
Electrical and Electronic Engineering 2014, 4(1): 1-9 
DOI: 10.5923/j.eee.20140401.01 

 

New Methods for Solving Systems of Nonlinear Equations 
in Electrical Network Analysis 

Rubén Villafuerte D.1,*, Rubén A. Villafuerte S.2, Jesús Medina C.3, Edgar Mejia S.3 

1Department of Electrical Engineering, Faculty of Engineering, Universidad Veracruzana, Ciudad Mendoza Ver, 94724, Mexico  
2Department of Electrical Engineering, Instituto Tecnologico de Orizaba, Orizaba, Ver, 94320, México 

3Department of Mechanical Engineering, Faculty of Engineering, Universidad Veracruzana, Ciudad Mendoza Ver, 94724, Mexico 

 

Abstract  This paper presents the results of applying different numerical methods for solving systems of nonlinear 
equations. Methods of three, four and five steps are used to solve the systems of nonlinear equations are generated when the 
behavior of electrical networks in steady state is analyzed. Specifically used to calculate the nodal voltages and know the flow 
of real and reactive power in a power grid. The results are compared with those reported in the literature and represent an 
improvement to those reported in [1]. 
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1. Introduction 
Numerical analysis in mathematics means to solve 

mathematical problems by arithmetic operations: addition, 
subtraction, multiplication, division and comparison. Since 
these operations are exactly those that computers can do, 
numerical analysis and computers are intimately related. 
With the development of fast, efficient digital computers, the 
role of numerical methods in solving scientific and 
engineering problems has increased dramatically in 
mode-time years. One of the most important problems in 
science and engineering is to find the solution of nonlinear 
equations. This problem is also termed as root finding 
problem. We know simple formulae for solving linear and 
quadratic equations and there are somewhat more 
complicated formulae for cubic and quartic equations, but 
not formulae like these are available for polynomial of 
degree greater four. Besides polynomial equations, there are 
many problems in scientific and engineering applications 
that involve the function of transcendental nature. Numerical 
methods are of often used to obtain approximated solution of 
such problems because it is not possible to obtain exact 
solution by usual algebraic processes. 

Newton method is probably the most widely used 
algorithm for finding simple roots, which stars with an initial 
approximation xo closer to the root α and generates a 
sequence of successive iterates {𝑥𝑥𝑛𝑛}𝑛𝑛=0

∞  converging 
quadratically to simple to simple roots [2]. It is given by: 
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𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛 )
𝑓𝑓′(𝑥𝑥𝑛𝑛 )

                (1) 

Many different derivations of Newton method are 
available in literature. We can say that at every iteration, we 
construct a local model of function f(x) at xn and solve for 
root xn+1. 

Newton's method is widely used in the calculation of the 
roots of non-linear equations, likewise, is used for solving 
nonlinear systems of equations, where the formation of the 
matrix of derivatives is essential in the solution. Solving a 
nonlinear equation, various methods have been proposed that 
use this method as a basis [3, 4, 5, 6]. For the solution of 
nonlinear equations system, most of the references utilize 
specialized matrix formulation, generating derived matrix 
known as the Jacobian, this is mainly due to the robustness 
posing and reflected by a small number of iterations in the 
iterative process. 

A significant number of methods have been proposed 
using various techniques, including quadrature formulas, 
Taylor series and decomposition techniques [7, 8, 9, 10]. 
King developed a fourth-order method are as follows [11]. 

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛)

 

𝑥𝑥𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛 )+𝛽𝛽𝛽𝛽(𝑦𝑦𝑛𝑛 )

𝑓𝑓(𝑥𝑥𝑛𝑛 )+(𝛽𝛽−2)𝑓𝑓(𝑦𝑦𝑛𝑛 )
𝑓𝑓(𝑦𝑦𝑛𝑛 )
𝑓𝑓′(𝑥𝑥𝑛𝑛 )

      (2) 

A three-step method and eighth order developed by 
Weihong Bi is as follows [12]: 

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛)

 

𝑧𝑧𝑛𝑛 = 𝑦𝑦𝑛𝑛 −
2𝑓𝑓(𝑥𝑥𝑛𝑛 )−𝑓𝑓(𝑦𝑦𝑛𝑛 )

2𝑓𝑓(𝑥𝑥𝑛𝑛 )−5𝑓𝑓(𝑦𝑦𝑛𝑛 )
𝑓𝑓(𝑦𝑦𝑛𝑛 )
𝑓𝑓′(𝑥𝑥𝑛𝑛 )

         (3) 
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𝑥𝑥𝑛𝑛+1

= 𝑧𝑧𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛) + (2+∝)𝑓𝑓(𝑦𝑦𝑛𝑛)
𝑓𝑓(𝑥𝑥𝑛𝑛)+∝ 𝑓𝑓(𝑦𝑦𝑛𝑛)

𝑓𝑓(𝑧𝑧𝑛𝑛)
𝑓𝑓[𝑧𝑧𝑛𝑛 , 𝑦𝑦𝑛𝑛] + 𝑓𝑓 [𝑧𝑧𝑛𝑛 , 𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛](𝑧𝑧𝑛𝑛 − 𝑦𝑦𝑛𝑛)

 

Linke Hou proposes a four-step method and twelfth order 
[13]: 

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛)

 

𝑧𝑧𝑛𝑛 = 𝑦𝑦𝑛𝑛 −
2𝑓𝑓(𝑥𝑥𝑛𝑛 )−𝑓𝑓(𝑦𝑦𝑛𝑛 )

