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Abstract  In  this paper, the fault  detection problem for nonlinear dynamic power systems based an observer is treated. The 
nonlinear dynamic model based on differential algebraic equations (DAE) is transformed in to ordinary differential equations 
(ODE). Three nonlinear observers are used and compared for generating the residual signals. Which are: the extended 
Kalman filter, the extended Kalman estimator and the relevant version of extended Kalman filter with a moving horizon 
within  a study of convergence based on the choice of covariance matrix of the system noises and measurements. The paper 
illustrates a simulation study applied on IEEE 3 and 13 buses test system. 
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1. Introduction 
In recent years, there have been a lot of research activities 

in the design and analysis of fau lt d iagnosis and 
accommodation schemes for different classes of dynamic 
systems[1, 2]. Considerable effo rts have been devoted to the 
development of fau lt diagnosis schemes for nonlinear 
systems in the framework o f various kinds of assumptions 
and fault scenarios[3]. 

Power systems are not different from any other large scale 
interconnected systems that is why they are susceptible to 
various forms of faults which could occur in any of the 
components that make up the system[4]. For example, fau lts 
can occur in  generating units, transformers, transmission 
network and/or loads. Faults that take place in any of these 
components can cause significant disruption of supply and in 
some cases may  have the undesirable effect of destabilizing 
the entire system, and in  ext reme cases they may lead to 
brownouts and blackouts. It is, therefore, important to detect 
and isolate such faults as quick as possible[5]. 

A traditional approach to fault  diagnosis in the wider 
application context rests upon hardware redundancy 
methods. These methods use mult iple sensors, actuators 
computers and software to both measure and control a 
particular variable. In analytical redundancy schemes based 
on observer, the resulting difference generated from the 
consistency checking of different variab les is called a  
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residual signal. 
The basic idea of observer-based methods consists of 

reconstructing the outputs of the considered system with the 
aid of observers or Kalman filters (state estimation or 
prediction), and using estimation error as the residual[6][7]. 

In this approach, it is extremely important to develop a 
dynamic model with the different variables as well as to 
consider a robust estimator that reflects a reliab le image in 
the terms of capacity as estimat ion, robustness and stability. 

In what follows, we present a dynamic power systems 
model based on DAE and transformed into ODE. We 
introduce the classical state estimator, the Extended Kalman 
Filter (EKF), the Extended Kalman Estimator (EKE) and the 
relevant version of Extended Kalman Filter with Moving 
Horizon (EKF-MH) to generate a residual signal. The 
convergence based on the choice of matrix covariance of the 
system noises and measurements is studied by inserting 
some numerical approximat ions and showing the interest of 
applying this type of observer to fault detection. 

2. Dynamic Power System Model 
The dynamics of a power system can be modeled with a 

combination of nonlinear differential equations and 
nonlinear algebraic equations. These sets of equations are 
often solved separately in d ifferent analysis techniques. The 
solution is accomplished in an iterative way, with the 
important feature that all the desired system characteristics 
are included. The general form of the DAE model is g iven as: 
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With: dn
dx (t)∈ and ( ) an

ax t ∈ are respectively 

dynamic and algebraic states, ( ) dn
dF t ∈  a function 

representing the nonlinear differential equations, (.) ang ∈  
represents the nonlinear algebraic constraints (equations), 

( ) pu t ∈ the control and ( ) my t ∈  the output system. The 
problem with the system (1) is that ( )ax t does not appear 
explicit ly. 

2.1. Problem Formulation 

To put out, in details, the physical dynamic power model, 
we will treat the case of the 3 buses test system given  in  Fig.1 
(with ng=2 and nl=1): 

 
Figure 1.  3 buses test system 

We consider these assumptions[8]: 
- The internal field currents are constant, providing the 

representation of the mach ine as a constant voltage behind 
the direct axis transient reactance. 

- The mechanical power p rovided by the prime mover is 
constant and all dynamics of the prime mover are neglected. 

- All generators are rotating at synchronous speed (steady 
state) and are round rotors. 

- All generators in the system are identical, and therefore 
the inertia is constant (Mi) along with the damping constant 
(Di) of each generator have the same value. 

- The mechanical rotor angle is the same as the electrical 
phase angle of the voltage therefore δ now refers to the 
electrical angle. To further simplify the notation, the 
transient reactance is incorporated into the system Ybus, 
resulting in θi as generator terminal voltage phase and Vi as 
the terminal voltage magnitude. 

