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Abstract  Significant loss of nutrients has been reported during extrusion cooking, and processing food with this 
technology therefore requires careful optimization of the process parameters. In this experiment, the effect of process 
variables on the mineral content of rice-cowpea extrudates was investigated using response surface methodology and central 
composite design. Barrel temperature (X1), feed moisture composition (X2) and blend composition (X3) were the independent 
variables considered, while mineral composition was the response variables. Results showed that X1, X2 and X3 all had a 
significant effect on the mineral composition (p< 0.001). The interactions between the threefactors were also found to be 
significant at 0.001 level of probability. At X1 between 86 - 140oC, X2 between 15 - 25% and X3 between 8 - 24% the mineral 
contents in terms of Mn, Fe, Cu, Zn and Ca contents of rice-cowpea extrudates increased. The optimization of the analyzed 
responses demonstrated that the best peak conditions for extrusion under the different variables were 12.06mg/100g, 
5.59mg/100g, 10.98mg/100g, 2.36mg/100g, 4.24mg/100g, and 25.99mg/100g for Mg, Mn, Fe, Cu, Zn and Ca respectively. 
At moisture content slightly above 22% and blend composition of 20%, Mg content start to decrease. Calcium and Cu 
contents decrease with increasing moisture and feed blend contents and gradually increases when moisture content raise 
above 20% and feed blend composition greater than 10%. The correlation coefficients of 0.992, 0.987, 0.969, 0.866, 0.974 
and 0.980 observed between the predicted and actual values for the response variables are evidence that the regression model 
can represent the experimental data well. It can be concluded therefore that minerals present in the extrudates may be 
maximized when process conditions are carefully adjusted within the reported values. 
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1. Introduction  
In Nigeria and indeed most countries of sub-Saharan 

Africa, frequent conflicts, poverty, poor agricultural 
practices, productivity and climate changes has caused food 
shortage and most vulnerable populations survive majorly on 
sole starchy staples such as rice, maize, sorghum, millet, 
cassava, potatoes and cowpea with little or no animal 
products to supply protein required for normal growth and 
development. These problems are further aggravated by the 
menace of HIV/AIDS epidemic that increased the number of 
vulnerable populations. Cereals processed using technology 
that minimize nutrient loss and combination of cereals with  
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local legumes has been reported as one of the vehicle for 
delivering protein and minerals to at-risk populations 
because of their wide spread in consumption, stability during 
storage and versatility in the production of arrays of food 
products [20]. The production of cereals-legume based 
products to supply additional protein and minerals to the 
daily diet of the vulnerable groups of the population has 
increased significantly over the years. Such products include 
nutritionally enhanced biscuits, breads, cakes, porridges and 
extruded snacks. Extrusion cooking technology has played a 
central role in modern cereal-based industries especially for 
the production of snacks from wheat, corn, oats and rice [34]. 
Nevertheless, fewer rice-based extruded products are 
available in the market compared to those from corn and 
wheat. But, rice flour has become an attractive ingredient in 
the production of extruded products due to its bland taste, 
attractive white colour, hypoallergenicity, ease of digestion 
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and the ability to expand well and make excellent extrudate 
[21, 23, 34]. The bland flavour of rice therefore makes it 
favourable for preserving more expensive flavour attributes. 
Though, reliable statistics are not available for Nigeria and 
other developing countries, data from United State of 
America indicated that there is increasing interest in 
gluten-free food products as while as the number of people 
having celiac disease grows and society are becoming more 
informed about health implications of gluten-free products 
[26]. 

Food minerals are solid, crystalline chemical elements that 
cannot be decomposed or synthesized by ordinary chemical 
reactions. They are classified as macro- and microminerals. 
The macro minerals include calcium, phosphorus, sodium, 
potassium and chloride, and of these, calcium and 
phosphorus are needed in large quantity. The microminerals 
include magnesium, manganese, zinc, iron, copper, 
molybdenum, selenium, iodine, cobalt and chromium which 
are required by the body in minute quantity for normal 
metabolic activities. Although minerals represent a small 
portion of food composition, they play major roles in food 
chemistry and nutrition [22]. Minerals such as iron and 
calcium are added to foods for improvement of its nutritional 
value [19]. Elements such as iron (Fe), copper (Cu), 
magnesium (Mg) and calcium (Ca) act as catalyst for 
enzymes during normal metabolic processes, while Fe is 
essential for the prevention of anaemia, Ca is required for 
bone health [19]. But despite the huge importance of 
minerals in human health, and wide application of extrusion 
cooking in food processing, relatively few studies has 
examine mineral stability during extrusion cooking, 
probably because they are stable in other food processing 
techniques [19] [22]. Minerals are heat stable and are 
unlikely to become lost in steam distillate at the die end [22]. 
But Alonso et al., [32] reported that iron content of flour 
increased after extrusion, while Singh et al., [22] reported 
that when wheat bran is incorporated into a broken rice flour 
in extrusion (300 rpm screw speed, 27kg/h feed rate, 5/32 
inches die size, 93-97℃  outlet temperature) there was 
increase in the calcium, phosphorus, iron and copper 
contents, which they attributed to type of feed composition 
and the water used during the extrusion exercise. They 
recommend further research in this area, particularly if 
extrudate foods are produced as vehicle for mineral 
fortification. 