2𝑓𝑓(𝑥𝑥𝑛𝑛 )−5𝑓𝑓(𝑦𝑦𝑛𝑛 )
𝑓𝑓(𝑦𝑦𝑛𝑛 )
𝑓𝑓′(𝑥𝑥𝑛𝑛 )

            (4) 

𝑤𝑤𝑛𝑛 = 𝑧𝑧𝑛𝑛 −
2𝑓𝑓(𝑥𝑥𝑛𝑛) − 𝑓𝑓(𝑧𝑧𝑛𝑛)

2𝑓𝑓(𝑥𝑥𝑛𝑛) − 5𝑓𝑓(𝑧𝑧𝑛𝑛)
𝑓𝑓(𝑧𝑧𝑛𝑛)

𝑓𝑓[𝑧𝑧𝑛𝑛 , 𝑦𝑦𝑛𝑛] + 𝑓𝑓 [𝑧𝑧𝑛𝑛 , 𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛](𝑧𝑧𝑛𝑛 − 𝑦𝑦𝑛𝑛) 

𝑥𝑥𝑛𝑛+1 = 𝑤𝑤𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛) + (2 + 𝛼𝛼)𝑓𝑓(𝑧𝑧𝑛𝑛)

𝑓𝑓(𝑥𝑥𝑛𝑛) + 𝛼𝛼𝛼𝛼(𝑧𝑧𝑛𝑛)
𝑓𝑓(𝑤𝑤𝑛𝑛)

𝑓𝑓[𝑧𝑧𝑛𝑛 , 𝑦𝑦𝑛𝑛] + 𝑓𝑓 [𝑧𝑧𝑛𝑛 , 𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛](𝑧𝑧𝑛𝑛 − 𝑦𝑦𝑛𝑛)
 

In many engineering applications, the values of the 
variables at each iteration are very close, in such cases it has 
been found that equations (3) and (4) or which involve the 
use of divided differences present some problems for 
convergence. 

In this study, we propose algorithms for two, three , four 
and five steps with which we can find the solution of a 
nonlinear equation , also, we have used the same algorithms 
for solving systems of nonlinear equations, without having to 
form the matrix of derivatives that have been proposed by 
other authors [14]. 

2. Proposed Methods for Solving 
Nonlinear Equations and Systems of 
Nonlinear Equations  

For the solution of nonlinear equations and systems of 
nonlinear equations, we propose the methods described 
below. 
Two-Step Method (M12P) 

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 − 𝛽𝛽 𝑓𝑓(𝑥𝑥𝑛𝑛 )
𝑓𝑓′(𝑥𝑥𝑛𝑛 )

                   (5) 

𝑥𝑥𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 −
𝑎𝑎1𝑓𝑓(𝑦𝑦𝑛𝑛)

𝑏𝑏1𝑓𝑓′(𝑥𝑥𝑛𝑛) + 𝑏𝑏1𝑓𝑓′(𝑦𝑦𝑛𝑛)
 

Three-step method (M13P): 

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 − 𝛽𝛽
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛)

 

𝑧𝑧𝑛𝑛 = 𝑦𝑦𝑛𝑛 −
𝑎𝑎1𝑓𝑓(𝑦𝑦𝑛𝑛 )

𝑏𝑏1𝑓𝑓′(𝑥𝑥𝑛𝑛 )+𝑏𝑏1𝑓𝑓′(𝑦𝑦𝑛𝑛 )
             (6) 

𝑥𝑥𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 −
𝑎𝑎2𝑓𝑓(𝑦𝑦𝑛𝑛)

𝑏𝑏2𝑓𝑓′(𝑥𝑥𝑛𝑛) + 𝑏𝑏2𝑓𝑓′(𝑦𝑦𝑛𝑛)
 

Three-step method (M23P):  

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 − 𝛽𝛽
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛)

 

𝑧𝑧𝑛𝑛 = 𝑦𝑦𝑛𝑛 −
𝑎𝑎3𝑓𝑓(𝑦𝑦𝑛𝑛 )

𝑏𝑏3𝑓𝑓′(𝑥𝑥𝑛𝑛 )+𝑏𝑏3𝑓𝑓′(𝑦𝑦𝑛𝑛 )
             (7) 

𝑥𝑥𝑛𝑛+1 = 𝑧𝑧𝑛𝑛 −
𝑓𝑓(𝑧𝑧𝑛𝑛)
𝑓𝑓′(𝑧𝑧𝑛𝑛)

 

Where: a1, a2, a3, b1, b2, b3, are real numbers. 
Four-step method (M14P): 

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 − 𝛽𝛽
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛)

 

𝑧𝑧𝑛𝑛 = 𝑦𝑦𝑛𝑛 −
𝑎𝑎1𝑓𝑓(𝑦𝑦𝑛𝑛 )

𝑏𝑏1𝑓𝑓′(𝑥𝑥𝑛𝑛 )+𝑏𝑏1𝑓𝑓′(𝑦𝑦𝑛𝑛 )
           (8) 

𝑢𝑢𝑛𝑛 = 𝑧𝑧𝑛𝑛 −
𝑓𝑓(𝑧𝑧𝑛𝑛)
𝑓𝑓′(𝑧𝑧𝑛𝑛)

 

