

(a)
£ 100}
-
£
=}
T
Z 10}
—— L41
—O0— L43
—a— D40
1 .
La Ce Pr Nd Sm Eu Dy Ho Er Yb Lu
1000
g
= 100
=
E
=
= 10
=
7]
La Ce Pr Nd Sm Eu Dy Ho Er Yb Lu
Figure 7.
(La'Yb)y (2]
-
(b)
150
.
Yy e .
ol a
100 =
A s
50
FaY 0 Al 0
v -
e La,
v oA | e
| e
|&,| B -
1 i 79
0 1 e . =
0 10 20

(Yb)y

Figure 8. Chondrite normalized La/Yb ratios vs.Yb for Lohit granitoids.
Fields of (A) adakite and TT G and (B) calc- alkaline lavas are from Martin
(1999)[29]. Symbols as in Figs.3-5

The trace element composition of quartz diorites are
characterized by high concentration of Sr and low
concentration of Yb (Table 2a-d). In the primitive mantle
mu lti element spidergramthere is an increase of Nb, Ba, Rb
and Sr in the quartz diorites corresponding to increase in
silica (Fig.6a-d). Decrease of Nb with increase in silica and
higher concentration of Sr in quartz diorites compared to
gabbro is also observed (Figs.6b and 7b). Increase in Ba, Pb,
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Sr and depletion of Th, Nb and Zr are also observed in the
spidergrams. Hf and Ta depletion in quartz diorites
compared to gabbro is also observed[48]( (ESM Table).
Trondhjemites show a different fractionation pattern and are
characterized by high (La/Yb)N ratios (~36-4.61) and low
Primitive mantle normalized spidergram indicates that large
ion lithophile elements like Rb, Ba, Sr and U and Th are
higher in these rocks. Low values of Nb and Zr are evident
from the spidergram. The (La/Yb)N (0.92-49.79) with two
sample showing exceptionally high values 122.08 and
219.16 also supports the fact that leucogranites may be
derived from the crustal melts. Heavy REE (HREE e.g. Yb
varies between 0.16 and 0.19) and are therefore remarkably
different from other cal alkaline rocks of the area (Figs.6d
an7d). The high Sr content (583 — 2634.82ppm) and low Yb
(0.16 -1.94 ppm) and low Eu anomaly point towards their
geochemical characteristics similar to adakites[19, 23].

3.5.Sr Isotopes

Whole rock Rb (ppm)> Sr (ppm) > 87Rb / 8681‘ (atomic) and
87Sr/%Sr(atomic ) are presented for eight sample of the Lohit
batholith in the Table-2. These analysis were carried out at
Institute Instrumentation centre, IIT Roorkee, India using
techniques described by[48, 49]. Present day 87S1/%Sr shown
in the Table.2 indicates that the Srisotopic ratio in the quartz
diorites of the south western part (0.703876+0.0003 sample
L45) is increasing considerably in leucogranites (0.714987 +
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0.0001 sample L69). This increase in Sr isotopic ratio can be
well correlated with the continual increase in LILE and
decrease of HREE and HFSE in the granitoids of Lohit
batholith from southwestern to north eastern part.
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4. Discussion

4.1. REE Patterns

In general various intrusive phases in the Lohit batholith
show a gradual LILE enrichment and HREE depletion with
the increasing silica content. Gradual enrichment of Ba, Sr,
Pb and low contents of Yb, Zr and Nb can be studied from
the spidergrams (Figs.6a-d and 7a-d). La/Yb ratio increases
from early intrusives of gabbro and quartz diorites to the
leucgranites. The depletion of Nb, Zr, Hf and Ta in the mafic
enclaves and host quartz diorites indicate that the melt was
derived from enriched lithospheric mantle contaminated by
ancient crustal material[52, 54]. On the other hand, negative
anomalies are shown by Ba, Sr and Nb in leucogranites,
which have high values of Rb, Th and La (Fig.6.c). These
features are compatible to (i) crustally derived melts (ii)
partial melting of acid to intermediate igneous rocks or (iii)
melting of immature type of sediments for the formation of
leucogranites[50]. Trondhjemites are characterized by high
(La/Yb)n (4.61 to 35.55) (Yb)y (0.94 tol1.43). These
characteristics place them in the adakite or TTG fields
(Fig.8).

Considering the low Ce/Pb ratio[32] (Fig.9), Pb
enrichment in the granitoids may be derived from the
oceanic crust by fluids adding to the mantle wedge before
melting[30]. This mantle Pb may be transferred to the arc
magma source before its melting. The fig. shows the plots of
this study which can be compared with the Ce/Pb ratios in
the Oceanic basalts and Continental crust[31]. Pb enrichment
is therefore similar to the enrichment of Rb or U despite
being the fact that Pb is moderately compatible in
comparison to Rb and U. On the other hand Ce/Pb —Pb
variations indicate that Pb may also be added by magmatic
differentiation of intracrustal meting of a TT source that is in
the garnet stability field under the mantle wedge[14]. This
ratio also supports a two component mixing process between
the magma derived from a moderately enriched mantle
source and a sedimentary component[18].