During extrusion, variation in feed composition such as 
moisture content, type of carbohydrate, and protein contents 
and extruder conditions directly influence qualities of 
finished products [24, 27]. In order to obtain good quality 
extruded product, the multivariate inputs must be set at the 
correct levels to allow the dependent physical and chemical 
changes within the barrel of the machine to continue at a 
steady state. Once the relationships between the independent 
and dependent variables are established for a particular 
product, they must be maintained close to optimum levels to 
ensure that the extrudate variables are also kept at required 
level [24].  

Response surface methodology (RSM) has been used 
widely for modelling extrusion cooking processes [1, 4, 19]. 
It is a collection of mathematical and statistical techniques 
useful for analysing and optimizing the response of 
multivariate systems [10]. Perez et al [35] used RSM to 
study the effects of extrusion variables on extrudate quality, 
adjusting grit moisture content (14-18%) and extrusion 
temperature between 155oC and 185oC. Pansawate et al., [28] 
studied the effect of extrusion variables on secondary 
extrusion variables of fish, rice-based snacks considering 
primary extrusion variables such as barrel temperature of 
125 to 145oC, screw speed of 150-300rpm and feed moisture 
content of 19-23%. Giri and Bandyopadhyay [29] reported 
on the effect of extrusion factors on extrudate qualities of 
fish-rice flour blend in a single screw extruder. In the 
extrusion of blends of flour made from starch and protein 
rich materials. While [31, 32] earlier reported the 
optimization of extrusion variables and the application of 
RSM in the manufacture of Fura a traditional cereal-based 
porridge of northern Nigeria, blending millet with cowpea, 
millet and soybean and millet mixed with Bambara 
groundnut [31, 32]. 

It is in line with these assertions and the need to improve 
the competiveness of low grade broken rice fractions that the 
current study was designed to assess the effect of twin-screw 
extruder extrusion parameters (barrel temperature -100 
to140oC, feed moisture content – 15 to 25% and feed blend 
composition – 8 to 24%) on the mineral compositions of 
rice-cowpea based extruded instant porridge were examined 
using RSM and central composite design (CCD) to optimize 
the process for maximum mineral retention as vehicle for 
fortification and value addition to rice based extrudates. 

2. Materials and Methods 
2.1. Raw Materials Collection and Preparation 

The raw materials included rice (Oryzasativa L.) and 
Cowpea (Vignaunguiculata). About 100kg of rice (FARO 52) 
was obtained from the Breeding Program of National 
Cereals Research Institute (NCRI) Badeggi, Nigeria, and 
40kg of Cowpea (Vignaunguiculata) was purchased from 
Central Market, Bida, Niger State, Nigeria and were 
manually cleaned and kept in a dry condition (30±2oC) until 
required. For the preparation of rice flour, samples were 
cleaned in a pneumatic cleaner (locally fabricated) and 
milled using rubber roll mill (Satake, Japan) and graded, the 
broken rice fraction was then used for this study. The broken 
fractions were milled to flour in a small scale disc mill 
(locally fabricated) and sieved using 150µm screen size sieve. 
Cowpea seeds were soaked in tap water at ambient 
temperature (30±2oC) for 30 min to loosen seed coat in 
stainless steel buckets and decorticated using pestle and 
mortar before washing several times in clean tap water and 
drying under the sun for 4hrs (30±2oC) to approximately   
14% moisture content. The decorticated dried seeds were 
mill in a small scale disc mill (locally fabricated) and sieved 
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using 150µm screen size sieve. Both rice and cowpea flours 
were packaged in a polyethylene bags and stored in a 
cardboard at ambient conditions (32 ± 2oC) until required for 
analysis.  

2.2. Composite Flour Formulation 

Rice and cowpea flours were mixed at defined ratios 
(2.55%, 8%, 16%, 24% and 29.45%, wet-wet bases). The 
moisture content of flour of different ratios was measured by 
hot air oven method. After getting the initial moisture 
content of the blends (M1), the blended samples were 
conditioned to appropriate moisture content by spraying with 
a calculated amount of water and mixing continuously at 
medium speed in a blender. The samples were put in closed 
buckets and stored overnight. The amount of water to be 
added was calculated using the equation proposed by 
Ascheri [18] 

𝑊𝑊𝑊𝑊 = 𝑊𝑊𝑑𝑑 x (𝑀𝑀2−𝑀𝑀1)
(1−𝑀𝑀1)(1−𝑀𝑀2)

            (1) 

Where Ww is the amount of water to be added, Wd is dry 
weight of the raw flour, M1 is initial moisture content and 
M2 the desired moisture content in grams.  

2.3. Preliminary Extrusion Exercise 

In order to define the experimental range, preliminary 
experiments were first. As the design ranges were 
established, they were coded to lie at ±1α for the factorial 
points, 0 for the centre points and ±1α for axial points. The 
codes were calculated as a function of the range of interest of 
each factor as shown in Table 1. In this study, a small scale 
laboratory twin-screw extruder with three zones (feeding, 
cooking and die zones) equipped with a screw feeder and a 
3mm die was used to extrude the different formulations. 
Based on preliminary runs, the feeding, cooking and die 
zones were set at 100, 120 and 140oC respectively. Other 
extruder parameters were screw speed 260rpm, and feeder 
screw speed (150rpm). When the twin screw extruder output 
are at steady state extrusion conditions, samples were 
collected and dried overnight in oven at 80oC. These samples 
were removed from oven and stored in a desiccator for 
further analysis.  