𝑥𝑥𝑛𝑛+1 = 𝑢𝑢𝑛𝑛 −
𝑎𝑎2𝑓𝑓(𝑢𝑢𝑛𝑛)

𝑏𝑏2𝑓𝑓′(𝑥𝑥𝑛𝑛) + 𝑏𝑏2𝑓𝑓′(𝑢𝑢𝑛𝑛)
 

Five-step method (M15P): 

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 − 𝛽𝛽1
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛)

 

𝑧𝑧𝑛𝑛 = 𝑦𝑦𝑛𝑛 −
𝑎𝑎1𝑓𝑓(𝑦𝑦𝑛𝑛 )

𝑏𝑏1𝑓𝑓′(𝑥𝑥𝑛𝑛 )+𝑏𝑏1𝑓𝑓′(𝑦𝑦𝑛𝑛 )
           (9) 

𝑢𝑢𝑛𝑛 = 𝑧𝑧𝑛𝑛 −
𝑓𝑓(𝑧𝑧𝑛𝑛)
𝑓𝑓′(𝑧𝑧𝑛𝑛)

 

𝑣𝑣𝑛𝑛 = 𝑢𝑢𝑛𝑛 −
𝑎𝑎2𝑓𝑓(𝑢𝑢𝑛𝑛)

𝑏𝑏2𝑓𝑓′(𝑥𝑥𝑛𝑛) + 𝑏𝑏2𝑓𝑓′(𝑦𝑦𝑛𝑛)
 

𝑥𝑥𝑛𝑛+1 = 𝑣𝑣𝑛𝑛 −
𝑎𝑎3𝑓𝑓(𝑢𝑢𝑛𝑛)

𝑏𝑏3𝑓𝑓′(𝑥𝑥𝑛𝑛) + 𝑏𝑏3𝑓𝑓′(𝑦𝑦𝑛𝑛)
 

Where: a1, a2, a3, b1, b2, b3, β,  𝛽𝛽1 , 𝛽𝛽2, are real numbers. 
In equations (5) to (9), ßi is considered [15], as a 

multiplicity factor, in the results reported in this paper shows 
the importance of this issue in solving systems of nonlinear 
equations [16]. 

3. Systems of Nonlinear Equations 
Consider the system of n nonlinear equations of the form: 

𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2, … . 𝑥𝑥𝑛𝑛) = 0 
𝑓𝑓2(𝑥𝑥1, 𝑥𝑥2, … . 𝑥𝑥𝑛𝑛) = 0             (10) 

.. 

𝑓𝑓𝑛𝑛(𝑥𝑥1, 𝑥𝑥2, … . 𝑥𝑥𝑛𝑛) = 0 

We denote Rn the real n-dimensional space of column 
vectors with components x1, x2, .. xn. Each function fi can be 
thought of as mapping a vector (x1, x2... xn)t of the 
n-dimensional space Rn into the real R. The elements of Rn 
are called vectors. We use the following notations (boldface 
letters) to denote vectors: 

𝐅𝐅 = (𝑓𝑓1, 𝑓𝑓2, … 𝑓𝑓𝑛𝑛)𝑡𝑡 ,   𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛)𝑡𝑡  
This system of nonlinear equations in n unknowns can be 

represented by defining a function F mapping Rn into Rn as: 

𝐅𝐅(𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛) = (𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2, . . 𝑥𝑥𝑛𝑛), . . , 𝑓𝑓𝑛𝑛(𝑥𝑥1, 𝑥𝑥2, . . 𝑥𝑥𝑛𝑛))𝑡𝑡  (11) 

Thus equation (11) becomes: 

𝑭𝑭(𝒙𝒙) = 𝟎𝟎                  (12) 
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The functions 𝑓𝑓1(𝒙𝒙), 𝑓𝑓2(𝒙𝒙),…. 𝑓𝑓𝑛𝑛(𝒙𝒙) are de coordinated 
functions of 𝑭𝑭(𝒙𝒙). The derivative 𝑭𝑭′(𝒙𝒙) y 𝑭𝑭(𝒙𝒙) is called 
first Fréchet derivative. The matrix representation of 𝑭𝑭′(𝒙𝒙) 
is given by the Jacobian matrix denoted by 𝑱𝑱𝑭𝑭(𝒙𝒙) and is 
given by: 

( )
1 1 1 1

1 2 3

2 2 2 2

1 2 3

1 2 3

. .

. .

. . . . . .( )

. . . . . .

. . . . . .

. .

k

n

n
k

F

n n n n

n

f f f f
x x x x
f f f f
x x x x

J x

f f f f
x x x x

∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 
 =
 
 
 
 
∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 

   (13) 

If we solve a system of nonlinear equations in matrix form 
the matrix formation is required, and Newton's method is 
equal to: 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − [𝐽𝐽𝐹𝐹(𝑥𝑥𝑘𝑘)]−1𝐹𝐹(𝑥𝑥𝑘𝑘)         (14) 

In the solution of systems of nonlinear equations [16] 
proposes, among others, the following method: 

𝑦𝑦(𝑘𝑘) = 𝑥𝑥(𝑘𝑘) − 1
2
�𝐽𝐽𝐹𝐹(𝑥𝑥(𝑘𝑘))�−1𝐹𝐹(𝑥𝑥(𝑘𝑘))  