If we take node 1 as reference, the set of equation of this 
network is given by[8]: 
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With: 1... 1; ( 1)...( ); 1... ; , 1...g g g li n j n n n q m c d N= − = + + = = , 
the node 1 is taken as the reference and : 

1
| || | [ cos( ) sin( )]
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=

= − + −∑  

Therefore the model (2) can be rewritten under this form: 
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with: [ , , , ] , , { }, (.) [ , ]iMT T
i i i i bus i j

P
x V u Y F f g

M
δ ω θ β= = = =  

and ,c dy P=  where u  and y will be respectively the control 
and the output of the system. The choice of transit power as 
output which is based on this measure is used by the Tunisian 
Company of Electricity and Gas. Thus for this network, the 
state vector and the system equations are given by (3) and 
(4). 
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with x1 and x2 are the dynamic variables, x3 and x4 are the 
algebraic variables. While using (1) the system is rewritten 
as:  
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2.2. Semi-explicit DAE index 1 

If at an equilibrium point, system (1) is called 
semi-exp licit[10], index-1 p roperty requires that ( , )d ag x x
is solvable for ax and det( ( , )) 0

ax d ag x x ≠  (to simplify

( ) , ( )d d a ax t x x t x= = ): 
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In other words, the differentiation index is 1, if, by the 
differentiation of the algebraic equations with respect to time, 
an implicit ODE system results[11]: 
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Where 1( , ) a a
a

n n
x d ag x x ×− ∈ and ( , ) a d

d

n n
x d ag x x ×∈ .  

A study of nature and stability of DAE system is given 
by[12]. It should be noted that: 
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With J is the Jacobian matrix used in the Load Flow 
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calculation excepted for generators terms, which allows us to 
verify that this det( ( , )) 0d ag x x ≠  and g is solvable for any ax  
(the elements of this matrix are the components of the 
diagonal Jacobian matrix used in load flow). 

Finally, the complete model in form ODE is as follows: 
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In the expression of ( , )d ah x x , the purpose of adding the 
algebraic constraint ( , )adg x x  is to check it  permanently. It 
should be noted that the assumptions and the propositions 
given can be generalized for the other forms of dynamic 
power system models (models including a characteristic of 
the static/dynamic loads[9] and generators with exciter 
model[8]). 

3. Fault Detection 
The main problem in fau lt detection[15], based on 

observer in electrical power system is that few methods are 
applicable. Effectively, the numerous and strong 
nonlinearities in presence lead generally to the use of EKF to 
resolve the fault  detection problem. We propose here the 
EKF, the EKE and the new version of EKF-MH to increase 
the precision as well as the robustness of the estimat ion. 
Hence, a study of the convergence will be presented. 

3.1. Extended Kalman Filter 

The Kalman filter is a recursive estimator. It means that to 
consider the running state, only preceding state and current 
measurements are necessary. The history of the observations 
and the estimates is; thus; not necessary. In the extended 
Kalman filter (EKF), the state transition and observation 
models need not be linear functions of the state but may 
instead be differentiable functions[13]. The considered 
nonlinear discrete system is given by (10): 
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Where kv  and kw  are the system and observation noises 
which are both assumed to be zero mean multivariate 
Gaussian noises with covariance kQ  and kR  respectively. 

In this paper, we have used the classical form of EKF (we 
have used Euler discretization with a step size Te, 

1 ( , ) ( , )k k e k k k kx x T f x u f x u+ = + =  to discretize the 
continuous model (09)) given by: 
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There are some attempts to apply Kalman Filter on 
linearized D.A.E system[14], but our proposition is to apply 
the E.K.E in the classic general form with some numerical 
approximations that we propose for the Jacobian matrix 
calculation. 

Initially, it should be noted that due to the difficulty of 
finding kF  (fo llowing the transformat ion of the algebraic 
variables in ODE model), we will make the following 
numerical approximation: 
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The numerical approximat ion is used on the second term 
of kF  (since it is very difficult to determine) as follows: 
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For ˆ ˆ,
k k k kd d a ax x x x= = . The terms 1

axg−  and 
dxg are 

calculated numerically. The residual signal is generated by: 
EKF

k kr e=  

3.2. Extended Kalman Es timator 

In this section, we present the forms of the most simplified 
estimator EKE: 
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A simple scalar residual may then be generated by: 
EKE e

k k kr y y= −  
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3.3. Extended Kalman Filter with Moving Horizon 

We propose here the use of an EKF which takes into 
account a moving horizon of measurements, based on the 
filter with delay[16], to improve the precision as well as the 
robustness of estimat ion. We present in this section the 
synthesis of the estimator. The proposed observer is given 
by: 
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With M is a size of moving horizon. In what follows we 
calculate the various parameters of the filter.  

