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Abstract  Th is paper presents an approach to obtain an invariant statistics for estimation interested signal parameters 
independently from unwanted parameters in two dimensional parameter problems. The proposed algorithm is based on the 
exclusion of Fisher’s information about the unwanted parameters and maintaining information about the parameter of 
interest. Simultaneous reduction the partial Fisher info rmation matrices to diagonal forms provides the key steps for 
separation of the signal space into two orthogonal subspaces, containing Fisher’s informat ion about different parameters. 
The proposed approach requires knowledge of the statistical distributions of signals of interest. The application examples 
with time delay and Doppler shift as the parameters are provided as a means of evidencing the advantages of the theory. 
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1. Introduction 
In signal processing tasks the available data usually 

depend on several parameters at the same time. The most 
common are the time delay, the Doppler shift, the initial 
phase and amplitude when signal is reflected or transmitted 
from moving target. Depending on the problem to be solved 
some of the parameters we are interested in, while others are 
not significant. For example the signal processing task of a 
GPS receiver can be divided into two fundamental parts: 
signal acquisition and signal tracking. Acquisition is by far 
the more computationally demanding task, requiring a 
search across a two-dimensional space of unknown time 
delay and Doppler shift for each  GPS satellite to be 
acquired. Even acquisition task is made there is always 
same erro rs in the estimate of Doppler shift and time delay 
due to coarseness of the grid[1,2]. 

The processing algorithm for these tasks may  be 
simplified if we find statistics, which depends on time delay 
and is independent of Doppler shift  and vice versa. If 
statistics do not depend on nuisance parameters change, we 
call them invariant. 

To determine the position of a signal on the time axis, 
Doppler shift is not required. The latter can be regarded as 
unwanted parameter because its changes complicate the 
processing of the available data[1,2]. If you want to 
estimate the t ime delay only, you need statistics invariant to 
Doppler shift. 
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Conversely, if you need to determine objects’ speed it is 
important to estimate the Doppler shift. However, in its turn 
the errors in  the estimating of the range can be considered 
as the unwanted or nuisance parameters. In this case, it is 
desirable to have an invariant to the time delay estimation 
errors statistics. 

Statistics which are independent of the unwanted 
parameters can be obtained by averaging procedure for 
conditional probability density of the data over the 
unwanted parameters, taking into account their a priori 
distribution[3]. However, firstly the averaging procedure 
itself requires a large amount of computations. Secondly, 
the relevant information about a priori d istributions of the 
unwanted parameters is required, but is usually absent.  

In this paper we propose a method for finding invariant 
statistics in the two-parameter problems. These statistics 
can be used to estimate the parameters independently of one 
another.  

This method is based on the orthogonal decomposition of 
the observed data with the concentration of Fisher 
informat ion in the first terms of the series[4]. Such an 
orthogonal series can be used to improve the accuracy of 
maximum likelihood estimates for parameters that are 
nonlinearly related to the signals[5-7]. Besides the data 
dimension reduction with the concentration of Fisher 
informat ion in a small number of members can dramat ically 
reduce the complexity of the Bayesian estimates[8,9]. 
Sharing the orthogonal decomposition with the 
concentration of Fisher information about the Doppler shift 
and time delay provides a means to obtain statistics that 
depend on one of the parameters, and do not depend on the 
other. The ideas presented in[10,11] allow to obtain the 
invariant statistics for independent estimates of the time 
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delay and Doppler shift. A similar approach for the 
independent estimates of the Doppler shift and the init ial 
phase is presented in[12]. 

This article presents a method for obtaining invariant 
statistics in the two-parameter problem. These parameters 
are the time delay and Doppler shift. We then show how to 
use the singular value decomposition to obtain the required 
statistics. Next, we illustrate the method on the results of 
numerical simulat ions. 

2. Theoretical background 
Let NC∈x  denote available data column-vector 

( ) wsx += 21, aa , where 1a  is a parameter of interest and 

2a  is an unwanted parameter. Addit ive noise vector w  is a 
zero-mean circular Gaussian with nonsingular covariance 
matrix wR .  