2.4. Extrusion Experimental Design 

Considering the extruder limitations, a central composite 
design was used for this study, based on five-levels of the 
three variables (Table 2). The independent extrusion 
variables considered were barrel temperature (100 – 140oC), 
feed moisture content (15 to 25%) and blend composition (8 
to 24%). All other parameters were kept constant. The 
operating ranges and five standardized levels were 
established after several preliminary runs as described above. 
Based on CCD, the experimental runs comprises of 15 trials 
(8 factorial points, 6 axial points and 1 central point).All 
treatments were performed in a randomized order. RSM and 
second-order CCD for three-variables (Barrel temperature 
X1, Feed moisture content X2, and Feed composition X3), 
five level combinations coded -1.68, -1, 0, +1, and +1.68 
(Table 2) as modelled by Snedecor and Cochran [15] was 
adopted to determine the effects of the independent variables 
on response variables. Using the coded levels, the natural 
levels were calculated and outlined as in Table 3, comprising 
of 15 experimental runs and different formulation 
composition. 

Table 1.  Relationship between the coded and un-coded values of the 
independent variables 

Code Actual value of independent variable 

-α X min 

-1 
(𝛼𝛼 − 1)𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 +  (𝛼𝛼 + 1)𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋

2
 

0 
Xmax + Xmin

2
 

+1 
(𝛼𝛼 − 1)𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 +  (𝛼𝛼 + 1)𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋

2
 

+α X max 

Xmax and Xmin are maximum and minimum values of the independent 
variables 

Table 2.  Independent Variables and natural levels used for Central Composite Rotatable Design 

Independent variables 

Levels of coded variables 

-α Low Medium High +α 

-1.68 -1 0 1 +1.68 

Barrel Temperature (X1) 86.36 100 120 140 153.64 

Feed Moisture content (X2) 11.59 15 20 25 28.41 

Feed Composition (X3) 2.55 8 16 24 29.45 

Level of each variable was established based on a preliminary extrusion. The distance of the axial 
points from the centre point was ± 1.68, and calculated from Equation α = (2n)1/4 where n is the number 
of variables. 
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Table 3.  Outline of experimental design with coded and un-coded values 

Design 
point 

Independent variables  
in coded form 

Independent variables    
in their natural form 

X1 X2 X3 X1 X2 X3 
1 -1 -1 -1 100 15 8 
2 1 -1 -1 140 15 8 
3 -1 1 -1 100 25 8 
4 1 1 -1 140 25 8 
5 -1 -1 1 100 15 24 
6 1 -1 1 140 15 24 
7 -1 1 1 100 25 24 
8 1 1 1 140 25 24 
9 -1.68 0 0 86.36 20 16 
10 1.68 0 0 153.64 20 16 
11 0 -1.68 0 120 11.59 16 
12 0 1.68 0 120 28.41 16 
13 0 0 -1.68 120 20 2.55 
14 0 0 1.68 120 20 29.45 
15 0 0 0 120 20 16 

X1 = Barrel temperature, X2 = Feed moisture content, X3 = Feed composition. 
Duplicate runs were carried out all design point and average recorded. The 
experimental runs were randomized.  

2.5. Chemical Analysis 

The moisture content was determined by taking 2g of each 
sample and placed in petri dishes and heated in an oven at 
105oC for 2h, after which it was removed and cooled in a 
glass jar containing silica gel desiccants for about 15min. 
Weight of petri dish containing the cooled samples was 
measured using a digital weight balance (ED 2201-CW, 
Sartorius, Berlin, Germany). The samples were further dried 
for 30min and reweighed until a constant weight was 
observed. Moisture content was calculated as: 

%Moisture content (dry basis)  

= 
Initial  weight −Final  weight  (g)

Initial  weight  (g)
  𝑥𝑥 100      (2) 

Mineral contents of exrudate were determined by Atomic 
Absorption Spectrophotometric [Iron (Fe), Zinc (Zn), 
Calcium (Ca), Manganese (Mn) and Magnesium (Mg)] 
according to AOAC [17]. 

2.6. Statistical and Mathematical Analysis 

To determine if there exist a relationship between the 
independent variables and the dependent variables, the data 
collected were subjected to regression analysis using 
response surface regression procedure of MINITAB 14.13. 
Regression analysis is used to model a response factor (Yi) as 
a mathematical function of a few continuous factors. Each 
response (Yi) was represented by a mathematical equation 
that correlates the response surfaces. The response was then 
expressed as second-order polynomial equation according to 
equation 3. 

Yi = 𝑓𝑓(𝑦𝑦) = 𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖𝑘𝑘
𝑖𝑖=1  + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖=1 𝑋𝑋𝑖𝑖2 
+ ∑  𝑘𝑘

𝑖𝑖=1 ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 +  𝜀𝜀𝑘𝑘
𝑖𝑖=1           (3) 

Where Yi is the predicted response used to relate to the 

independent variable, k is the number of independent 
variables (factors) Xi (i = 1, 2, 3); while β is a constant 
coefficient and βi, βij and βii the coefficient of linear, 
interaction and square terms respectively and ε is the random 
error term. Multivariate regression analysis with model 
equation (3) was carried out on the data using MINITAB 
14.13 statistical software (Manitab Inc. USA) to yield 
equation (4) which was used to optimize the product 
responses. 