Trace element patterns of the analysed samples are
comparable to middle-upper continental crust which might
have been inherited from variable magma sources. The
Nb/La vs Ba/Rb plot as observed from the samples of Lohit
batholith is represented in the Fig.10 The vertical trend
between the mantle derived melts and continental crust (Kula
Basalt and EMM) suggest assimilation and fractional
crystalisation (AFC) of the mantle derived magma rather
than sole influence of metasomatism of the mantle wedge
by the subduction generated fluids[4,5,45].
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Table 1. a-dMajor, Trace and REE contents for gabbro, quartz diorite, trondhjemite and leucogranite

135

Major and trace element compositios of Gabbro

Number
L41 L43 L49 L58 D31 D40 D59 L51 L52 L57
Major element oxide (wt%)
SiO; 40.34 51.96 50.93 47.93 43.99 51.19 49.2 49.56 50.62 49.11
TiO, 247 1.00 055 095 0.86 101 123 093 0.89 13
ALGs 10.4 15.26 16.53 16.77 14.75 16.66 13.39 12.13 12.73 12.81
Fe,0s 27.01 11.67 9.85 11.82 17.02 9.77 11.14 15.47 14.74 13.19
MnO 046 022 0.18 020 044 023 024 034 03 025
MgO 720 747 622 583 7.66 5 6.03 79 6.75 7.67
CaO 8.82 6.68 9.89 958 995 9.05 14.8 8.36 8.08 8.19
NaO 248 345 322 407 194 489 26 325 37 322
K,O 031 0.64 021 037 0.8 0.55 052 0.17 0.12 1.63
P»0s 122 031 0.17 0.59 029 0.68 02 0.07 021 053
Total 100.73 98.65 97.75 98.11 97.70 99.05 99.36 98.19 98.14 97.89
lez(oj/ 8.00 539 15.33 11.00 243 8.89 5.00 19.12 30.83 198
;1?0/ 356 1.94 3.07 235 5.13 1.85 5.69 257 2.18 254
A,}Zigi/ 421 15.26 30.05 17.65 17.15 16.50 10.89 13.04 14.30 9.85
Trace elements (ppm)
Ni 49.50 69.21 65.81 66.35 54.11 28.00 85.40 36.50 21.80 123.80
Rb 4.10 49.06 597 16.41 33.93 550 640 250 350 36.10
Sr 874 .80 143826 823.75 1755.84 374.50 377.00 197.00 124.00 202.00 435.00
Zr 65.20 30.97 20.31 25.74 36.60 288.00 71.00 47.00 53.00 101.00
Nb 25.50 14.59 1.85 10.80 1.65 740 5.70 5.10 4.80 8.80
Ba 104 .40 51037 96.24 366.57 111.81 98.00 20.00 25.00 18.00 274.00
Pb 482 38.70 476 10.49 757 520 6.90 1.10 1.80 440
Th 0.71 473 0.15 057 2.14 275 045 021 0.65 268
U 030 155 0.11 040 1.12 1.04 0.60 0.09 043 039
La 46.30 35.25 6.63 33.28 927 24.20 3.62 2.14 241 23.67
Ce 126.01 82.24 17.17 84.04 22.50 55.52 10.39 5.63 636 54.32
Pr 20.78 12.23 2.83 13.21 352 730 1.82 092 1.04 750
Er 954 6.53 387 7.82 11.84 528 237 197 2.19 291
Nd 97.09 52.64 14.34 60.08 17.92 30.00 929 450 526 31.43
Dy 18.36 12.20 6.83 14.72 16.72 9.14 4.15 283 345 594
Eu 388 3.05 2.00 411 196 2.12 1.18 0.66 0.82 229
Sm 21.29 12.17 435 14.00 630 7.74 3.02 1.70 194 7.80
Ho 3.63 251 1.50 3.04 411 2.09 095 0.75 0.84 124
Yb 8.84 6.34 408 723 15.14 556 241 2.17 236 2.79
Lu 126 091 061 1.04 243 0.88 038 035 038 044
La/Yb 524 556 1.63 4.60 061 435 431 099 1.02 848
Zr/Sm 3.06 254 466 1.84 581 37.21 23.51 27.65 27.32 12.95
Rb/Sr 0.00 0.03 0.01 0.01 0.09 001 0.03 0.02 0.02 0.08
Ce/Pb 26.14 2.13 361 8.01 297 10.68 151 5.12 353 12.35
(La/Yb)N 196 041 038 024 1.12 597 10.49 2.19 10.11 238
(Yb)N 52.01 37.29 23.98 42.54 89.07 32.71 14.18 12.76 13.88 16.41