𝑥𝑥(𝑘𝑘+1) = 𝑥𝑥(𝑘𝑘) + 

��𝐽𝐽𝐹𝐹(𝑥𝑥(𝑘𝑘))�−1�𝐽𝐽𝐹𝐹�𝑦𝑦(𝑘𝑘)� − 2𝐽𝐽𝐹𝐹(𝑥𝑥(𝑘𝑘))�� �𝐽𝐽𝐹𝐹(𝑥𝑥(𝑘𝑘))�
−1
𝐹𝐹(𝑥𝑥(𝑘𝑘))  

Methods: (M12P), (m13p) and (M14P), proposed by the 
authors for solving nonlinear systems of equations can be 
expressed in matrix form as follows: 
Two-Step method (M2PASOS): 

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 − �𝐽𝐽𝐹𝐹(𝑥𝑥(𝑘𝑘))�−1𝐹𝐹(𝑥𝑥𝑘𝑘)           (15) 

𝑥𝑥𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 − �8�𝐽𝐽𝐹𝐹(𝑥𝑥(𝑘𝑘))� + 8�𝐽𝐽𝐹𝐹(𝑦𝑦(𝑘𝑘))��
−1

[7𝐹𝐹(𝑦𝑦(𝑘𝑘)) ] 

Three-step method (M23A): 

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 − �𝐽𝐽𝐹𝐹(𝑥𝑥(𝑘𝑘))�−1𝐹𝐹(𝑥𝑥𝑘𝑘)  

𝑧𝑧𝑛𝑛 = 𝑦𝑦𝑛𝑛 − �3�𝐽𝐽𝐹𝐹(𝑥𝑥(𝑘𝑘))� + 3�𝐽𝐽𝐹𝐹(𝑦𝑦(𝑘𝑘))��
−1
�5𝐹𝐹(𝑦𝑦(𝑘𝑘)) � (16) 

𝑥𝑥𝑛𝑛+1 = 𝑧𝑧𝑛𝑛 − �8�𝐽𝐽𝐹𝐹(𝑥𝑥(𝑘𝑘))� + 8�𝐽𝐽𝐹𝐹(𝑧𝑧(𝑘𝑘))��
−1
�7𝐹𝐹(𝑧𝑧(𝑘𝑘)) �  

Four-step method (M23B): 

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 − �𝐽𝐽𝐹𝐹(𝑥𝑥(𝑘𝑘))�−1𝐹𝐹(𝑥𝑥𝑘𝑘) 

𝑧𝑧𝑛𝑛 = 𝑦𝑦𝑛𝑛 − �3�𝐽𝐽𝐹𝐹(𝑥𝑥(𝑘𝑘))� + 3�𝐽𝐽𝐹𝐹(𝑦𝑦(𝑘𝑘))��
−1
�5𝐹𝐹(𝑦𝑦(𝑘𝑘)) � 

𝑢𝑢𝑛𝑛 = 𝑧𝑧𝑛𝑛 − �𝐽𝐽𝐹𝐹(𝑧𝑧(𝑘𝑘))�−1�𝐹𝐹(𝑧𝑧(𝑘𝑘)) �        (17) 

𝑥𝑥𝑛𝑛+1 = 𝑧𝑧𝑛𝑛 − �8�𝐽𝐽𝐹𝐹(𝑥𝑥(𝑘𝑘))� + 8�𝐽𝐽𝐹𝐹(𝑢𝑢(𝑘𝑘))��
−1
�7𝐹𝐹(𝑢𝑢(𝑘𝑘)) �(18) 

Evaluating the partial derivative matrix JF(x(k)), and JF(y(k)), 
are required at each step of the iterative process. A two-step 
method and fourth-order developed by Cordero to solve a 
system of nonlinear equations [17]: 

𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘 − [𝐽𝐽𝐹𝐹(𝑥𝑥𝑘𝑘)]−1𝐹𝐹(𝑥𝑥𝑘𝑘)             (19) 
𝑥𝑥𝑘𝑘+1 = 𝑦𝑦𝑘𝑘 − (2[𝐽𝐽𝐹𝐹(𝑥𝑥𝑘𝑘)]−1 − [𝐽𝐽𝐹𝐹(𝑥𝑥𝑘𝑘)]−1[𝐽𝐽𝐹𝐹(𝑦𝑦𝑘𝑘)][𝐽𝐽𝐹𝐹(𝑥𝑥𝑘𝑘)]−1)𝐹𝐹(𝑦𝑦𝑘𝑘)  
Another method also developed by Cordero of three steps 

and sixth order is as follows [18]: 

𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘 − [𝐽𝐽𝐹𝐹(𝑥𝑥𝑘𝑘)]−1𝐹𝐹(𝑥𝑥𝑘𝑘) 

 (20) 

𝑥𝑥𝑘𝑘+1 = 𝑧𝑧𝑘𝑘 − (−[𝐽𝐽𝐹𝐹(𝑥𝑥𝑘𝑘)] + 3[𝐽𝐽𝐹𝐹(𝑦𝑦𝑘𝑘)])−1𝐹𝐹(𝑧𝑧𝑘𝑘) 

4. Results  
Four cases have been selected where systems are 

represented by grids nonlinear equations; the solution is 
obtained by applying the methods (5) to (9). In each case, it 
is not necessary to form the Jacobian matrix for the solution 
of the equation system. 
Case 1. 

In [19] we have a set of four nonlinear equations, which is 
shown in Figure 1, and by network conditions only three 
equations are solved. 