Y = βo + β1X1 + β2X2+ β3X3+ β11X2 
1 + β22X2 

2 + β33X2 
3 

 + β12 X1X2 + β13 X1X3 + β23 X2X3 + ε          (4) 
The model developed for each determination was then 

examined for significance and lack-of-fit, while response 
surface plot was designed after removal of the 
non-significant terms with the same software. 

2.7. Test for Significance of the Regression Model 

This test was performed as an analysis of variance 
(ANOVA) by calculating the F-ratio, which is the ratio 
between the regression mean square and the mean square 
error. The F-ratio, also called the variance ratio, is the ratio 
of variance due to the effect of a factor (in this case the model) 
and variance due to the error term. This ratio is used to 
measure the significance of the model under investigation 
with respect to the variance of all the terms included in the 
error term at the desired significance level, α. A significant 
model is desired [11]. 

2.8. Test for Significance on Individual Model 
Coefficients 

Additionally, checks were carried out in order to 
determine whether the model actually describes the 
experimental data [16]. The checks performed here include 
determining the various coefficient of determination, R2. 
These R2 coefficients have values between 0 and 1. In 
addition to the above, the adequacy of the model was also 
investigated by the examination of residuals [10]. The 
residuals are the difference between the respective, observed 
responses and the predicted responses examined using the 
normal probability plots of the residuals and the plots of the 
residuals versus the predicted response. If the model is 
adequate, the points on the normal probability plots of the 
residuals should form a straight line. On the other hand the 
plots of the residuals versus the predicted response should 
not depict a pattern, that is, the residual graph should contain 
no obvious patterns. 

2.9. Test of Lack-of-fit 

Since triplicate measurements were made during analysis 
of the dependent variables, a lack-of-fit test examines the 
significance of replicate error in comparison to the model 
dependent error. This test split the residual or error sum of 
squares into two parts, one due to pure error as a result of 
duplicate measurement and the second due to lack-of-fit 
which is the ratio between the lack-of-fit mean square and 
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pure error mean square. The F-test can then me used to 
measure wither the lack-of-fit is statistically significant or 
not at the described level of probability. 

3. Results and Discussions 
3.1. Central Composite Design and Model Building 

In regression analysis, model building is the process of 
developing a probabilistic model that best describes the 
relationship between the dependent and independent 
variables. When multivariate biological process therefore 
satisfies the assumptions that they are measurable, 
continuous, and controllable by designed experiments and 
with no statistically significant errors, the RSM using CCD 
could be applied to develop the model and also optimize the 
process by first performing series of experimental runs to 
adequately and reliably measure the response variables 
before developing mathematical model of the second-order 
response surface with best-of-fit,  and finally determine the 
optimal set of experimental parameters producing the 
optimal response value [30]. In this study, effects of barrel 
temperature (X1), feed moisture content (X2) and feed blend 
composition (X3) and their interactions each at three levels 
on the mineral contents of rice-cowpea extrudates were 
investigated (Table 2). The three independent variables and 
their different coded and actual values used in the design 
matrix are presented in Table 2. Fifteen experiments based 
on CCD were therefore carried out with different 
combinations of the variables (Table 3). The number of 
experiment required (N) is given by the expression 2k (23 = 8, 
star points) + 2 x k (2 x 3 = 6, axial points) + 6 centre points(6 
replications) [7]. Observed response data (in triplicates) 
from the experimental runs (Table 5) were used to develop 
models (Table 4) using least square technique as described 
by [30]. The six (6) response variables (Mg, Mn, Fe, Cu, Zn 
and Ca) were correlated with the independent variables using 
the second-order polynomial as represented by equation (4). 
HereX1, X2 and X3 represent the barrel temperature (BRT), 

feed moisture composition (FMC) and feed blend 
composition (FBC) respectively. The coefficients with one 
factor (X1,X2, and X3) represent the sole effects of that 
particular factor, while the coefficients with two factors 
(X1X2, X1X3, and X2X3) and those with second-order terms 
(X11, X22 and X33) represent the interaction between the three 
factors and the squared effects respectively. A positive value 
of the regression terms indicates a synergistic effect, while 
negative sign indicates an antagonistic effect [30]. The 
regression equation (Yi) demonstrated that mineral retention 
during extrusion of rice-cowpea composite flour was an 
empirical function of test variables in coded units, as shown 
in Equations in Table 4. The mean observed and predicted 
values of the response variables are presented in Table 5. The 
significant changes in Fe, Cu, Zn and Ca in relation to 
changes in the independent variables (X1X2X3) are 
represented in Table 4. The coefficients in the regression 
equation can be used to examine the significance of each 
term relative to each other when used with coded values. 

