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Abstract  Characterization and discrimination of microorganisms by hyperspectral analysis is a promising alternative to 

conventional techniques in clinical, food, and environmental microbiology to be used as a rapid, non-destructive tool. In this 

work, we used the CytoViva hyperspectral imaging system to elicit the individual hyperspectral profiles produced by three 

food-borne pathogens, Salmonella, Escherichia coli, and Listeria at 18, 21, and 24 hours of growth. The distinctive feature of 

our hyperspectral system is that it employs a super-resolution condenser that allows for the capture of high-resolution spectral 

data of a single bacterial cell. The microscopic system with hyperspectral capability produces uncomplicated single peak 

optical spectra of individual cells that can be analyzed by simple computerized methods in contrast to the conventional 

multi-cell hyperspectral methods that require spectral convolution and principal component analysis. The super-resolution 

hyperspectral imaging created sharp spectral profiles based upon the unique surface property of each microbial cell. All 

bacteria were cultured, pelleted, washed, transferred to a poly-l-lysine coated slide, and cover-slipped to obtain the spectral 

profiles of live, metabolically active bacterial cells. The single-peak bacterial spectra were analyzed by the non-statistical 

Local Maximum method and by the non-linear fitting of spectra to a particular statistical model. Gaussian, Lorentzian, 

Logistic, Inverse polynomial, Gumbel, and Gram-Charlier peak functions were applied to bacterial spectra in the range of 400 

– 1000 nm. A one-way ANOVA was conducted to compare fitting parameters. With this technique, we were able to 

characterize and discriminate Salmonella, E. coli, and Listeria with a high level of confidence. This novel application of 

hyperspectral imaging has the potential to be used as a point-of-care testing and safety scanning at all points of food 

production, including growing, harvesting, preparation, transportation, distribution, and storage. 
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1. Introduction 

Foodborne pathogens are among the most significant 

problems in maintaining the health of the population. CDC 

estimates that each year roughly 1 in 6 Americans (or 48 

million people) are infected, 128,000 are hospitalized, and 

3,000 die of foodborne diseases [1]. Salmonella spp, Shiga 

toxin-producing Escherichia coli O157 (STEC), and Listeria 

monocytogenes are among the leading causes of foodborne 

illnesses in the United States [2]. Traditional microorganism 

recognition methods, such as culturing and colony-counting 

techniques [3], polymerase chain reaction methods [4], and 

immunoassay techniques [5], are capable of detecting 

initially low numbers of cells and have reduced constraints 

of specialized equipment [6]. Nevertheless, these methods 

are typically time-consuming and destructive, and they also  
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require well-trained operators to obtain results. They cannot 

be employed for real or near-real-time detecting. 

Consequently, there is an urgent need for new, real-time 

detection systems for reliable recognition of foodborne 

pathogens. Of all the available options, the hyperspectral 

imaging (HSI) method is demonstrated as one of the most 

promising alternatives, being a non-destructive analysis 

technology that can easily take part in food safety evaluation 

[6]. The light diffraction in conventional microscopy limits 

optical spatial resolution and does not allow imaging of a 

single microbial cell. The hyper-spectra of several organisms 

have a complicated multi-peak profile typically [7] and 

require Principal Component Analysis, or quite complicated 

deconvolution of spectra [8] to interpret results. The 

hyperspectral spectroscopy, combined with the enhanced 

darkfield microscopy demonstrated that spectra of a single 

nanoparticle are much simpler than spectra for a cluster of 

particles [9]. The spectrum of a single nanoparticle was 

normally a single peak curve, while the cluster had a much 

more complicated profile. In this work, we used the 

CytoViva Hyperspectral Imaging System [10] supplied with 

a super-resolution light illumination condenser [11]. This 

allows taking spectra of a single microbial cell, and using for 
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characterization and discrimination of Salmonella enterica 

serovar Typhimurium, Escherichia coli O157:H7 and 

Listeria monocytogenes at 18, 21, and 24 hours of growth in 

the range of 400 – 1000 nm. 