First of all, recall that the accuracy of unbiased estimate of 
an arbitrary parameter θ  is determined from the 
Cramer–Rao inequality (CRI)[3]. In accordance with the 
CRI the variance is inversely proportional to  the Fisher’s 
informat ion about parameter θ : 
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where {}⋅E  denotes an expectation, ( )θ|xp  - is the 
conditional probability density function of parameter θ  
with known a priori probability density ( )θp .  The larger 
the Fisher’s informat ion the higher the accuracy. 

The proposed method is based on two facts. Firstly we use 
an orthogonal decomposition of the observed data with the 
concentration main part of Fisher information in the first few 
terms in the series. It allows you to save this information 
about the estimated parameter in the required statistics. 
Corresponding theorem proved in[4]. Here it  is presented in 
the appendix. Secondly, if the statistics do not depend on a 
parameter, it is impossible to estimate it. This statistics don’t 
contain any Fisher’s informat ion about this parameter and 
can be considered invariant to its changes. We hope to find 
the vector of statistics for estimation of 1a  and at the same 
time invariant to changes of 2a . To obtain it we have to 
suppress Fisher’s informat ion concerning parameter 2a  and 
keep Fisher‘s information concerning parameter 1a . 

Consider { }HE 111 bbB =  and { }HE 222 bbB = , where 
( ) 1211 /,|ln ap ∂∂= ααxb , ( ) 2212 /,|ln ap ∂∂= ααxb , the 

superscript H  denotes complex conjugate matrix t ranspose. 
Matrices 1B  and 2B  can be interpreted as the mean partial 
Fisher in formation matrices with respect to 1a  and 2a  
correspondingly. In the appendix the eigenvalues and the 
eigenvectors of an analogous matrix B  in (34) are used to 
accumulate Fisher’s information in the diagonal elements. 
Diagonal fo rm of 2B  reveals actual dimension of the 

subspace in initial signal space, which contain the most part 
of Fisher’s informat ion about 2a . To provide the invariant 
to 2a  statistics we can obtain projection x  onto mentioned 
subspace and exclude it from x . The same statement we can 
conclude concerning 1B . On the other hand, the diagonal 
form of 1B  reveals actual dimension of the subspace 
containing Fisher’s information about 1a . We have to keep 
this information because it is connected with accuracy of the 

1a  estimat ion in  accordance with the CRI[3]. To p rovide 
both intentions simultaneously let us bring into use next 
auxiliary matrix 

21 BBQ +=                   (2) 
We need the linear transformation Cx  that provides 

diagonal form both Q  and 1B [13]: 
          ( ) ,, 1

1 Λ== HH CCBICQC         (3) 
where I  is the identity NN × -matrix, ( )1Λ  is the diagonal 
matrix containing ordered eigenvalues of 1B : 

( ) ( ) ( )11
2

1
1 ... Nλλλ ≥≥≥ . Note, that C  provides diagonal form 

2B  too[13]: 

( ) ( ) ,1
1

21
HH CCBCBBCI +Λ=+= ( )1

2 Λ−= ICCB H . (4) 

So we have ( ) ( )12 1 kk λλ −= . It gives the criterion for 
separation the original signal space into two orthogonal 
subspaces, containing Fisher’s information about 1a  and 

2a , respectively and exclude Fisher’s information about 
unwanted parameter. Suppose 2n  is the actual dimension of 
subspace, which contains the most part of Fisher’s 
informat ion about 2a . Let 1C  is a ( ) NnN ×− 2 -matrix, 
which consists of the first 2nN −  rows of C . Using the 
linear transformation xC1  we can obtain invariant statistics 
for 1a  estimation. On the other hand the matrix 11 CCH  is 
the orthogonal projector onto invariant subspace with respect 
to parameter 2a .  

Note that, according to[13] (3) can be performed  if ( )1Λ  
and HC  are chosen to be the matrix of the eigenvalues and 
eigenvectors of the matrix 1

1BQ− , respectively. 
Next, we consider this approach on specific examples. 