Statistical analysis showed that barrel temperature, feed 
moisture and feed composition all had a significant effect on 
the mineral values (p< 0.001). The interactions between the 
three factors were also found significant at 0.001 level of 
probability. The Fe content of extrudate as indicated in these 
equations (Table 4) and Table 5 are in agreement with earlier 
research results reported by Alonso et al. [32] who reported 
that significant change in Fe content of pea and kidney bean 
seed extrudates and attributed this variation to wearing of 
metallic pieces, mainly screws of the extruder. Maintaining 
barrel temperature between 86 and 140oC and feed 
composition between 15 and 25% moisture content and 8 to 
24% cowpea increases Mn, Fe, Cu, Zn and Ca contents of 
rice-cowpea extrudatesin this study (Table 5). Singh et al. 
[22] reported similar trend. This might be attributed to the 
addition of these minerals through water used for extrusion 
and also extruder barrel. Processing variables like feed 
moisture content and blend ratio has also been earlier 
reported as playing important role on the quality of 
extrudates. 

Table 4.  Second-order quadratic models developed for the response variables 

Response 
variables Second-order quadratic models 

Regression coefficients (%) 

R2 R2
adj. 

Mg 83.44+ 1.13X1 + 3.62X2 – 0.15X3 – 0.01X1
2 – 0.07X2

2                           
– 0.01X3

3 - 0.01X1X2 + 0.004X1X3 + 0.004X2X3 
99.0 97.1 

Mn 9.31– 0.16X1 + 0.27X2 + 0.39X3 + 0.001X1
2 -0.007X2

2                                       

– 0.003X3
3 + 0.001X1X2 + 0.004X1X3 + 0.007X2X3 

99.1 98.8 

Fe 11.08+ 0.04X1 – 0.33X2 + 0.39X3 – 0.001X1
2 – 0.004X2

2                                     
– 0.002X3

3 + 0.005X1X2 – 0.002X1X3 -0.005X2X3 
97.0 95.6 

Cu 4.07+ 0.02X1 - 0.31X2 - 0.08X3 – 0.002X1
2 + 0.005X2

2                                                 

+ 0.003X3
3 + 0.001X1X2 + 0.0001X1X3 – 0.002X2X3 

85.4 78.9 

Zn 14.99– 0.13X1 – 0.23X2 + 0.10X3 + 0.001X1
2 + 0.005X2

2                                     

– 0.0023X3
3 -0.002X1X2 – 0.003X1X3 + 0.014X2X3 

97.0 95.6 

Ca 79.15– 0.17X1 – 1.17X2 – 0.05X3 + 0.005X1
2 + 0.07X2

2                                               

+ 0.33X3
3 – 0.02X1X2 – 0.012X1X3 + 0.029X2X3 

98.1 97.3 

X1 = Barrel temperature, X2 = Feed moisture content, X3 = Feed composition 
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Table 6.  Analysis of variance (ANOVA) for full quadratic model for the 
response variables 

Sources of 
variation DF Sum of 

square 

Mean 
sum of 
square 

F-Value p-value 

Iron      
Model 9 12.14 1.35 71.73 ≤0.0001 
Linear 3 6.03 1.22 64.75 ≤0.0001 
Square 3 0.58 0.19 10.36 ≤0.0001 
Interaction 3 5.52 1.84 97.84 ≤0.0001 
Residual Error 20 0.38 0.02 - - 
Lack-of-fit 5 0.35 0.07 35.63 0.058 
Pure error 15 0.03 0.002 - - 
Total 29 12.51 - - - 
Magnesium      
Model 9 140.99 15.67 258.57 ≤0.0001 
Linear 3 65.32 21.61 356.71 ≤0.0001 
Square 3 65.79 21.93 361.97 ≤0.0001 
Interaction 3 9.88 3.29 54.34 ≤0.0001 
Residual Error 20 1.21 0.06   
Lack-of-fit 5 1.19 0.24 130.89 0.062 
Pure error 15 0.03 0.002   
Total 29 142.20    
Manganese      
Model 9 21.12 2.35 109.86 ≤0.0001 
Linear 3 8.35 1.97 92.37 ≤0.0001 
Square 3 5.68 1.89 88.62 ≤0.0001 
Interaction 3 7.09 2.36 110.68 ≤0.0001 
Residual Error 20 0.43 0.02 - - 
Lack-of-fit 5 0.17 0.03 1.92 0.150 
Pure error 15 0.26 0.02 - - 
Total 29 21.54 - - - 
Copper      
Model 9 2.43 0.27 12.99 ≤0.0001 
Linear 3 0.92 0.24 11.36 ≤0.0001 
Square 3 1.15 0.38 18.49 ≤0.0001 
Interaction 3 0.36 0.12 5.70 ≤0.005 
Residual Error 20 0.42 0.02 - - 
Lack-of-fit 5 0.39 0.08 45.99 0.0210 
Pure error 15 0.03 0.002 - - 
Total 29 2.84 - - - 
Zinc      
Model 9 15.34 1.70 81.45 ≤0.0001 
Linear 3 2.83 0.35 16.52 ≤0.0001 
Square 3 3.36 1.12 53.59 ≤0.0001 
Interaction 3 9.15 3.05 145.71 ≤0.0001 
Residual Error 20 0.42 0.02 - - 
Lack-of-fit 5 0.41 0.08 81.26 0.079 
Pure error 15 0.02 0.0009 - - 
Total 29 15.76 - - - 
Calcium      
Model 9 239.18 26.58 115.25 ≤0.0001 
Linear 3 57.86 5.90 25.60 ≤0.0001 
Square 3 57.15 19.05 82.62 ≤0.0001 
Interaction 3 124.16 41.39 179.49 ≤0.0001 
Residual Error 20 4.61 0.23 - - 
Lack-of-fit 5 4.61 0.92 2764.07 0.091 
Pure error 15 0.005 0.0003 - - 
Total 29 243.79 - - - 
 