2. Methods 

2.1. Bacterial Cultures and Sample Preparation 

Salmonella enterica serovar Typhimurium, Escherichia 

coli O157:H7, and Listeria monocytogenes (Auburn 

University culture collection) were cultured in Brain Heart 

Infusion Broth (Difco Laboratories) at 37°C and imaged at 

time points of 18, 21 and 24 hours of growth. At each time 

point, cells were pelleted at 10,000 rpm for 10 minutes and 

washed in PBS twice before being diluted tenfold for 

sampling. Cells were immobilized in the pre-coated 

poly-L-lysine slides and coverslip. The immobilization in the 

poly-L-lysine slides was shown to localize bacteria to slide 

without compromising their biological viability [12]. 

2.2. Hyperspectral Microscope Imaging System 

In this work, a CytoViva Hyper Spectral Imaging System 

(Auburn, Alabama) was utilized. The system composed of an 

upright microscope, Olympus BX-51 with 100X oil with iris 

objective and a spectrophotometer with transmission grating 

with a spectral range of 400 nm – 1000 nm and spectral 

resolution of 2.8 nm. An automated stage provides the scan 

resolution with a 10 nm stem size. The spectrophotometer 

interfaced with computer Dell Precision Tower 3620 XCTO 

Base, 8GB RAM. The quartz halogen lamp with an 

aluminum reflector is used as a light source. An ENVI 4.8 

image analysis software allows evaluating hyper-spectra.  

2.3. Super-resolution Condenser 

For work with life and unstained single-cell 

microorganisms, the illumination of the sample is required to 

provide good optical resolution and contrast to distinguish 

clearly cells from the background. The samples were viewed 

using the patented CytoViva darkfield condenser (CytoViva, 

Inc., Auburn, AL) [11,13,14]. The condenser provides nearly 

non-diffracting Bessel illumination that allowed optical 

resolution of λ/5 or better than 90 nm in visible light. The 

optical system offers the ability to produce optical sectioning. 

The optical sectioning also permits the discerning of in-focus 

image from out-of-focus structures [15]. Additionally, it 

allows seeing not only the cell surface, but also get a glance 

inside bacteria below the cell wall. The images of bacteria 

taken by this condenser are clearly discernible and allowable 

for taking high-quality hyper spectra. 

2.4. Hyperspectral Microscope Image Acquisition 

Hyperspectral data were acquired using a visible 

near-infrared diffraction grating spectrograph that is 

connected to a camera. An RGB image with both spectral 

and spatial data is produced using the pushbroom approach 

in which the sample is moved across the field of view pixel 

line by pixel line. Lamp subtraction was performed for each 

image to reveal the spectra produced by the microorganism. 

Seven - 12 cells were selected from each image and the 

intensities of the extracted spectral curves were averaged and 

normalized. Each experiment was repeated 3-4 times.  

2.5. Statistical Analysis 

Data averaging, curve fitting, F-test, and graph plotting 

were conducted using Origin 2019 (Northampton, MA) and 

2010 Microsoft Excel. The comparison of means was carried 

out using one-way ANOVA that was followed by Tukey’s 

multiple comparison test. The hyperspectral peaks were 

analyzed by the Local Maximum model (non-statistical 

model) and Statistical models [16]. 

2.6. Hyperspectral Microscopy Image Analysis 

The aim of this analysis is to answer specific questions:  

(1) Which fitting model fits best? (2) Does one model fit all 

bacterial spectra? (3) Are fitting parameters different for 

different bacteria?  

We compared spectra of Salmonella enterica 

Typhimurium, Escherichia coli O157:H7, and Listeria 

monocytogenes obtained at 18, 21, and 24 hours of growth.  

We used the following strategy: (1) Calculation of 

parameters of spectra for each bacterium using the Local 

Maximum method and compare parameters of the spectra to 

determine statistically whether the calculated parameters can 

discriminate the bacteria. (2) Fitting spectral peaks with 

statistical functions, rank models and find those that better 

describe the experimental spectra and compare the model 

parameters to examine if the statistically fitted model can 

discriminate bacteria by spectra. 

The Local Maximum does not fit the statistical model [16]. 

