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Abstract  The power flow calculat ion in power networks generally carried out using iterative methods such as the Jacobi 
method, the Gauss-Seidel method, and the Newton-Raphson method. The authors present in this paper an  investigation on the 
methods for solving nonlinear equations proposed by other authors, and are modified to solve nonlinear equations generated 
in the load flow study of a power system and is obtained efficient iterative method based on the three steps original formula of 
Newton-Raphson method and mult i-step optimal algorithms for the solution of nonlinear equations. 
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1. Introduction 
In electrical engineering there are d ifferent types of 

studies to determine how they behave in different variables 
which are referred to as steady state and transient state.  

The electrical energy used in a city is manifested in 
electric generators are designed to generate and 
subsequently be sent to users. The electrical power 
transmitted to the cities receives the name of power flow, 
this is accomplished in what is known permanent state and 
involves the establishment of several nonlinear equations, 
which are generated from the application of the Kirchhoff's 
current law at each of the points or nodes of interest, which 
are defined by the analyst grids. The literature in  electrical 
engineering[1,2] contains methods that have traditionally 
been used to solve the power flow problem, which is to 
calculate the voltages at each grid substation, knowing the 
demand and electric  power generation in each of these.The 
Jacobi method: 
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Fori=2, N 
It's a simple formulat ion that iteratively  calcu lates the 

voltage Vi in  the current iterat ion and only requires the 
value of the other voltages in the previous iteration.  

The Gauss-Seidel method: 
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For i = 2, N 
Which in order to accelerate the convergence requires 

voltage values of the previous iteration, and voltage values 
of the current iteration. 

The Newton-Raphson method: 
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Matrix formulations of this method in which evaluates 
the jacobian matrix formed by the derivative of the function 
at each node generated according to voltages and angles, or 
in function of the rectangular components of voltages, are 
used to solve the nonlinear equations which involve the 
study of flow in electric  power load. Based on that, there 
are several companies that have been developing 
commercial software fo r solving very efficient electric 
grids. 

In an electrical network with N nodes independent set an 
equation for node i, has the following form: 
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For i=2, N 
Where: Si is the complex conjugate net power demanded 

at node i. 
Equation (4) can also be written as: 
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H(x , y )n n

Or as a complex function, depending on all the voltages Vi. 
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The formulas (4) and (6) are used to solve the nonlinear 
equations of a power grid with two, twenty, or more nodes. 

2. Iterative Methods for Solving 
Nonlinear Equations 

There are in the literature an  important number of 
methods for the solution of nonlinear equations, among 
which we can mention the following[1]: 

Steffensen’s method 
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Secant method: 
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In electrical networks the Gauss-Seidel method is used to 
calculate the voltage Vi at each node by using equation 
[2,3]: 
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In the solution of a nonlinear equation, due to their 
stability and convergence the Newton-Raphson method [4] 
has been widely used 
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3. Multi-Step Iterative Methods for 
Solving Nonlinear Equations 

Many multistep iterative methods for solving non-linear 
real equations have been proposed, among which are the 
following: 

Frozen slope method[4]: 
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Weerakon and Fernando method [5]: 
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Kung-Traubmethod [6]: 
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Cordero´s method [3] 
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Liang F. algorithms[8] are fifth order in which the 
number o f iterations is reduced significantly in solving 
nonlinear equations with real numbers. 
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Where          are as follows: 
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Jarratt’s method P. [7]: 
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4. Multi-Step Methods for Solving 
Nonlinear Equations of Power 
Systems 

Figure 1 shows a power system of four nodes, the values 
of the voltages at nodes 1, 2, 3, and 4, depends on the 
generated power and demand in each node or substation. 
The voltages of each node can obtain generating equation 
(6), and if desired  using the method of Jacobi, Gauss-Seidel 
method, or a matrix formulat ion of the Newton-Raphson 
method[1]. 

 
Figure 1.  System power of four nodes 

To calculate the voltage of this system, we can establish 
the following equations: 

For node two: 
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For node three: 
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For node four: 
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In addition, at the four nodes we have to calculate: 
𝑄𝑄𝑖𝑖
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Yij system constants are calculated using the series 
impedance, parallel admittance of the transmission line, and 
are: 

Y21=-3.8156+j190781; Y31=-5.1696+j25.8478; Y41=0+j0 
Y22= 8.9852-j44.8360; Y32=0+j0; Y42= -5.1696+j25.8478 
Y23=0+j0; Y33=8.1933-j40.8638; Y43= -3.0237+j15.1185 
Y24= -5.1696+j25.8478; Y34= -3.0237+j15.1185; 
Y44= 8.1933-j40.8638 

Methods for nonlinear equations mentioned above are 
applied to solve equations with real numbers. The authors 
refer to their convergence characteristics, and have shown a 
favourable performance. However, the equations (22), (23), 

(24), and (25), are complex. A ll previous methods have 
presented convergence problems. Because it has been used 
the following methods of several steps: 

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛) 

𝑧𝑧𝑛𝑛 = 𝑦𝑦𝑛𝑛 −
𝑓𝑓(𝑦𝑦𝑛𝑛)
𝑓𝑓′(𝑦𝑦𝑛𝑛)

             (26) 