Table 1a.
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Major and trace element
compositios of

Trondhjemite
Nmber
L55 L59 D22 D46 D65
Major element oxide
(wt%)
SiO» 64.12 69.11 65.49 74.05 71.79
TiO: 046 045 03 0.13 0.08
ALO; 16.15 15.05 18.3 16.11 14.92
Fe 05 402 2.00 148 1.12 0.86
MnO 0.08 0.03 0.02 0.02 001
MgO 409 1.12 0.59 055 026
CaO 479 202 497 355 401
NaO 502 3.30 578 470 496
K,O 146 454 0.67 061 039
P>0s 023 0.17 0.13 001 0.11
Total 10042 97.79 97.74 100.84 97.39
Na,O /K>O 344 0.73 8.63 7.70 12.72
CaO / NaxO 095 061 0.86 0.76 0381
ALGs /TiO, 35.11 33.44 61.00 12392 186.50
Ni 147.77 18.80 BDL 22.14 BDL
Rb 90.64 547.88 15.20 40.94 290
Sr 1976.04 1557.78 1099.00 2634.82 583.00
Zr 11.68 11.50 101.00 8.15 293.00
Nb 6.52 433 730 3.54 190
Ba 133046 2946.86 284.00 1286.20 101.00
Pb 25.75 22373 19.5 36.2 6.50
La 12.37 138.10 636 469 481
Ce 28.06 602.10 13.2 78 983
Pr 406 31.06 1.8 0.8 1.1
Er 2.05 1.19 1.14 0.16 029
Th 201 74.50 1.94 0.16 146
U 158 574 234 020 041
Nd 18.01 102.08 744 280 381
Dy 4.00 277 224 028 051
Eu 1.60 374 134 1.39 055
Sm 5.17 16.50 237 1.06 0.74
Ho 0381 038 049 0.06 0.12
Yb 1.94 045 1.19 0.16 031
Lu 027 0.06 0.17 0.03 0.05
La/Yb 637 305.54 534 29.72 15.52
Zr/Sm 226 0.70 42.62 7.69 39595
Rb/Sr 0.05 035 001 0.02 0.00
Ce/Pb 1.09 022 0.68 151 361
(La/Yb)N 10.35 35.55 795 22.75 461
(Yb)N 11.43 2.64 7.00 0.94 1.82

Table 1d.

Table 2. Rb, St concentrations and ¥’ Sr/¥Sr ratios of selected samples of Lohit batholith

Samples Longitude Latitude Rocktype Rb(ppm)  Sr(ppm) 8 Rb /%St omic) 8781/ St tatomic)
L-72 282032" 97°10'41" Diorite 8.86 113.775 0208+2% 0.704671+0.0002
L45 28902'14" 96°56'55" Diorite 17498  120.608 5.683£2% 0.703876+0.0003
L-70 28°1820" 97°0625" Granodiorite 121.09 314.04 1.1162% 0.707093+0.0003
L-71 28°19'43" 97°08'48" Granodiorite 53.94 34644 0.4503+2% 0.704698+0.0002
L-69 28°15'44" 97°01'38" Granite 66.08 89.149 1.6795+2% 0.714987+0.0001
D-62 28°50'78" 96°50'48" Diorite 104.55 201.49 1.5009+2% 0.705863+0.0002
D-63 28°5077" 96°50'45" Granite 1132 139.902 2.340722% 0.706152+0.0002
D-69 28°50'78" 96°50'50" Granodiorite 108.29 411.82 0.760612% 0.705601+0.0003
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4.2. Magma Source