Highest and lowest Mg content was observed in the 15th 
(120oC X1, 20% X2 and 16% X3) and the 10th (153.64oC X1, 
20% X2 and 16% X3) experimental runs respectively. This 
indicated decrease in Mg content with increasing barrel 
temperature. The Mn content was highest (6.24mg/100g) at 
lowest barrel temperature (86.36oC) and lowest 
(2.89mg/100g) at high temperature (140oC). This variation 
as noted in this study may be attributed to changing 
processing variables. The Fe content varied between 10.62 
and 13.34mg/100g in runs 2 and 5 respectively. At lower 
temperature and increased cowpea content of the 
formulations, Fe content is observed to increase. Alonso et al. 
[32] earlier reported significant change in Fe content of pea 
and kidney bean seed extrudates and attributed this variation 
to wearing of metallic pieces, mainly screws of the extruder, 
this may also be true for this results. Harper [25] reported 
that extrusion conditions of 120-170rpm screw speed, 
105-150oC extruder exit temperature and 18-20% blend 
moisture content raise the level of Fe in extrudates. The Fe 
content of 10.62 to 13.34mg/100g recorded in this study is 
worthy to note as most diets in many developing countries 
are deficient in Fe. Cupper significantly (p< 0.001) 
decreased from 2.86mg/100g at 140oC barrel temperature, 
25% moisture content and 8% cowpea blend to about 
1.39mg/100g at a lower temperature of 86.36oC, reduced 
moisture content of 20% and increased blend ratio of 16% 
(Table 5). Observed value for Zn and Ca composition of the 
extrudates was significantly (p< 0.001) varied between 4.13 
to 6.28mg/100g and 23.12 to 31.11mg/100g respectively. 
Highest Zn content was recorded at lower extrusion 
temperature (86.36oC) as compared to 140oC where highest 
Ca content was observed (Table 5). This indicate that low 
temperature extrusion favours Zn retention and higher 
temperature favours Ca retention. It was also clear from the 
data that Ca content was extensively influenced by extrusion 
cooking under different treatments. Harper [25] reported 
2.95mg/100g and 3.7mg/100g change in Ca contents in rice 
grits during extrusion.  

The general, effects of extrusion variables on the response 
variables studied here are in harmony with Camire [19] who 
suggested that increase in the intensity of minerals in 
extrudates during extrusion and credited the changes to the 
accumulation of this minerals in water used for the extrusion 
exercise, heat sensitivity and oxidation tendencies of this 
class of minerals during heat treatment.  

3.2. Statistical Significance of Regression Models 

The analysis of variance (ANOVA) for the response 
variables (Mg, Mn, Fe, Cu, Zn and Ca) are presented in 
Table 6. To evaluate the significance of any regression 
model in predicting effects of a set of independent variable 
on response variables, the F-value test has to be carried out. 
The f-distribution test is a probability distribution tests used 
to compare variance by examining their ratios. The f-ratio 
value in the ANOVA table in this study therefore is the ratio 
of the model mean square to the appropriate error mean 
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square (Table 6). Krishma et al. [9] reported that the larger 
the ratio, the larger the f-value and more likely is it that 
variance distributed by the observed models are statistically 
larger than random error. The f-value reported for each 
response variables are 71.73, 258.57, 109.86, 12.99, 81.45 
and 115.25 respectively for Mg, Mn, Fe, Cu, Zn and Ca. The 
large f-values reported for the model coefficients indicated 
that the variation in mineral content of the extrudates can be 
explained by the regression models. It was also clear that the 
linear and interaction terms are highly significant       
(p< 0.0001). Based on the ANOVA Table 6, therefore, we 
can conclude that the selected models adequately represent 
the data for mineral contents obtained from the extrusion 
cooking of rice-cowpea composite flour blends. The p-value 
was used to check for the significance of each of model 
coefficients. Smaller p-value denotes greater significance of 
the corresponding coefficient [13]. 

3.3. Validation of Regression Models 

It is also necessary in RSM that the developed regression 
models (Table 4) provide an adequate approximation for 
application in real systems, and there are principally two 
methods used for the validation, these are graphical and 
numerical methods [30]. The graphical method takes into 
account the nature of residuals (difference between the 
observed values and its fitted) of the model while the 
numerical method uses the coefficient of determination (R2) 
and adjusted R2(R2

adj). R2 is the measure of how much of the 
observed variability in the experimental data could be 
accounted for by the model, while R2

adj on the other hand 

modifies R2 by taking into account the number of predictors 
in the model and calculated as in Eq. 5 and 6. 