𝑥𝑥𝑛𝑛+1 = 𝑧𝑧𝑛𝑛 −
𝑓𝑓(𝑧𝑧𝑛𝑛)
𝑓𝑓′(𝑧𝑧𝑛𝑛) 

Because in Equation (26), the derivative is changing, is 
called variable slope method.A mult istep method is fo rmed 
with the orig inal formula of Newton-Raphson, two terms of 
the formula of fifth order of Fang Liang, is as fo llows [8], 
Other authors have proposed methods without the second 
derivative [10,11]. 
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5. Results 
We investigate the performance of five methods that have 

been modified to determine the voltages for each node in the 
system shown in Figure 1. Table 1 lists all methods and 
iterations they need to achieve convergence.We developed a 
program for each equation in visual Fortran, because in this 
language is easy to work with complex numbers[12]. 

Table  1.  Iterations for a four-node system 

Method 
4 Nodes 
Iterations 

Newton-Raphson 16 

Cordero ś method 11 

Jarrat’s 
Method 34 

Equation (26) 6 

Equation (27) 8 

Table 2 shows the nodal voltages values calculated for 
each ofthe methods. 

The large electrical networks generally have a greatest 
number o f nonlinear equations, and more restrictions. This 
makes the number of iterat ions increases, and causes slower 
convergence. The five previous methods have been used to 
solve the nonlinear equations of a network of nine nodes, 
eight nonlinear equations[9]. Figure 2 shows the network of 
nine nodes. 
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Table 2.  Final voltage values 

 
Voltages 

[Grainger] Final values 

Newton- 
Raphson 

1.00+j0 
0.98186-j0.01673 
0.96848-j0.03165 
1.01964+j0.02711 

1.00000+j0 
0.98228-j0.01674 
0.96849-j0.03166 
1.01964+j0.02711 

Cordero’s 
method 

1.00+j0 
0.98186-j0.01673 
0.96848-j0.03165 
1.01964+j0.02711 

1.00000+j0 
0.98228-j0.01674 
0.96849-j0.03166 
1.01964+j0.02711 

Jarrat’s 
method 

1.00+j0 
0.98186-j0.01673 
0.96848-j0.03165 
1.01964+j0.02711 

1.00000+j0 
0.98228-j0.01673 
0.96849-j0.03166 
1.01964+j0.02711 

Equation 
(26) 

1.00+j0 
0.98186-j0.01673 
0.96848-j0.03165 
1.01964+j0.02711 

1.0000+j0 
0.98228-j0.01674 
0.96849-j0.03166 
1.01964+j0.02711 

Equation 
(27) 

1.00+j0 
0.98186-j0.01673 
0.96848-j0.03165 
1.01964+j0.02711 

1.00000+j0 
0.98228-j0.01674 
0.96849-j0.03166 
1.01964+j0.02711 

The results of a program developed with equations (26) 
and (27) are shown in Table 3. 

Table 3.  Values obtained with equations (26) and (27) 

 Equation (26) 
(37 iterations) 

Equation (27) 
(28 iterations) 

No Mag Ang. Mag Ang. 
1 1.040 0.0 1.04000 0.0 
2 1.0250 9.2796 1.0250 9.2797 
3 1.0250 4.6644 1.0250 4.6645 
4 1.0258 -2.2169 1.0258 -2.2168 
5 0.9956 -3.9889 0.9956 -3.9889 
6 1.0127 -3.6875 1.0127 -3.6875 
7 1.0258 3.7194 1.0258 3.7194 
8 1.0159 0.7272 1.0159 0.7273 
9 1.0324 1.9664 1.0324 1.9665 

Table 4 also shows the number of iterations of each 
method in a system of eight linear equations (9 nodes). Table 
4 shows the iterat ions that used the Newton-Raphson method, 
Cordero´s method  and Jarrat´s method in the system of 
Figure 2 

Table 4.  Iterations for a system of nine nodes 

Method 9 Nodes 
Iterations 

Newton-Raphson 98 
Cordero ś method 80 

Jarrat’s 
Method 212 

The solution of nonlinear equations with the classical 
formula of Newton-Raphson method is simple, although the 
number of iterations to achieve convergence increases when 
the equations are numerous. Using high-order formulas such 
as the Cordero, and Gouping Liang Fang He, and adapting, 
accelerates the convergence in solving systems of nonlinear 
equations on a grid, as shown in Table 3. 

 
Figure 2.  Nine-nodes test system [9] 

6. Conclusions 
Based on the original form of the Newton-Raphson 

method and mult istep methods, and establishing a mult i-step 
algorithm for solving nonlinear equations generated in the 
steady-state study of electrical networks. The original 
equations[3, 8] were taken as the basis for creating a 
multi-step method that would achieve convergence when 
there are power systems with voltage controlled nodes. It 
was considered the establishment of a function at each 
network node that depends on several variab les, instead of 
creating a system of equations where the matrix 
manipulation is usually very elaborate. Power systems so far 
are of moderate size and almost didactic purposes; however, 
let you know in a fast steady-state behaviour of an electrical 
network. Its application is certain ly possible to other fields of 
engineering.We are simulating the behaviour of methods 
third and fifth order, which have preliminary results that will 
be reported in other work later. 
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