3. Simulation 
Let the N-dimensional data column-vector be an additive 

mixture of the deterministic component and the distortion 
vector 

( ) wsx += Df,τ ,                   (5) 
where signal ( )Df,τs  depends on a priori unknown time 

delay τ  and Doppler shift Df . Assume both parameters 
are statistically mutually  independent. The parameter vector 

( )Df,τ=v  has bounded domain of variat ion, where 2D 
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probability density ( )0 , Dp fτ  is specified.  
Let it is necessary to estimate τ  from the observation x  

only. In this case, the Df  can be considered as a nuisance 
parameter. To find an independent estimate of τ , it is 
desirable to obtain the statistics in the form of linear 
functions of vector x  that are not affected by the Df . It is 
also necessary to minimize possible deterioration of the 
estimation accuracy, if τ  is estimated using these statistics. 

We use the next two matrices, which are similar to 1B  
and 2B  in (2): 

( ) ( )( )' ' 2, , /
H

D D wE f fτ τ ττ τ σ 
=  

 
vB s s ,         (6) 

( ) ( )( )' ' 2, , /
H

f f D f D wE f fτ τ σ 
=  

 
vB s s .         (7) 

Here, ( )Df,' ττs  and ( )Df f,' τs  are derivatives. The 

differentiation are performed with respect to the parameters 
indicated by the indexes τ  or Df . Symbol vE  denotes an 
expectation over the vector random variable ( )Df,τ=v . 

In accordance with (2), let introduce the auxiliary matrix 
τBBQ += f .                  (8) 

In such a way on the basis of the generalized eigenvectors 
of the matrix pair ( )τBQ,  we can  divide the observation 
space into two mutually orthogonal subspaces containing the 
Fisher informat ion about time delay τ  and Doppler shift  

Df . 
Finding the matrix C may be complicated if the auxiliary 

matrix Q  is ill-conditioned. In this case we use the 
following approach. We divide the entire range of the 
Doppler shift at the L discrete intervals. For each of them we 
have column vectors ( ) N

Dk Сf ∈'
τs  and ( ) N

Dkf Сf ∈'s , 
where Dkf is the middle of the corresponding interval, 

Lk ,,1= . Let form the following LN ×  matrices: 

( ) ( ) ( )( )' ' '
1 2D D DLf f fτ τ τ=X s s s

,         (9) 

( ) ( ) ( )( )' ' '
1 2D D DLf f ff f f=Y s s s

,        (10) 

and combine LN 2× matrix ( )YXP = . Then the auxiliary 
matrix (8) can be obtained as follows 

LH 2/PPQ = .                    (11) 
Instead of inverting a matrix Q  we obtain singular value 

decomposition matrix P [14]: 
HVΣUP = ,                     (12) 

where Σ  is LN 2× diagonal matrix containing the singular 
values iλ  of P . Matrices U and V are composed of the 
left and right singular vectors, respectively. For example let 

LN 2<  and the singular values are positive numbers 
ordered such that 1 2 ... Nλ λ λ≥ ≥ ≥ . 

From the analysis of singular values we choose the 
number m  to obtain a certain well-defined approximation 

for P : 
HVΣUP ˆˆˆˆ = ,                    (13) 

where Û  and V̂  consist of the first m  columns of U  
and V , corresponding to the largest singular values. If we 
use the link of the SVD with eigenvalue 
decompositions[15]:  

HHH UΣUPPVΣUP 2=⇒= ,     (14) 
we obtain a projector which implements the first equation 

(3) 
HUΣΠ ˆˆ 1−= .                    (15) 

To perform the second equation in (3), we transform the 
matrix X  to 

XUΣΠXZ Hˆˆ 1−== .               (16) 

The singular value decomposition H
111 VΣUZ =  gives 

the orthonormal transformation to diagonalize covariance 
matrix LH /ZZ  . That is, 

( )1
11 Λ=HH UZZU .             (17) 

The combination of (13) and (15) g ives the overall 
transformation matrix:  

XUΣUС HH ˆˆ 1
1

−= .             (18) 
This matrix d iagonalizes three symmetric matrices Q  

τB and fB  simultaneously. Analysis of the eigenvalues of 
the matrix fB  reveals the dimension of the subspaces 
containing all or the most part Fisher’s information with 
respect to the Doppler shift. Suppose it is equal to 2n . Then 
the invariant to the Doppler shift subspace has the dimension 

2nm − . Let 11Û  denote the matrix consisting of the first 

2nm −  columns of 1U . Projector onto this subspace: 
HH UΣUUΣUΠ ˆˆˆˆˆˆ 1

11111
−= .          (19) 