Geochemical details provide evidences for magma
sources for three distinct suit of rocks present in the area: (i)
gabbro-quartz diorites (ii) trondhjemites and (iii)
leocgranites. In all three suits crustal contamination in
subduction environment is depicted by the Nb/La — Ba/Rb
plots (Fig.10)[4]. Trace element ratios more specifically the
HFSE (e.g. Nb, Ta, Ti) are highly sensitive to varying
degrees of partial melting of the source. For subalkaline
rocks of'the area, the degree of partial melting is expected to
be high. Therefore, ratios ofthe incompatible elements may
reflect the source characteristics[3]. However, compared to
degree of partial melting in intraoceanic arcs on thin
lithosphere, the partial melting is lowest in continental arcs
on thick lithosphere[36]. Under this condition, melting of the
mantle wedge is triggered by addition of the fluids from the
subducting slab, where depletion of the mantle wedge post
dates the fluid addition. An interesting imp lication emerging
from the study indicate that the residual gamet in the
anatectic events can give rise to appropriate high/ heavy REE
and HFSE/ REE fractionation. This is evident as there is no
strong Nb depletion in these rocks (Figs.6a-d)[5].
Replenishment of the mantle wedge takes place by flux of
the LIL enriched materials fromthe subducting slab[27]. The
gabbro-quartz diorite suit is characterized by LREE
enrichment, high content of ALO;, Ba and Sr and low
contents of Yb. These features suggestive of a source with
residual garnet, amphibole or pyroxene and little olivine and
plagioclase (i.e. no Eu anomaly). Partial melting of an
enriched source melts with high values of Sr and Ba and
LREE especially when the degree of partial melting is
low[11,23]. On primitive mantle normalized diagram gabbro
and quartz diorites display strong Nb and Zr depletion
indicating the fact that partial melting is contaminated by
contributions of ancient crustal material combined with low
Si0, contents (40.34 to 51.96 wt%) and low 7 Sr/**Sr ratios
(0.703). This indicates that these rocks should be derived
from a metasomatic lithospheric mantle source[53].
However, in quartz diorites, given the fact that SiO, and
MgO are negatively correlated, fractional crystalisation of
the mantle derived basaltic magma might have taken place.
This magma is assimilated at different proportions by lower
crustal material. Therefore, gabbro enclaves within quartz
diorites should represent the original basaltic parent magma
with low initial ®’Sr/*®Sr ratios. There is a systematic
depletion of TiO,, Fe,03;, MgO and CaO from gabbro to
quartz diorites with increasing SiO, (Table 1.a-d). This
indicates hornblende fractionation. With the strong positive
Sr anomalies and insignificant Eu anomalies plagioclase
fractionation became insignificant when differentiation
progressed to an advanced stage[53]. With higher values of
AL O3, Na,0, P,Os and Rb contents and enriched LREE and
HREE, leucogranites are characterized as forming from
crustal melts[10]. Leucogranites are also chracterised by
high ¥Sr/ * Sr ratio (0.714987). Although in the previous
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model[16], the water pressure condition for occurrence of
tourmaline bearing leucogranite was emphasized, in the
present study, it is found that the leucogranites in the Yasong
and Dambuin area (northeastern part of the batholith) are
biotite leucogranites rather than tourmaline leucogranites.
This negates the high water pressure condition especially for
the formation of the leucogranites. Trondhjemites are high in
Zr/Sm and La/Yb (Table -1). This indicates gamnet
stabilization at the deeper part of the crust, which is
responsible for the changes of the composition of the melt
along with the high value of Si and gradual decrease of Fe,
Mg and Yb values[20]. These melts may also be
characterised by more sodic and more aluminous[5]. On the
other hand, no negative Eu anomaly in trondjhemite indicate
that plagioclase is almost nil in the solid residue to deplete
the melt in Sr and Eu. Therefore garnet bearing source may
account for the geochemical variability obtained for the
batholiths.

5. Conclusions

The majority of the granitoids of Lohit batholith are
metaluminous and only a few of them are peraluminous.
Therefore these granitoids can well be characterized as
I-type granitoids. Major and trace element geochemistry of
these granitoids indicate both lithosperic and asthenospheric
mantle components where the parental mafic magmatic
melts evolve to granodioritic or leucogranitic composition
specially towards the eastern part. This also indicate
involvement of crustal derived melts in the eastern part. The
crustal signature in these rocks suggests simultaneous
assimilation of the upper to mid crustal rocks and the
fractional crystallisation of the mantle derived meltstowards
the thicker continental crust in the eastern part. Involvement
of the crustal melt is also reflected in the isotopic
characteristics with higher Sr isotopic values in the eastern
part.

Mantle melting was initiated by fluid injection from the
subducting mantle and as a result the mantle wedge is
replenished. Fractional crystalisation of the mantle derived
magma assimilated with the lower crustal material provided
the source forthe gabbro-quartzdiorite sequence ofthe Lohit
batholith. The early melt through the thin wedge could not
fractionate much and therefore the Sr isotopic ratio in the
gabbro -quartz -diorite sequence is very low (0.703), which
represents very lowly fractionated mantle composition. In
the eastern part of the batholith, the temporal variation in the
magma genesis is reflected in the chemical characteristics
and in the Sr isotopic ratio. The more fractionated and
evolved leucogranite of the eastern part shows a rapid
increase in the Sr isotopic initial ratio of 0.714. Higher Sr
isotopic and La /Yb ratio, higher value of P and decrease in
Nb, Zr, Ta and Yb in the eastern part indicate that the
younger phases are derived from a depleted mantle later
enriched by the process of metasomatism.
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