It does not use any underlying function. The Local 

Maximum method is a maximum searching algorithm, which 

finds the local maximum in a moving window. A predefined 

number of local points determines the window size. Initially, 

an n-point window is placed at the start point of the data 

stream. The maximum in this window, as well as its index, is 

recorded. Then the window is moved one step further. If the 

new maximum is greater than the saved maximum, update 

both the maximum value and index value and then move 

forward. By using this method, we can calculate the 

parameters: center, full width at half maximum (FWHM), 

the area under peak, and centroid. 

We use a non-linear fitting of our peak spectral data to a 

particular statistical model to find which model fits best with 

experimental data. We can describe the process of nonlinear 

curve fitting as following: (1) Generate an initial function 

curve from the initial values. (2) Iterate to adjust parameter 

values to make data points closer to the curve. (3) Stop when 

minimum distance reaches the stopping criteria to get the 

best fit.  

Origin software [16] provides options of a different 

algorithm, which have different iterative procedure and 
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statistics to define minimum distance. To describe the 

hyperspectral peaks, we tried to fit 24 explicit functions. We 

have chosen six functions that converged with our hyper 

spectra experimental data. The list of functions that we used 

in our work is given in Table 1. 

Table 1.  Functions for fitting experimental hyperspectral data 

Function Function/Parameters Ref 

1 

y y
0
 Ae    e     

    

w
    

    

w
     

Parameters: Number: 4; Names: y0, xc, w, A; 

Meanings: y0 = offset, xc = center, w = width, A 

= amplitude, Lower Bounds: w > 0.0, Upper 

Bounds: none 

[19] 

2 

y y
0
 Ae

 
      

 

 w  

Number: 4; Names: y0, xc, w, A Meanings: y0 = 

offset, xc = center, w = width, A = amplitude; 

Lower Bounds: w > 0.0; Upper Bounds: none 

[20] 

3 
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0
 

A

w   
e
   

    / 
ai

i 

 

i  

 i   /    

  
 -  

w
 ;     

 -  ;     
 -      

Parameters: Number: 6; Names: y0, xc, A, w, a3, 

a4; Meanings: y0 = offset, xc = center, A=area, 

w=half width, a3 = unknown, a4 = unknown; 

Lower Bounds: w > 0.0; Upper Bounds: none 

[21] 

4 

y y
0
 
 A

 

w

       
 
 w 

 

Parameters: Number: 4; Names: y0, xc, w, A; 

Meanings: y0 = offset, xc = center, w = FWHM, 

A = area; Lower Bounds: w > 0.0; Upper 

Bounds: none 

[20] 

5 

y y
0
 

A

  A   
    
w

 
 

 A   
    
w

 
 

 A   
    
w

 
 
 

Parameters: Number: 7; Names: y0, xc, w, A, 

A1, A2, A3; Meanings: y0 = offset, xc = center, 

w = width, A = amplitude, A1 = coefficient, A2 

= coefficient, A3 = coefficient; Lower Bounds: 

w > 0.0; Upper Bounds: none 

[20] 

6 

 

y y
0
 

 Ae
 
    
w

   e 
    
w  

 
 

Parameters: Number: 4; Names: y0, xc, w, A; 

Meanings: y0 = offset, xc = center, w = width, A 

= amplitude; Lower Bounds: w > 0.0; Upper 

Bounds: none 

[20] 

1-Extreme; 2- GaussAmp; 3- GCAS; 4- Lorentz; 5- InvsPoly;  

6- Logistpk 

After experimental spectra are fit with statistical functions, 

the best fit was determined by the ranking of fits using the 

goodness of fit criteria: Akaike information criterion (AIC), 

Bayesian information criterion (BIC), Adjusted R-Square, 

Residual Sum of Squares, and Reduced Chi-Squares [17]. 

The best-ranked function then used for fitting experimental 

spectra and obtaining parameters of the function. A one-way 

ANOVA was conducted to compare parameters of 

hyperspectral spectra for Salmonella, E. coli and Listeria 

[18]. 