𝑅𝑅2 = 𝑆𝑆𝑆𝑆𝑆𝑆  𝑜𝑜𝑜𝑜  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝑠𝑠𝑠𝑠𝑠𝑠  𝑜𝑜𝑜𝑜  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑆𝑆𝑆𝑆𝑆𝑆  𝑜𝑜𝑜𝑜  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

  (5) 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 .
2 = 1 − 𝑛𝑛−1

𝑛𝑛−𝑝𝑝
 (1 − 𝑅𝑅2)            (6) 

Where n is the number of experimental runs, and p the 
number of predictors (term) in the model, not counting the 
constant term. Koocheki et al, [3] suggested that for a good 
fitted model, R2 should not be less than 80%, while Chauhan 
and Gupta [4] reported R2 greater than 75% as acceptable for 
fitting a model. In this study, the models developed indicated 
R2 ranging between 85.5% and 99.10% while R2

adj ranges 
between 78.9 and 98.8% indicating appropriateness of the 
developed model equation in predicting mineral retention in 
rice-cowpea composite flour when the three independent 
variables are mathematically combined. The R2 and R2

adj 
values are close to unity. Lee and Wang [13] and Zaibunnisa 
et al [14] reported that when R2 is closer to unity, the better 
the empirical model fit the experimental data. It is important 
to note that adding additional variable to the model will 
always increase R2, regardless of whether the additional 
variable is statistically significant or not. Thus, a large R2 
does not always imply adequacy of the model. For this 
reason therefore, Koocheki et al, [3] claim that it is more 
appropriate to use R2

adj of over 90% to evaluate the model 
adequacy. Higher R2

adj indicated that non-significant terms 
have not been included in the model as observed in this 
study. 

Table 7.  Regression equation coefficients for response variablesa in rice-cowpea blends 

Coefficient 
Response variables (minerals) 

Mg Mn Fe Cu Zn Ca 

Linear       

βo -83.439 9.308 11.080 4.067 14.987 79.15 

β1 1.133 -0.160 0.039 0.018 -0.128 -0.708 

β2 3.617 0.266 -0.327 -0.309 -0.226 -1.173 

β3 -0.149 0.389 0.394 -0.079 0.099 -0.053 

Quadratic       

β11 -0.005 0.001 -0.001 -0.0002 0.001 0.005 

β22 -0.073 -0.007 -0.004 0.005 0.005 0.070 

β33 -0.011 -0.003 -0.002 0.003 -0.002 0.030 

Interaction       

β12 -0.005 0.001 0.005 0.001 -0.002 -0.016 

β13 0.004 0.004 -0.002 0.0001 -0.003 -0.012 

β23 0.004 0.007 -0.005 -0.002 0.014 0.029 

R2 99.1 98.0 97.0 85.4 97.3 98.1 

Adjusted R2 98.8 97.1 95.6 78.8 96.1 97.3 

Lack-of-fit * NS * * * * 

Model * * * NS * * 

Model on which the coefficients were calculated is Y = βo + β1X1 + β2X2 + β3X3 + β11X1
2 + β22X2

2 + β33X3
3 + β12X1X2 + 

β13X1X3 + β23X2X3; x1 = Barrel Temperature, X2 = Feed moisture content, X3 = Feed composition, significance at p≤0.05;  
NS = Non significance. 
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Figure 1.  a-f: Parity plots showing the distribution of experimental versus predicted data for response variables (a) Mg (b) Mg (c) Fe (d) Cu (e) Zn and (f) 
Ca 

Figures 1a-f is the plots showing the distribution of 
experimental versus predicted data for the response variables. 
In this plots, each of the observed values were compared to 
the predicted values calculated from the model. The 
correlation coefficients of 0.992, 0.987, 0.969, 0.866, 0.974 
and 0.980 observed between the predicted and actual values 
for the response variables are evidence that the regression 
model can represent the experimental data well. It could also 
be observed that the points on the graph were reasonably 
distributed near a straight line showing that the underlying 
assumption of normality in this study was appropriate and 
therefore validate the models developed. Table 7 presented 
regression equation coefficients and their estimated values. 
The coefficients of the response variables Mg, Mn, Fe, Cu, 
Zn and Ca are -83.439, 9.308, 11.080, 4.067, 14.987 and 
79.15 respectively. The negative value for Mg is an 
indication that when the independent variables are increased, 
the mg content decreases, while the positive coefficients 
indicated that the independent variables have significant 
effects on the dependent variables according to which 
increase in its value led to an increase in the corresponding 
mineral in extruded rice-cowpea composite flour [8]. 

3.4. Analysis of Residual to Check Regression 
Assumptions 

The normal probability plots of residuals are presented in 
Figures 2a-f, while Figures 3a-f is plot of residual versus the 
fitted values. In the normal probability plots, the data points 
forms a straight line indicating that neither response 
transformation is required nor there was any apparent 
problem with normality assumption of the regression model 

equation. This is in line with earlier report by Damirel and 
Kayan [12]. The plot of residual versus fitted values is 
presented in Fig. 3a-f. This plot is additionally used to check 
the underlying assumptions in the regression analysis. If the 
plot does not show a random scatter of data along the y-axis 
as presented in this study, then patterns within the plots will 
indicate problems with the assumptions. In this study, the 
residual versus fitted value plots shows randomly scattered 
points spread around 0 without an obvious shape being made 
by this points indicating that the assumption of the error 
having zero mean and equal variance have not been violated 
[5]. This was an indication of better fit for both the models 
with the experimental data as reported by Chowdhury et al. 
[6]. 