We have:  
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Where 1ˆ ˆ[ ( ) ( )]k k k k k Mdiag H x H xC − +=  … . 
In the expression (17), a  total estimat ion erro r covariance 

matrix kP  intervenes. This matrix is calculated as follows: 
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With in each iteration we must calcu late the first 
component of kP  with the relation (17). The other elements 
are calculated by the following expression: 
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We calculate then Kk so as to min imize the trace of error 
covariance matrix ( 1

1
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thus, we obtain Kk which satisfies (21): 
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The fact of using a moving horizon to the measures 
introduces a matrix kP . The calculation of kK takes into 
account preceding measures which differ from classical 
EKF.  

The initializat ion of the EKF-MH is given by the EKF in  
its classical formulation: 
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Where EKF
kP  is an estimat ion error covariance matrix of 

EKF. In the same way, in the EKF-MH the scalar residual is 
generated, with the possibility of choosing: 
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3.4. Convergence Analysis 
In this section, we present a convergence analysis of EKE 

based on the method of[17][18] and[19] by including an 
unknown diagonal matrix to model linearization errors and a 
Lyapunov function. This leads to the resolution of a LMI 
which depends on the choice of kR and kQ . 

Briefly, we present some basic steps for EKE and we 
generalize the results for the EKF and the EKF-MH. 
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A decreasing sequence 1,...{ }k kV =  means that there exists 
a positive scalar 0 1ξ< <  so that: 1 (1 ) 0k kV Vξ+ − − ≤ . 

Therefore, the above gives us this LMI: 
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1,...{ }k kV =  is a decreasing sequence. With σ  and σ  
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When (28) is satisfied, kV is a strictly  decreasing 
sequence. 

However, in order to ensure ˆlim ( ) 0k kk
x x

→∞
− =  and since 

kV  is a strictly decreasing sequence and kP  is a bounded 
matrix, it follows that: 
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+≤ ≤ . 

Consequently, in the same reasoning of[176] and[19], and 
to guarantee that the EKF, EKE and EKF-MH ensure local 
asymptotic convergence, we must verify  the following 
conditions: 
•  System (10) is A-locally uniformly rank observable, 

there exists 1k A≥ − where the observability matrix:  
( ( - 1, )) ( )d arank O k A k n n+ = +            (29) 

where: 

1

2 1

1 1

( 1, )

k A

k A k A

k k k A

H
H F

O k A k

H F F

− +

− + − +

− − +

 
 
 − + =
 
 
 





 

In practice, we use a numerical rank test on ( 1, )O k A k− + . 
•  kF , kH  are uniformly  bounded matrices and 1

kF −

exist. 
• The matrices kQ  and kR are chosen as follows: 
i For EKF: 

1 1 1

1 1 1/ 1

d a d a

T
k k k n n n n

T
k k k k k m

Q e e I I

R H P H I

γ λ

ς τ

+ + + + +

+ + + +

= +

= +
        (30) 

where γ  and λ have to be chosen large and positive and 
ς and τ a positive scalar fixed by the user. 

ii For EKE: 

d a d a

T
k k k n n n n

T
k k k k m

Q e e I I

R H P H I

η υ

µ

+ += +

= +
            (31) 

where η  and υ have to be chosen large and positive and 
 and τ a positive scalar fixed by the user. 

iii For EKF-MH: 

d a d a

T
k f k f k n n n n

T
k k k k M

Q e e I I

R C P C I

σ χ

ψ ρ

+ += +

= +
           (32) 

where: 1 1

1 1

ˆ( )
ˆ( )

ˆ( )

k k

k k
f k

k M k M

y h x
y h x

e

y h x

− −

− + − +

− 
 − =
 
 

− 



 

and: σ and ψ  have to be chosen small and positive and 
χ and ρ a positive scalar. 