3. Results 

3.1. Local Maximum Model 

Most of the hyper spectra of a single cell of Salmonella, E. 

coli and Listeria in a range between 400 and 1000 nm 

constitute broad peaks sharp rise shoulders and gradual 

decays. The spectra are relatively noisy at the beginning and 

the end of curves. It is clear from the peak images that 

positions of the peak maxima (centers) cannot reliably serve 

to discriminate bacteria. However, areas under peaks and the 

width of the peaks seem quite different. 

 

 

 

Figure 1.  Averaged spectra for each organism at 18, 21, and 24 hours of 

growth 

Using a Local Maximum model, the fitting parameters 

for each spectrum, Area (area under the peak), FWHM  

(full width at half maximum), Center (wavelength of peak 
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maximum), and Centroid (wavelength of the mass center of 

a peak) were calculated and used for comparison of bacteria. 

As an example, Figure 2 shows these parameters for the 

Salmonella of 21 hours of growth. 

 

Figure 2.  Area, FWHM, Center, and Centroid of the Salmonella 21 h of 

the mean of ten cells spectra 

Table 2 shows a summary of spectra comparison for 

three bacteria at 18, 21, and 24 hours of growth obtained by 

a Local Maximum model. An analysis of variance showed 

that bacteria of different species can be discriminated by 

parameters of Area and FWHM (Table 2, A), while the 

parameters Center and Centroid (Table 2, B) are only 

partially support this discrimination. 

3.2. Statistical Model 

Figure 3 shows the fitting of the mean spectrum of 

Salmonella 24 hours growth with GCAS, Extreme, and 

Lorentz statistical functions. It is difficult to decide what 

function provides the best fitting just by looking at the 

fittings. However, using the ranking module of the Origin 

software [16], we can assemble a table that ranks fitting of 

the Salmonella 24 h spectrum with GCAS, Extreme, Lorentz, 

Logistpk, GaussAmp, and InvsPoly spectral functions (Table 

3).  

According to Table 3, the function GCAS is the best 

fitting function for Salmonella 24 h spectral peak, and the 

function InvsPoly failed to converge.  

Similarly, we ranked spectra of all bacteria at each time 

point of growth and found the best fitting functions. Fitting 

parameters of spectra were used for comparison and 

discrimination of bacteria using the F-test. Discrimination of 

Salmonella, E. coli and Listeria at 18, 21, and 24 hours 

growth fitted with GCAS by F-test is shown in Table 4. 

 

Table 2.  Table 2. Discrimination of Salmonella, E. coli and Listeria at 18, 21, and 24 hours of growth by ANOVA 

A Comparison Area ANOVA FWHM ANOVA 

18 hours 

Salmonella vs E. coli + 
[F(2,18)=55.93, 

p=0.0001] 

+ 
[F(2, 18)=122.1, 

p=0.00001] 
Salmonella vs. Listeria + + 

E. coli vs. Listeria + + 

21 hours 

Salmonella vs E. coli + [F(2, 

29)=151.7, 

p=0.00001] 

+ 
[F(2, 29)=122.1, 

p=0.00001] 
Salmonella vs. Listeria + + 

E. coli vs Listeria + + 

24 hours 

Salmonella vs E. coli + 
[F(2, 29)=17.6 

p=0.00001]. 

+ 
[F(2, 29)=90.6, 

p=0.00001] 
Salmonella vs. Listeria + + 

E. coli vs. Listeria + + 

B Comparison Center ANOVA Centroid ANOVA 

18 hours 

Salmonella vs E. coli - 
[F(2, 18)=62.6, 

p=0.00001] 

- 
[F(2, 29)=130.1, 

p=0.00001] 
Salmonella vs. Listeria + - 

E. coli vs. Listeria + - 

21 hours 

Salmonella vs E. coli + 
[F(2, 29)=55.0, 

p=0.00001] 

- 
[F(2, 29)=130.1, 

p=0.00001] 
Salmonella vs. Listeria + + 

E. coli vs Listeria + + 

24 hours 

Salmonella vs E. coli - 
[F(2, 29)=8.05 

p=0.001] 

- 
[F(2, 29)=1.78, 

p=0.185] 
Salmonella vs. Listeria + - 

E. coli vs. Listeria - - 

One way ANOVA was applied to compare bacteria of different species at times of growth, 18, 21, and 24 hours.   