 

Figure 1.  Four-node Network [19] 

In Tables 1 and 2 respectively show the characteristics of 
the network which generates the functions represented by 
equation (11), to solve the system of nonlinear equations 
(12). 

Table 1.  System data in Figure 1 

Line (Lij) Impedance Admitance 

1-2 0.01008+j0.5040 j0.05125 

1-3 0.00744+j0.03720 J0.03875 

2-4 0.0744+j0.03720 J0.03875 

3-4 0.01272+j0.06360 J0.06375 
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Table 2.  Data system of Figure 1 

Node Sgen Sload V(o) Node Type 

1 0+j0 50+j30.99 1.00+j0 Slack 

2 0+j0 170+j105.35 1.00+j0 Load 

3 1.0+jQ 200+j123.94 1.00+j0 Load 

4 318+jQ 80+j49.58 1.02+j0 V. Controlled 

Case 2. 
In reference [20], generates a set of five non-linear 

equations, which is shown in Figure 2, by the characteristics 
of the network are solved only four. 

 
Figure 2.  Five-node system [20] 

In Tables 3 and 4, respectively, we show the 
characteristics of the network which generates the functions 
represented by equation (11), to solve the system of 
nonlinear equations (12). 

Table 3.  System data in Figure 2 

Line (Lij) Impedance 

1-2 0.10+j0.40 

1-4 0.15+j0.60 

1-5 0.05+j0.20 

2-3 0.05+j0.20 

2-4 0.10+j0.40 

3-5 0.05+j0.20 

Table 4.  Data network operation 

Node Sgen Sload V(o) Node Type 

1 0+j0 0+j0 1.02+j0.0 Slack 

2 0+j0 0.6+j0.3 1.0+j0 Carga 

3 1.0+jQ 0+j0 1.04+ja V. Controlled 

4 0+j0 0.4+j0.1 1.0+j0 Load 

5 0+j0 0.6+j0.2 1.0+j0 Load 

Case 3. 
In [21], there are a set of five non-linear equations, and as 

shown in Figure 1, for network conditions only four 
equations are solved. 

Complete system data are shown in Tables 5 and 6. 

Table 5.  System data in Figure 3 

Line (Lij) Impedance Admitance 

1-2 0.02+j0.06 j0.030 

1-3 0.08+j0.24 j0.025 

2-3 0.06+j0.18 j0.020 

2-4 0.06+j0.18 j0.020 

2-5 0.04+j0.12 j0.015 

3-4 0.01+j0.03 j0.010 

4-5 0.08+j0.24 j0.025 

Table 6.  Data network operation 

Node Sgen Sload V(o) Node Type 

1 0+j0 0+j0 1.06+j0.0 Slack 

2 0.4+jQ 0.2+j0.1 1.045+j0 V. Controlled 

3 0.3+jQ 0.2+j0.15 1.03+ja V. Controlled 

4 0+j0 0.5+j0.3 1.0+j0 Load 

5 0+j0 0.6+j0.4 1.0+j0 Load 

 
Figure 3.  Five-node system (21) 

Case 4. 
In [22], we can generate a system of nine non-linear 

equations, which is shown in Figure 4, for network 
conditions are resolved only eight nonlinear equations. 
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Figure 4.  Nine nodes system (22) 

The results obtained with the method (M12P) in two steps in the four cases are shown in Table 7. 
Table 7.  Results with the method M12P 

M12P Case 1 
(pu) 

Case 2 
(pu) 

Case 3 
(pu) 

Case 4 
(pu) 

β=1 
a1=3 
b1=1 

k= 5 
1.0   ∟0 
0.982∟-0.97 
0.969∟-1.87 
1.020∟1.52 
 
 
 
 
 

k = 6 
1.02 ∟0 
0.95 ∟-3.94 
1.04 ∟2.0 
0.923∟-8.0 
0.993∟2.07 
 
 
 
 

k = 12 
1.06 ∟0 
1.04∟-1.78 
1.030∟-2.66 
1.01∟-3.24 
0.990∟-4.40 
 
 
 
 

k = 25 
1.04  ∟0 
1.025∟9.27 
1.025∟4.66 
1.025∟-2.21 
0.995∟-3.98 
1.012∟-3.68 
1.025∟3.71 
1.015∟0.72 
1.032∟1.96 

β=2 
a1=3 
b1=1 

k = 34 
1.0  ∟0 
0.982∟-0.97 
0.969∟-1.87 
1.020∟1.52 
 
 
 
 
 

k = 58 
1.02 ∟0 
0.95 ∟-3.94 
1.04  ∟2.0 
0.923∟-8.0 
0.993∟2.07 
 
 
 
 

k= 34 
1.06  ∟0 
1.045∟-1.78 
1.030∟-2.66 
1.018∟-3.24 
0.990∟-4.40 
 
 
 
 

k = 24 
1.04 ∟0 
1.025∟9.27 
1.025∟4.66 
1.025∟-2.21 
0.995∟-3.98 
1.012∟-3.68 
1.025∟3.71 
1.015∟0.72 
1.032∟1.96 

β=2 
a1=5 
b1=2 

k= 21 
1.0   ∟0 
0.982∟-0.97 
0.969∟-1.87 
1.020∟1.52 
 
 
 
 
 

k= 16 
1.02 ∟0 
0.95 ∟-3.94 
1.04 ∟2.0 
0.923∟-8.0 
0.993∟2.07 
 
 
 
