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Abstract  Due to the inherent nonlinear nature of viscoelastic non-Newtonian fluids, one of the challenging aspects for 
developing and utilizing their related devices to achieve high performance is the development of models that can accurately 
describe their particular characteristics. In the past three decades, the models for viscoelastic fluids have been focused on how 
to improve the modeling accuracy and reliability. In this study, the classical Maxwell model for viscoelastic fluids is extended 
in terms of characteristic relaxation time strain-dependence. The extended model is very useful in describing the response of 
geological and many other polymeric fluids. A self-consistent extended Maxwell model for viscoelastic non-Newtonian 
fluids is presented. By way of example we consider the exact solution of the extended Maxwell model, describing the 
standard dashpot-spring configuration. 
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1. Introduction 
The classical Maxwell fluid model, known as a 

viscoelastic rate type model, has been introduced by 
Maxwell[1] in his investigations on the dynamical theory 
for gases. The earliest fundaments to this model referred to 
the manner a body stores energy and produces entropy. 
Later, a simple mechanical analog[2,4], implemented the 
standard formulation to the one dimensional (Fig. 1)..  

 
Figure 1.  Mechanical analog for the actual model 

Rao et al. [5], showed that this model was appropriated 
for describing polymeric liquids motion. This model   
considers that both elastic and viscous stress depend on 
strain. Nevertheless, its use was restricted to dilute
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polymeric fluids where with relatively short relaxation time. 
In this paper, and oppositely to the presumptions of 
Maxwell[1], fluid viscosity and the relaxation time depend 
on the invariants associated with the stress along with 
Cauchy-Green stretch tensor or tensors from the appropriate 
natural configurations. In fact, the thorough study of some 
polymer melts planar Couette and Poiseuille flows[6], 
showed that such fluids effective relaxation time depends 
on the stress and hence may vary in wide ranges. 

2. Mathematical Formulation of the 
Problem 

According to the model[7-9], the components of the 
constituents, namely an energy storing mechanism that is 
modelled in one dimension as a spring, and the dissipative 
constituent that is modeled in one dimension as a dashpot, 
which is assumed to be in series with the spring (Fig. 1). The 
fact that the spring and dashpot are in series leads to the 
trivial assumptions, hence, in the classical Maxwell one 
dimensional constitutive model, and in concordance with the 
notation of Figure 1, the total strain ε is given by: 

21 εεε +=                     (1) 

where 1ε and 2ε are the elongations, in the dashpot and 
spring respectively.  

The stress in the dashpot and spring, respectively 1T and 

2T , verify the disposition-linked relation: 
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From the constitutive equation for the dashpot and the 
spring: 
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By combining Eq. (1-3), we obtain Maxwell Equation: 
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where ξ  denotes, in the earliest model, a material 
constant that has the units of time, or the so-called 
‘‘relaxation time”. 

Maxwell original model is based on the idea of linear 
viscoelasticity, which assumes that for small strains, the 
relaxation modulus is independent of the strain but only 
depends on the elapsed time. For quantifying this 
dependence,  Macosko[10] defined the relaxation modulus 

),( εtΓ as the ratio between the stress and the strain: 

ε
εε ),(),( tTt =Γ                 (5)  

An efficient way to quantify the phenomenon of 
viscoelasticity consists of evaluating the limit values of the 
relaxation modulus, the instantaneous elastic modulus: 
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and the asymptotic elastic modulus: 

∞→
∞ =Γ

t

tT
ε
ε ),(

                (7)  

For viscoelastic materials, it has been recorded that stress 
decreases  exponentially[7-9].  

3. Results and Discussion 
3.1. The Extended Maxwell Fluid Model 

According to the results recorded by Larson et al.[6], 
Gorodtsov et al.[7], M. Graham[8] and Keiller[9] , ξ  
denotes, in the earliest model, a material constant that has the 
units of time. In the actual model, the relaxation time is 
considered as a strain-dependent variable. This configuration 
has been evoked earlier by Pipkin et al.[11] through the  
single step strain history model , express by: 
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where )(ˆ εξ denotes the relaxation time estimator 0φ , 1φ
and 2φ  are constants, C  is the strain dependent tensorial 
relaxation function and F  is the deformation gradient 
tensor.  