4. Simulation Results 
Studies are carried out on the IEEE 3 and 13 buses test 

system to evaluate the performance of the proposed dynamic 
model and the new observer EKF-MH. The transit power is 
considered as measurements (we have used the toolbox 

SimPowerSystems of MATLAB to generate the actual 
measurements[20]). For the discretizat ion of the model (09), 
we have used Euler d iscretization with a step size 310eT s−= .  

4.1. Results of simulation of 3 buses test system 

The measurement values are generated by adding low 
variance noise (±5% of real value) to the generated 
measurements (transit power P3, 2). 

We start initially by Fig. 2 which shows the evolution of 
the rank of the observability matrix (numerical calculation 
with A=4). 

 

Figure 2.  Evolution of ( 4, )
3( )k k
busesrcond O −  

After the verificat ion of the observability, ( 4, )
3

k k
busesO −  is 

well conditioned ( ( 4, )
3( )k k
busesrcond O − >0), we present the 

evolution of 2̂ ( )V k in Fig. 3 (with a variation of a mechanical 
power from iteration 2750) after the injection of a defect on 
the generator node 3, 

3
0GP =  (electrical power supplied by 

the generator) between the iterations 1550 and 1600 with 
EKF, EKE and EKF-MH (with M=4) where: 

5
4

3
1

3
4

10

10

10

EKF EKE EKF MH
k k k

EKE EKF
k k

EKF MH
k

Q Q Q I

R R

R I

− −

−
+

− −

= = =

= =

=

      (33.a) 

 
Figure 3.  Evolution of 2̂ ( )V k  with standard choice 
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Figure 3 shows that, with the classical choice of the matrix 
Rk and Qk  , (Standard choice g iven by (33.a)) the three 
estimators do not converge to the desired values and then the 
generated residue is false. We consider, now, the proposed 
values (Modified choice given by (30), (31) and (32)): 

1 1 1 4 4

1 1 1/ 1

4 4

4 4

4

100 50

10 1
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0.001 0.005

EKF T
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k k k k
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k f k f k

EKF MH T
k k k k

Q e e I I

R H P H

Q e e I I

R H P H

Q e e I I

R C P C I

+ + +

+ + + +

−

−

 = +


= +


= +


= +
 = +
 = +

  (33.b ) 

and we show the variation of 2̂ ( )V k  again in Fig. 4: 

 
Figure 4.  Evolution of 2̂ ( )V k  with the proposed choice 

The results in Fig. 4 show that the appropriate choice of 
matrices Qk and Rk given by (33.b) insures the convergence 
of the estimated states to the real value. We have used a 
zoom to show the precision offered by the EKF-MH with a 
small error of 0.02 but with EKF and EKE, it is more than 1. 

We are interest, now, in the generation and the evolution 
of the residue signal in the permanent mode. 

We apply a b reak line between node 1 and 2 between 
iterations 1550 and 1700. We show the variat ion of the 
residue generated by the three estimators in Fig. 5: 

 
Figure 5.  Evolution of residual signal with EKE, EKE and EKF-MH 

 

Fig. 5 shows well that the residual signal generated by the 
EKF-MH g ives a variation better than the one given by EKE 
and EKF at the time of the first iterations (Zoom 1) which 
can be a false alarm or an indication of a defect. The residual 
signal generated by EKF-MH indicates only the presence of 
a defect that varies only  in the in jection interval defau lt 
(Zoom 2). This is not the case for the residues generated by 
the EKE and the EKF. Consequently, the results clearly 
show the quality of the residue generated by the proposed 
EKF-MH. 

4.2. Results of Simulation of 13 Buses Test System 

The network includes:  
- 5 generators buses: 2, 5, 7, 11 and 12 (with node 12 taken 

as the reference bus) and 8 static load nodes: 1, 3, 4, 6, 8, 9, 
10 and 13. 

- The outputs are the transit powers between nodes 7 and 6 
(P7,6) and nodes 12 and 1 ( 12,1P ) with a state vector composed 

by 24 variab les ( [ ] [ �    T
i i j jx Uδ ω θ= with i=2, 5, 7, 11 and j=1, 

3, 4, 6, 8, 9, 10, 13). 
Firstly, we present the evolution of the reciprocal 

condition estimator ( 13, )( )13
k krcond O buses

−  in Fig. 6 to verify the 
observability. 