Similarly, let  1n  is the dimension of subspaces 
containing all or the most part Fisher’s information with 
respect to the time delay. Then the invariant to the time delay 
subspace has the dimension 1nm − . Let 12Û  denote the 
matrix consisting of the last 1nm −  columns of 1U . 
Projector onto this subspace: 

HH UΣUUΣUΠ ˆˆˆˆˆˆ 1
12122

−= .          (20) 
To illustrate this approach consider the sampled  chirp  

signal:  

( ) 22,cos 2
0

TtTt
T

ftEts ≤≤−





 ∆

+=
πω ,  (21) 

where E , 0ω  and f∆  are the amplitude, the carrier 
frequency and the full frequency range of the signal.  
When the signal is reflected from a moving target we have: 

( ) ( ) ( ) 





 −

∆
+−−= 2

0 )2(cos,, τπτπωτ t
T

ftfUfts DD
. (22) 

The complex envelope for this signal: 

( ) ( ) ( ) 

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
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
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T

fjUftS DD )2exp,, 2 .  (23) 

Thus the column vector ( )Df,τs  is a discrete version of 



280 Vyacheslav Latyshev:  Linear Invariant Statistics for Signal Parameter Estimation   

 

 

this complex envelope. 
To illustrate the influence of parameters τ  and Df  we 

can use the Mahalanobis distance between signals[13]: 

( ) ( ) ( )( ) ( ) ( )( )
1/2

1, , 0,0 , 0,0H
D D Dwd f f fτ τ τ−= − −s s R s s , (24) 

where ( )0,0s  represents a signal with zero values of the 
parameters.  

If the covariance matrix wR  is the identity matrix, the 
Mahalanobis distance reduces to the Euclidean distance. 

Figure 1 shows the Euclidean distance between the 
delayed signals with the Doppler shift and the signal with 
zero values of these parameters. The number o f samples is 
fixed to 128=N , 128=L , normalized duration of the 
signal 1=T , 32=∆f . The normalized Doppler shift is the 
random variable whose behavior is governed by uniform 
probability density inside a range [ ]5.3;5.3− . The relief o f 
the Euclidean d istance has a narrow canyon, located at a 
certain angle to the time axis. Further we consider the time 
delay as a parameter we are interested in and the Doppler 
shift as an unwanted parameter. 

 
Figure 1.  The Euclidean distance between the chirp signals as a function 
of the time delay and the Doppler shift 

The transformat ion (19) gives the statistics, which  should 
be invariant  to the Doppler shift. Figure 2 shows the central 
part of relief o f Mahalanobis distances for the projections of 
the signals onto 23-dimensional subspace invariant to 
Doppler shift: 

( ) ( ) ( )( ) ( ) ( )( )1
1/2

, , 0,0 , 0,0H
D D Dd f f fτ τ τ−= − −s s R s s   

, (25) 

where ( ) ( )DD ff ,,~
1 ττ sΠs =  and 11 ΠRΠR w

H= . The 
approximate matrix (13) has rank 25=m . 

 
Figure 2.  The Mahalanobis distance between the projections of the chirp 
signals onto a subspace invariant to Doppler shift 

In contrast to the previous figure we see that the relief has 
a narrow canyon, located strictly parallel to the Doppler shift 

axis. The resulting statistics are invariant to Doppler shift 
changes. Hence time delay estimate may be obtained 
regardless of the Doppler shift magnitude. If you calculate 
the amount of Fisher’s informat ion in the projection onto the 
specified 23-d imensional subspace, we find that it contains 
99% of the amount contained in the original observations. 
Therefore, the estimate of the time delay using the 
projections is possible without loss of accuracy. 

On the other hand, the time delay  estimates are 
characterized  by the certain estimation accuracy. Position of 
the signal on the time axis is defined with a small error. To 
eliminate the effects of this error on the accuracy of the 
Doppler shift measurement, it is desirable to use statistics 
that is invariant to small errors in the time delay determin ing. 
The following Figure 3 shows the Mahalanobis distances for 
the projections of the chirp signals onto the 1-dimensional 
subspace that is invariant to small errors in the time delay 
estimation. 