In the actual model, a polynomial scheme is proposed for 
modeling both relaxation time )(εξ and stress ),( εtT  in 

respect to the inherent boundary conditions imposed by Eq. 
8. 

3.2. The Boubaker Polynomials Expansion Scheme 

The main equation of the model is: 
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At this level, The Boubaker Polynomials Expansion 
Scheme BPES[12-21] is applied through setting the 
expression: 
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where kB4 are the 4k-order  Boubaker polynomials, kr
are kB4 minimal positive roots, 0N  is a prefixed integer, 

01..k k Nλ =  are unknown pondering real coefficients. Figure 

2 presents relaxation time strain-dependent variations for 
both actual and single step strain history[11] models. 

 
Figure 2.  Strain-dependent relaxation time for the two related models 

The proposed model is tested tough stress responses to a 
Heaviside step function )0(H  excitation. Consequently, it 
comes for Eq. (9) that: 
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Where δ  denotes the Dirac delta function.  
The BPES protocol ensures the validity of the related 

boundary conditions expressed through biological conditions, 
regardless main equation features. In fact, thanks to 
Boubaker polynomials first derivatives properties: 
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and: 
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boundary conditions are inherently verified. 
The BPES solution is obtained through four steps: 
√ Determining the set of the pondering real coefficients, 

01..k k Nλ =  which optimize the fitting of Fig. 2. 

√ Integrating, for a given value of 0N , the whole 
expressions given by Eq. (12) along time domain. 

√ Writing the time dependent solution for stress as a sum 
of solutions to the 0N elementary k-indexed equations: 

)0(2)(2 040 δελ N
t
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√ Incrementing 0N . 

√ Testing the convergence of the coefficients 
01..k k Nλ =  . 

3.3. Plots and Discussion 

Plots of the solution are gathered in Fig. 3. 

 
Figure 3.  Model stress response to a Heaviside step excitation for different 

values of )0(ξ  

The obtained profile (Fig. 3) is in good agreement with the 
exponential responses recorded by Schmidt et al.[22,23], 
Oldham et al.[24], Padovan[25], Singh et al.[26] and Yuan et 
al.[37]. In this solution, and oppositely to some recently 
performed results, there was no free constant at the level of 
the initial increment, since all conditions have been fulfilled 
inherently through the application of the Boubaker 
Polynomials Expansion Scheme BPES[12-21]. Pipkin et 
al.[11] discussed a similar solution of the same problem for a 
Maxwell fluid. The free constant has been determined by 
means of the boundary fluid layer thickness[11] and the 
related model required some additional initial conditions 
apart from the requirement i. e. that the fluid was initially at 
rest or assuming that the time derivative of velocity is zero at 
time t = 0 as proposed by Rajagopal et al.[28-31]. In such 
models, the unexpected vanishing of the time derivative of 
the velocity at t = 0 obviously corresponds to a non-realistic 
absence of the shear stress. This anomaly has corrected in the 
actual model through the conditions expressed by Eq. 
(11-14). 

An additional ote concerns the fluid behavior with 
decreasing values of )0(ξ . In fact case when the )0(ξ
decreases, tends to zero, the results for Newtonian 
fluids[32-37] is recovered.  

4. Conclusions 
In this study, the exact and approximate expressions for 

the response of an enhanced a Maxwell fluid model have 
been established. As a consequence, terms of shear stress 
response. In the special case when the retardation time 
decreases, the results for Newtonian fluids have been 
recovered. In the proposed model, we had to assume that the 
stresses in the individual constituents and also the body as a 
whole are the same. We had also assumed the additive 
decomposition of the strain of the constituents. Such an 
assumption is questionable if large strains are involved and 
we need to consider fluid deformation gradients 
multiplicative decomposition. This is the object of further 
studies. the changing of the relaxation time with time is 
outlined in. 
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