3.5. Graphical Optimization of Mineral Content of 
Rice-cowpea Extrudates 

The interactive relationship between the independent and 
dependent variables are illustrated by plotting 3-D graphs 
representation of the response surfaces generated by the 
models. The 3-D response surface plots (Figures 4a-f) were 
plotted based on the coefficients presented in Table 7. The 
plots were generated by keeping one variable at its zero level 
and carefully varying the other two variables within the 
experimental range. As shown in Fig. 4a as the feed moisture 
content and blend compositions increase, the Mg content in 
the extrudate increases until it reaches an optimal region. 
However, increase in both variables beyond the optimum 
level resulted in decrease in the amount of Mg. At moisture 
content slightly above 22% and blend composition 20%, Mg 
content start to decrease. 

R² = 0.992

10

12

14

16

18

20

10 15 20

Pr
ed

ic
te

d 
va

lu
es

Mean experimental value
a

R² = 0.987

2.5

3.5

4.5

5.5

6.5

2.5 3.5 4.5 5.5 6.5

Pr
ed

ic
te

d 
va

lu
e

Mean Experimental values
b

R² = 0.969

10.5

11.5

12.5

13.5

14.5

10.5 11.5 12.5 13.5

Pr
ed

ic
te

d 
va

lu
es

Mean experimental values
c

R² = 0.866

1.5

1.9

2.3

2.7

3.1

1 1.5 2 2.5 3

Pr
ed

ic
te

d 
va

lu
es

Mean experimental values
d

R² = 0.973

4

4.5

5

5.5

6

6.5

4 4.5 5 5.5 6 6.5

Pr
ed

ic
te

d 
va

lu
es

Mean experimental value
e

R² = 0.980

20

24

28

32

36

40

20 25 30 35 40

Pr
ed

ic
te

d 
va

lu
es

Mean experimental value
f

 



 International Journal of Food Science and Nutrition Engineering 2015, 5(1): 40-52  49 
 

 
       a                     b                       c 

 
           d                          e                       f 

Figure 2.  a-f: Normal probability plots of residual for (a) Mg (b) Mg (c) Fe (d) Cu (e) Zn and (f) Ca 

 
      a            b                c 

 

       d                 e             f 

Figure 3.  a-f: Plot of residuals versus fitted values for (a) Mg (b) Mg (c) Fe (d) Cu (e) Zn and (f) Ca 

Fe an essential nutrient and component of haemoglobin 
molecule found in red blood cells that carries oxygen in the 
body on the other hand increase gradually with increasing 
moisture content and tend to decrease with increasing 
cowpea content when holding barrel temperature constant 
(Fig. 4b). Alonso et al. [32] earlier reported significant 
change in Fe content of pea and kidney bean seed extrudates 

and attributed the variation to wearing of metallic pieces, 
mainly screws of the extruder and water quality used in the 
extrusion process and this may also be true for this results. 
Calcium and Cu contents decrease with increasing moisture 
and feed blend contents and gradually increases moisture 
content above 20% and feed blend composition greater than 
10% (Fig. 4c and 4f). 
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    a        b          c 

 
       d            e            f 

Figure 4.  a-f: 3-D Surface plots showing the relationship between independent (feed moisture content (FMC) and feed blend composition (FCP) and 
dependent[(a) Mg (b) Fe (c) Ca (d) Zn (e) Mn and (f) Cu)] variables holding barrel temperature constant at 120oC 

The variation seen in Fig. 4a-f are in harmony with Camire 
[19] who suggested that increase in intensity of minerals in 
extrudates that may be accredited to the accumulation of 
these minerals throughout water used during extrusion. 

3.6. Numerical Optimization of Mineral Content of 
Rice-cowpea Extrudates 

A numerical optimization was also performed for the 
multiple optimization of the response variable (Yi) resulting 
in the desirable mineral concentration that could achieved in 
the extrudates. The multiple optimization results indicated 
that the minimum overall conditions for the minimum 
reduction in mineral contents of rice-cowpea extrudates 
could be achieved when the barrel temperature is set at 
100oC, feed moisture content of 15% and blend composition 
of 8%. The peak areas for the response variables were 
12.06mg/100g, 5.59mg/100g, 10.98mg/100g, 2.36mg/100g, 
4.24mg/100g, and 25.99mg/100g for Mg, Mn, Fe, Cu, Zn 
and Ca respectively. 

4. Conclusions 
It clear from this study, that the central composite design 

and response surface methodology enabled the 
determination of optimal operating conditions for obtaining 
stable mineral content in rice-cowpea composite flour during 
extrusion. The validity of the model was proven by fitting the 
values of the variables to the model equation and by carrying 
out experiments using these values. The optimization of the 

analysed responses demonstrated that the best peak 
conditions for extrusion under the different variables were 
12.06mg/100g, 5.59mg/100g, 10.98mg/100g, 2.36mg/100g, 
4.24mg/100g, and 25.99mg/100g for Mg, Mn, Fe, Cu, Zn 
and Ca respectively. Minerals present in the extrudates may 
be therefore maximized when process conditions are strictly 
manipulated. 
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