 

Figure 6.  Evolution of ( 13, )
13( )k k

busesrcond O −  

After the verification of the observability, ( 13, )
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k k
busesO −  is 

well conditioned ( ( 13, )
13( 0k k

busesrcond O − > ), the measurements 
are generated by applying low variance noise to the 
measurements ( 5%± of real value).  

Four faults are injected as follows: 
· D1: decrease in  the electrical power generator in  node 5 

(PG5=0) between iterations 1450 and 1700. 
·  D2: break-line between nodes 1 and 13 between 

iterations 2500 and 2550. 
· D3: solid three-phase fault to ground applied in node 8 

between iterations 2750 and 2850. 
· D4: short-circuit (single phase-to-ground fault) in node 

10 between iterat ions 4000 and 4020. 
We show in Fig. 7 the variat ion of the residual signal 
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generated by the three observers (for EKF-MH M=10): 
Fig. 7 shows clearly that the variation of the residue 

generated by the EKF-MH remains limited in the injection 
interval of defect  and it is the only one which  can indicate the 
presence of two defects D2 and D3 (Zoom 2). However with 
the EKE and EKF, the residual signal indicates the presence 
of a single defect. In the same way of 3 buses test system and 
in the first iterat ions, the EKF and  the EKE generate false 
indication of defects (Zoom 1). 

We are interested in the convergence of the three 
observers (EKF-MH, EKE and EKF). The measurement 
values are generated by adding high variance noise to the 
measurements ±15% of real value). We consider: 

· The classical values of kQ  and Rk given by (Standard 
versions: S-EKF-MH, S-EKF and S-EKE): 

24

2

20

0.334

0.913

0.913

EKF EKE EKF MH
k k k

EKE EKF
k k

EKF MH
k

Q Q Q I

R R I

R I

−

−

= = =

= =

=  

  (34.a) 

· Modified proposed values given by (34.b): Modified 
versions based on the proposed conditions (30), (31) and (32);  
M-EKF-MH, M-EKF and M-EKE: 
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 = +


= +


= +


= +
 = +
 = +

  (34.b ) 

We consider 100 simulations while varying the init ial 
values in a random way (variation of ±20% with respect to 
the actual initial values) and we present in table 1 the rate of 
convergence: 

Table 1.  (%) of Convergence with random initial values 

Observers (%) of convergence 

S-EKF 42 % 

M-EKF 82 % 

S-EKE 48 % 

M-EKE 86 % 

S-EKF-MH 64 % 

M-EKF-MH 98 % 

Table 1 gives a clear idea about the convergence of the 
proposed EKF-MH. As we can see (line 6 of Tab le 1), the 
modified EKF-MH converges with an accurate precision (in 
the majority of cases, 98%) more than other observers. 
However, the modified  versions of EKF and EKE can 
improve the rate of convergence.  

I one word, many results are omitted. 

 
Figure 7.  Evolution of residual signal with EKE, EKE and EKF-MH 

5. Conclusions 
In this paper an observer based approach for a fault  

detection is presented. A new filter design based on 
fundamental problem of residual generation concepts has 
been elaborated for nonlinear dynamic power system. 

An EKF-MH has been described and investigated based 
on a moving horizon to generate a perfect residual signal to 
fault detection. We have also used the classical design of 
EKF and EKE by including some numerical approximation 
for the calculat ion of Jacobian matrix which  was preceded by 
a convergence analysis. Numerical results demonstrate the 
potential of this approach in failure detection and show well 
the advantage of the proposed choice of Rk and Qk in terms of 
robustness and convergence. In a very clear way, this 
approach presents a good quality of fault detection with a 
combination of successive and simultaneous injection of the 
majority of real types of defects. Experimental verification is, 
then, a necessity to testify the practical performance of this 
approach in the near future. 

Nomenclature 
M Inertia constant of the generator 
D Damping constant of the generator 
δ mechanical rotor angle of the rotating machine 
ω mechanical angular velocity 
ωs electrical angular velocity  
PM Mechanical power input 
Pj, Qj Nodal active and reactive power 
Pc,d Transit power 
Ybus Nodal admittance matrix 

,ij ijG B  real and imaginary terms of bus admittance matrix 
corresponding to ith row and jth column 

N Total number of system buses 
ng Number of generator buses 
nl Number of load buses 
PGi Electrical power supplied by the generator 

,i iVθ  Phase and voltage at bus i 
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