 

k = 13 
1.06  ∟0 
1.045∟-1.78 
1.030∟-2.66 
1.018∟-3.24 
0.990∟-4.40 
 
 
 
 

k = 16 
1.04 ∟0 
1.025∟9.27 
1.025∟4.66 
1.025∟-2.21 
0.995∟-3.98 
1.012∟-3.68 
1.025∟3.71 
1.015∟0.72 
1.032∟1.96 

β=1 
a1=5 
b1=2 

k = 4 
1.0   ∟0 
0.982∟-0.97 
0.969∟-1.87 
1.020∟1.52 
 
 
 
 
 

k= 8 
1.02 ∟0 
0.95 ∟-3.94 
1.04 ∟2.0 
0.923∟-8.0 
0.993∟2.07 
 
 
 
 

k = 15 
1.06  ∟0 
1.045∟-1.78 
1.030∟-2.66 
1.018∟-3.24 
0.990∟-4.40 
 
 
 
 

k = 33 
1.04  ∟0 
1.025∟9.27 
1.025∟4.66 
1.025∟-2.21 
0.995∟-3.98 
1.012∟-3.68 
1.025∟3.71 
1.015∟0.72 
1.032∟1.965 



6 Rubén Villafuerte D. et al.:  New Methods for Solving Systems of   
Nonlinear Equations in Electrical Network Analysis 

 

The results obtained with the method (M13P) of three steps in the four cases are shown in Table 8. 

Table 8.  Results with the three-step method M13P 

M13P Case 1 
(pu) 

Case 2 
(pu) 

Case 3 
(pu) 

Case 4 
(pu) 

β=1 
a1=5 
b1=2 
a2=5 
b2=2 

k=3 
1.0   ∟0 
0.982∟-0.97 
0.969∟-1.87 
1.020∟1.52 
 
 
 
 
 

k=5 
1.02∟0 
0.95∟-3.94 
1.04∟2.0 
0.92∟-8.0 
0.99∟2.07 
 
 
 
 

k=9 
1.06  ∟0 
1.045∟-1.78 
1.030∟-2.66 
1.018∟-3.24 
0.990∟-4.40 
 
 
 
 

k= 21 
1.04  ∟0 
1.025∟9.27 
1.025∟4.66 
1.025∟-2.21 
0.995∟-3.98 
1.012∟-3.68 
1.025∟3.71 
1.015∟0.72 
1.032∟1.96 

β=1 
a1=3 
b1=1 
a2=3 
b2=1 

k= 3 
1.0   ∟0 
0.982∟-0.97 
0.969∟-1.87 
1.020∟1.52 
 
 
 
 

k = 5 
1.02∟0 
0.95∟-3.94 
1.04∟2.0 
0.92∟-8.0 
0.99∟2.07 
 
 

 

k= 6 
1.06  ∟0 
1.04  ∟-1.78 
1.030∟-2.66 
1.018∟-3.24 
0.99 0∟-4.40 
 
 
 

k = 14 
1.04  ∟0 
1.025∟9.27 
1.025∟4.66 
1.025∟-2.21 
0.995∟-3.98 
1.012∟-3.68 
1.025∟3.71 
1.015∟0.72 
1.032∟1.96 

β=2 
a1=5 
b1=2 
a2=5 
b2=2 

k= 6 
1.0   ∟0 
0.982∟-0.97 
0.969∟-1.87 
1.020∟1.52 
 
 
 
 
 

k= 8 
1.02 ∟0 
0.95∟-3.94 
1.04∟2.0 
0.92∟-8.0 
0.99∟2.07 
 
 
 
 

k= 6 
1.06  ∟0 
1.04  ∟-1.78 
1.03  ∟-2.66 
1.018∟-3.24 
0.990 ∟-4.40 
 
 
 
 

k = 8 
1.04  ∟0 
1.025 ∟9.27 
1.025 ∟4.66 
1.025∟-2.21 
0.995∟-3.98 
1.012∟-3.68 
1.025∟3.71 
1.015∟0.72 
1.032∟1.96 

β=2 
a1=3 
b1=1 
a2=3 
b2=1 

k= 11 
1.0   ∟0 
0.982∟-0.97 
0.969∟-1.87 
1.020∟1.52 
 
 
 
 
 

k = 8 
1.02∟0 
0.95∟-3.94 
1.04∟2.0 
0.92∟-8.0 
0.99∟2.07 
 
 
 
 

k = 14 
1.06   ∟0 
1.045∟-1.78 
1.030∟-2.66 
1.018∟-3.24 
0.990∟-4.40 
 
 
 
 

k = 12 
1.04   ∟0 
1.025 ∟9.27 
1.025 ∟4.66 
1.025∟-2.21 
0.995∟-3.98 
1.012∟-3.68 
1.025∟3.71 
1.015∟0.72 
1.032∟1.96 

The results obtained with the method (M14P) of four steps in the four cases are shown in Tables 9 and 10. 
  