A. Parameters: Area and FWHM. B. Parameters: Center and Centroid. An analysis of variance is presented as 

F(Degrees of freedoms between groups, within groups)=F ratio, p=significance. + Significantly different; - not 

significantly different. 
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Figure 3.  Fitting of the mean spectrum of Salmonella    hour’s growth 

with GCAS (a), Extreme (b), and Lorentz (c) statistical functions 

Table 3.  Ranks of fitting of the Salmonella 24 h mean spectrum by GCAS, 
Extreme, Lorentz, Logistpk, GaussAmp, and InvsPoly 

Funct. Stat AIC BIC Adj. Res. Chi-Sqr 

1 S -3170.80 -3141.7 0.95 0.5015 0.00109 

2 S -2952.19 -2931.4 0.92 0.8086 0.00175 

3 S -2837.43 -2816.7 0.90 1.0344 0.00224 

4 S -2716.78 -2696.0 0.88 1.34007 0.0029 

5 S -2664.36 -2643.6 0.86 1.49962 0.00325 

6 F The fit did not converge. 

Funct.-Functions; 1- GCAS; 2- Extreme; 3- Lorentz; 4- Logistpk; 5- 

GaussAmp; 6- InvsPoly; S-Succeeded; F-Failed; Stat-status;   

Adj.-Adjustable R-Squares; Res.- Residual Sum of Squares 

At the 0.05 significance level, the Salmonella, E. coli, and 

Listeria at 18, 21, and 24 hours spectra are statistically 

different. Because degrees of freedom are the same for all 

comparisons and Prob>F=0, the higher F value indicates 

higher discrimination between bacteria. Thus, the 

discrimination level for 18 hours of growth of Salmonella vs. 

Listeria> E. coli vs. Listeria> Salmonella vs. E. coli. The 

discrimination level for 21 hours of grows of E. coli vs. 

Listeria > Salmonella vs. Listeria> Salmonella vs. E. coli. 

Similarly, the discrimination level for 24 hours of growth of 

Salmonella vs. Listeria> E. coli vs. Listeria> Salmonella vs. 

E. coli.  

Table 4.  Comparison of spectra of Salmonella, E. coli, and Listeria at 18, 
  , and    hour’s of growth 

 Comparison F S 

18 hours 

Salmonella vs E. coli F(6, 809)=865.022, 0 + 

Salmonella vs Listeria F(6, 809)=4730.528, 0 + 

E. coli vs Listeria F(6, 809)=1737.262, 0 + 

21 hours 

Salmonella vs E. coli F(6, 920)=123.04, 0 + 

Salmonella vs Listeria F(6, 920)=322.18, 0 + 

E. coli vs Listeria F(6, 920)=795.17, 0 + 

24 hours 

Salmonella vs E. coli F(6, 920)=176.28, 0 + 

Salmonella vs Listeria F(6, 920)=3284.41, 0 + 

E. coli vs Listeria F(6, 920)= 1704.57, 0 + 

S-significance; Prob>F, the p-value for F-test, for all comparisons was equal 

zero 

3.3. Bacteria with Different Growth Time 

We found that spectra of the same bacterial strain were 

different for different times of growth. Figure 4 shows the 

spectra of Salmonella, E. coli, and Listeria at 18, 21, and 24 

hours of growth, respectively. To differentiate spectra of 

these bacteria, we apply the same strategy that we use for 

spectra analysis of different bacteria at the same time of 

growth. We ranked spectra of all bacteria of the same strain 

at each time point of growth and found the best fitting 

functions. Fitting parameters of spectra were used for 

comparison and discrimination of bacteria using the F-test. 

Discrimination of Salmonella, E. coli and Listeria at 18, 21, 

and 24 hours growth fitted with GCAS by F-test is shown in 

Table 5. 

Table 5.  Summary of spectra comparison of Salmonella, E. coli, and 
Listeria at 18, 21, and 24 hours of growth fitted with GCAS function 

Comparison F S 

Salmonella 18 h vs Salmonella 21 h F(6, 920)= 3372.748, 0 + 

Salmonella 18 h vs Salmonella 24 h F(6, 920)= 298.3711, 0 + 

Salmonella 21 h vs Salmonella 24 h F(6, 920)= 932.6696, 0 + 

E. coli 18 h vs E. coli 21 h F(6, 920)= 3372.748, 0 + 

E. coli 18 h vs E. coli 24 h F(6, 920)= 298.3711, 0 + 

E. coli 21 h vs E. coli 24 h F(6, 920)= 932.6696, 0 + 

Listeria 18 h vs Listeria 21 h F(6, 920)= 1.70, p=0.14775 - 

Listeria 18 h vs Listeria 24 h F(6, 920)= 84.73253, p=0 + 

Listeria 21 h vs Listeria 24 h F(6, 920)= 78.09705, p=0 + 

S-significance 

At the 0.05 significance level, the Salmonella at 18,    

21, and 24 h spectra are statistically different. The 

discrimination level for Salmonella 18 h vs. Salmonella 21  

h> Salmonella 21 h vs. Salmonella 24 h> Salmonella 18 h vs. 

Salmonella 24 h. At the 0.05 significance level, the E. coli at 
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18, 21 and 24 h spectra are statistically different. The 

discrimination level for E. coli 18 h vs. E. coli 21 h> E. coli 

21 h vs. E. coli 24 h>E. coli 18 h vs. E. coli 24 h.  

 

 

 

Figure 4.  Spectra of Salmonella, E. coli, and Listeria at 18, 21, and 24 

hours of growth, respectively 

4. Discussion  

Hyperspectral microscopy is an innovative imagining 

technique that merges hyperspectral visualization with light 

microscopy and computation technology to allow the rapid 

characterization of microparticles and microorganisms. It 

has been successfully used for the imaging of nanoscale 

materials and the rapid identification of microorganisms 

[22,23]. Because the hyperspectral spectroscopy is a 

light-based technology, it has limitations that are inherent in 

light microscopy. Primary, its spatial resolution is not 

sufficient to differentiate individual cells from their clusters, 

and thus it is not to be able to differentiate the two 

microorganisms, which may limit its use for the rapid 

identification of pathogens. The considerable step forward in 

solving the spatial resolution limitation was incorporating 

enhanced darkfield light microscopy into hyperspectral 

imagery [9,24]. Darkfield microscopy gives a high contrast 

appropriate for the examination of low-contrast objects, 

generally not visible by conventional bright-field 

microscopy. The darkfield condenser projects light onto the 

sample at oblique angles, preventing the excitation light 

from directly entering the objective [25]. The CytoViva High 

Resolution Adapter was adopted from the optical condenser 

developed for obtaining super-resolution imaging in the 

conventional light microscope [11,13,14]. Ninety-nm 

resolution was achieved using an optical illumination system 

with a high-aperture cardioid annular condenser producing a 

Bessel illumination [15]. The optical system offers the 

ability to produce optical sectioning. 

Meanwhile the optical sectioning also permits the 

discerning of the in-focus image from out-of-focus structures. 

Additionally, it allows us to see not only the cell surface but 

also get a glance at the inside the cell. Fine focusing and 

placement of focus in any depth of the cell allow the focus to 

be placed at a desirable increment.  

5. Conclusions 

The limited spatial resolution characteristic of 

conventional illumination was diminished by the use of 

super-resolution condenser in our work. The 

super-resolution hyperspectral imaging allowed 

differentiating three viable microorganisms, Salmonella 

enterica serovar Typhimurium, Escherichia coli O157:H7, 

and Listeria monocytogenes at 18, 21, and 24 hours of 

growth. Present experimental data and spectral analysis can 

be used for assembly of future libraries that will include 

these bacteria in various environments and can be used for 

their identification. We envision that hyperspectral analysis 

of bacteria will be developed further and techniques will be 

adapted to clinical isolates. With future development, such a 

system could be utilized in hospital settings to detect the 

presence as well as identify the pathogens 
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