 Electrical and Electronic Engineering 2014, 4(1): 1-9 7 
 

 

Table 9.  Results with the four-step method M14P 

M14P 
Case 1 

(pu) 
k= 3 

Case 2 
(pu) 
k = 6 

Case 3 
(pu) 

k= 11 

Case 4 
(pu) 

k = 20 

β=1 
a1=5 
b1=2 

1.0   ∟0 
0.982∟-0.97 
0.969∟-1.87 
1.020∟1.52 
 
 
 
 
 

1.02 ∟0 
0.95∟-3.9 
1.04 ∟2.0 
0.92∟-8.0 
0.99∟2.07 
 
 
 
 

1.06∟0 
1.04∟-1.7 
1.03∟-2.6 
1.01∟-3.2 
0.99∟-4.4 
 
 
 
 

1.04  ∟0 
1.025 ∟9.27 
1.025 ∟4.66 
1.0258∟-2.21 
0.9956∟-3.98 
1.0127∟-3.68 
1.0258∟3.71 
1.0159∟0.72 
1.0324∟1.96 

β=1 
a1=3 
b1=1 

k = 4 
1.0   ∟0 
0.982∟-0.975 
0.969∟-1.87 
1.020∟1.52 
 
 
 
 
 

k= 5 
1.02∟0 
0.95∟-3.9 
1.04∟2.0 
0.92∟-8.0 
0.99∟2.07 
 
 
 
 

k = 9 
1.06 ∟0 
1.045∟-1.7 
1.03 ∟-2.6 
1.01 ∟-3.2 
0.99 ∟-4.4 
 
 
 
 

k= 20 
1.04  ∟0 
1.025 ∟9.27 
1.025 ∟4.66 
1.0258∟-2.21 
0.9956∟-3.98 
1.0127∟-3.68 
1.0258∟3.71 
1.0159∟0.72 
1.0324∟1.96 

β=2 
a1=5 
b1=2 

k= 6 
1.0   ∟0 
0.982∟-0.97 
0.969∟-1.87 
1.020∟1.52 
 
 
 
 
 

k= 6 
1.02∟0 
0.95∟-3.9 
1.04∟2.0 
0.92∟-8.0 
0.99∟2.07 
 
 
 
 

k = 5 
1.06∟0 
1.04∟-1.7 
1.03∟-2.6 
1.01∟-3.2 
0.99∟-4.4 
 
 
 
 

k = 10 
1.04  ∟0 
1.025 ∟9.27 
1.025 ∟4.66 
1.0258∟-2.21 
0.9956∟-3.98 
1.0127∟-3.68 
1.0258∟3.71 
1.0159∟0.72 
1.0324∟1.96 

β=2 
a1=3 
b1=1 

k = 6 
1.0  ∟0 
0.982∟-0.97 
0.969∟-1.87 
1.020∟1.52 
 
 
 
 

k = 8 
1.02∟0 
0.95∟-3.9 
1.04∟2.0 
0.92∟-8.0 
0.99∟2.07 
 
 
 
 

k = 7 
1.06∟0 
1.04∟-1.7 
1.03∟-2.6 
1.01∟-3.2 
0.99∟-4.4 
 
 
 

k = 8 
1.04  ∟0 
1.025 ∟9.27 
1.025 ∟4.66 
1.0258∟-2.21 
0.9956∟-3.98 
1.0127∟-3.68 
1.0258∟3.71 
1.0159∟0.72 
1.0324∟1.96 

Table 10.  Results with the four-step method M14P 

 
M14P 

 

Case 1 
(pu) 
k= 3 

Case 2 
(pu) 
k = 4 

Case 3 
(pu) 
k = 6 

Case 4 
(pu) 

k = 14 

β=1 
a1=3 
b1=1 
a1=5 
b1=2 

1.0  ∟0 
0.982∟-0.97 
0.969∟-1.87 
1.020∟1.52 

1.02∟0 
0.95∟-3.94 
1.04∟2.0 
0.92∟-8.0 
0.99∟2.07 

1.06  ∟0 
1.045∟-1.78 
1.03  ∟-2.66 
1.018∟-3.24 
0.99  ∟-4.40 

1.04  ∟0 
1.025∟9.27 
1.025∟4.66 
1.025∟-2.21 
0.995∟-3.98 
1.012∟-3.68 
1.025∟3.71 
1.015∟0.72 
1.032∟1.96 

β=2 
a1=3 
b1=1 
a1=5 
b1=2 

k = 4 
1.0    ∟0 
0.982  ∟-0.97 
0.969  ∟-1.87 
1.0200∟1.52 
 
 
 
 
 

k = 5 
1.02∟0 
0.95∟-3.94 
1.04∟2.0 
0.92∟-8.0 
0.99∟2.07 
 
 
 
 

k= 4 
1.06  ∟0 
1.045∟-1.78 
1.030∟-2.66 
1.018∟-3.24 
0.99  ∟-4.40 
 
 
 
 

k = 6 
1.04  ∟0 
1.025∟9.27 
1.025∟4.66 
1.025∟-2.21 
0.995∟-3.98 
1.012∟-3.68 
1.025∟3.71 
1.015∟0.72 
1.032∟1.96 
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The five-step method is also applicable to each of the cases, and the results are shown in Table 11. 

Table 11.  Results with the method M15P 
 

M15P 
 

Case 1 
(pu) 
k= 2 

Case 2 
(pu) 
k = 3 

Case 3 
(pu) 
k = 5 

Case 4 
(pu) 

k = 12 

β=1 
a1=3 
b1=1 
a1=5 
b1=2 
a3=5 
b3=2 

1.0   ∟0 
0.982∟-0.97 
0.969∟-1.87 
1.020∟1.52 
 
 
 
 
 

1.02 ∟0 
0.95 ∟-3.94 
1.04  ∟2.0 
0.923∟-8.0 
0.993∟2.07 
 
 
 
 

1.06∟0 
1.04∟-1.7 
1.03∟-2.6 
1.01∟-3.2 
0.99∟-4.4 
 
 
 
 

1.04   ∟0 
1.025 ∟9.27 
1.025 ∟4.66 
1.0258∟-2.21 
0.9956∟-3.98 
1.0127∟-3.68 
1.0258∟3.71 
1.0159∟0.72 
1.0324∟1.96 

β=2 
a1=3 
b1=1 
a2=5 
b2=2 
a3=5 
b3=2 

k = 3 
1.0   ∟0 
0.982∟-0.97 
0.969∟-1.87 
1.020∟1.52 
 
 
 
 
 

k = 4 
1.02  ∟0 
0.95  ∟-3.94 
1.04  ∟2.0 
0.923∟-8.0 
0.993∟2.07 
 
 
 
 

k= 3 
1.06∟0 
1.04∟-1.7 
1.03∟-2.6 
1.01∟-3.2 
0.99∟-4.4 
 
 
 
 

k = 5 
1.04   ∟0 
1.025 ∟9.27 
1.025 ∟4.66 
1.0258∟-2.21 
0.9956∟-3.98 
1.0127∟-3.68 
1.0258∟3.71 
1.0159∟0.72 
1.0324∟1.965 

 
Systems of nonlinear equations shown below to be solved 

with the equations (16), (17) and (18). 
𝑥𝑥2 + 𝑥𝑥𝑥𝑥 + 𝑧𝑧 = 1.2 

𝑦𝑦2 + 𝑦𝑦𝑦𝑦 + 𝑥𝑥 = 1.76               (21) 
𝑥𝑥 + 2𝑧𝑧 = 1.5 

𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 9 
𝑥𝑥𝑥𝑥𝑥𝑥 = 1                   (22) 

𝑥𝑥 + 𝑦𝑦 − 𝑧𝑧2 = 0 
Table 12 shows the values obtained for each of the 

variables in equations (21) and (22). 

Table 12.  Value of a root system (21) and (22) 

System  [23] Method K 

(21) 

 
x=0.50000000 
y=0.90000000 
z=0.50000000 

M13P 
x=0.5000000596 
y=0.8999999762 
z=0.4999999702 

2 

 
x=0.50000000 
y=0.90000000 
z=0.50000000 

M14P 
x=0.5000000596 
y=0.8999999762 
z=0.4999999702 

1 

 
x=0.50000000 
y=0.90000000 
z=0.50000000 

M12P 
x=0.5000000596 
y=0.8999999762 
z=0.4999999702 

3 

(22) 

 
x=0.2235325872 
y=2.088839461 
z=2.141677586 

M13P 
x=0.2235325873 
y=2.0888395309 
z=2.1416776180 

2 

 

 
x=0.223532587 
y=2.088839461 
z=2.141677586 

M14P 
x=0.2235325873 
y=2.0888395309 
z=2.1416776180 

1 

 

 
x=0.223532587 
y=2.088839461 
z=2.141677586 

M12P 
x=0.2235325873 
y= 2.0888395309 
z=2.1416776180 

2 

5. Conclusions 
The proposed methods we apply to the solution of the 

nonlinear equations of electrical networks operating in 
steady state, specifically, to calculate the voltage at each 
node of a power system and power flow in transmission lines. 
The results are very consistent with those reported in books 
and literature that we have taken as reference [19, 20, 21, 
22]. 

The differences between the values that we obtain and 
those reported in references [19, 20, 21, 22] are not important, 
however, with respect to the formulation, if there are 
significant differences, especially when Newton's method is 
used in matrix form.  

In those methods, the matrix formulation using the 
number of iterations is generally less than 5, but the 
establishment of the Jacobian matrix is perhaps the main 
disadvantage. In the methods that we used, not create the 
matrix of derivatives, for this reason which increases the 
number of iterations, however, as you can see in the tables 
shown above, these methods are not demanding in the 
formulation and get them comparable with values from the 
references.  

Equations (21) and (22), we try to solve by applying the 
same formula that was used to solve the nonlinear equations 
of power grids, this in order to simplify the solution process, 
however, the results that we found no were adequate, for this 
reason methods are proposed (16), (17) and (18) in matrix 
form. 

The values in the third column of Table 12, we got them 
we develop programs in Visual Fortran, you can see on the 
same table the differences in values and may approach more 
if accuracy if tolerance is reduced, affecting possibly in one 
or more iterations in the solution. The methods we proposed, 
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also developed in Visual Fortran, preserving in all cases a 
tolerance of 1.0e-10. 

In summary, we have proposed three methods for solving 
nonlinear equations in the plane where Cn is not necessary to 
form the Jacobian matrix at the same time, we have proposed 
methods for solving systems of nonlinear equations in Rn. To 
ensure accuracy, the proposed methods for solving systems 
of nonlinear equations forming the Jacobian matrix is needed, 
however as we can see in table 13, the number of iterations is 
small. 

Table 13.  Results method M13P and reference [19] 

Method 
M13P 

Case 1 
(pu) 
k=3 

 [19] 
(pu) 
k=22 

β=1 
a1=5 
b1=2 
a2=5 
b2=2 

1.0    ∟0 
0.9824∟-0.976 
0.9690∟-1.872 
1.0200∟1.523 

 

1.02   ∟0 
0.9548∟-3.94 
1.04   ∟2.0 
0.9235∟-8.0 
0.9931∟2.07 
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