 
Figure 3.  The Mahalanobis distance between the projections of the chirp 
signals onto a subspace invariant to small errors in the time delay estimation 

Here the canyon is strictly parallel to the time delay axis. 
Therefore the resulting statistics are invariant to the errors in 
time delay estimation. Hence Doppler shift estimate may be 
obtained regardless of the small errors in t ime delay 
estimates. The following two figures refer to the Gold code 
of 7 b its. Both figures show relief of the distance between 
signals.   

 
Figure 4.  The Euclidean distance for Gold code of 7 bits 

Figure 4 corresponds to the Euclidean distance. The 
parameters TLN ,,  are the same as in the previous example. 
We see here the local gap nearby the true values of τ  and 

Df .  
Figure 5 corresponds to the distance (25) for the 

projections of signals onto the 4-dimensional subspace with 
the Fisher information concerning τ only. Now the narrow 
canyon is parallel to frequency axes. It implies that the true 
value of τ  may be estimated independently from Df . The 
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amount of Fisher’s information in the pro jection onto the 
specified 4-d imensional subspace is equal to 86% of the 
amount contained in the observations. Therefore, the 
estimate of the time delay using the projections is possible 
with some loss of accuracy. 

 
Figure 5.  The Mahalanobis distance between the projections of the Gold 
code onto a subspace invariant to Doppler shift 

 
Figure 6.  The Euclidean distance for the periodic sequences of the Gold 

 
Figure 7.  The Mahalanobis distance for the projections of the periodic 
sequences of the Gold code onto a subspace invariant to Doppler shift 

The Figures 6 and 7 show similar functions for the 
periodic sequences of the Gold code. The signal consists of 
three consecutive periods. It is evident that the invariance 
property is preserved in this case. 

5. Conclusions  
We have presented the approach to obtain the statistics for 

signal parameter estimation, which is invariant to unwanted 
parameter in d ifferent two-d imensional parameter problems. 
The approach is based on excluding Fisher’s information 
concerning unwanted parameter and saving Fisher‘s 
informat ion about parameter of interest. The generalized 
eigenvectors of the matrix pair are used as a means of 
dividing the observation space into two mutually orthogonal 
subspaces containing the Fisher information about time 
delay and Doppler shift. Numerical results show that this 
approach is effective. To illustrate the procedure the chirp 
signal and Gold code are used, where t ime delay is the 
parameter we are interested in and Doppler shift is the 

unwanted parameter. The presented approach can be used for 
estimation problems and for the signal recognition. 

6. Appendix 
Let the observation space corresponds to the set of N 

observations: 1 2, , , Nx x x

. Thus, each set can be thought of 
as a point in a N-dimensional space and can be denoted by a 
column vector ( ) wsx += θ , where ( ) NRθ ∈s  and 

NR∈w  are the N-d imensional vectors of a signal and a 
noise correspondingly. Vector w is Gaussian with 
nonsingular covariance matrix wR . We assume that ( )θp  
is known. In  general the variable θ  appears in a signal in a 
nonlinear manner.  

To obtain the m-d imensional vector y  with Nm <  we 
use linear transformation Cxy =  with the transformat ion 
matrix C . We need such the matrix C  that guarantees 
minimal losses of estimation accuracy of a parameter θ  
using vector y . In addition to foregone requirements we try 
to represent x  in a new coordinate system in which the 
components are statistically independent random variab les: 

ICRC =T , where I  is a diagonal identity matrix. It  is 
convenient to write transformation matrix in the form of 

1
2w

−
=C AR . Here 

1
2w

−

R  is a symmetric square root from 

1
w
−R  ( 1

1 1
2 2w w w

−− −
=R R R ), ( )1, ,T

m=A a a , IAA =T . 
So we have 

1
2 , m

w R
−

= ∈y AR x y .            (26) 
Taking into account the Gaussian distribution of noise 

from the expression (1) we obtain the Fisher’s information 
about the parameter θ  in the observation: 

( ) ( )( ) ( )1' 'T
N wI θ θ θ−= s R s ,            (27) 

where subscript N is used to distinguish the init ial 
dimension of the observation from a new reducing 

dimension m. ( ) ( ) ( ) T

Nss








∂
∂

∂
∂

=
θ
θ

θ
θθ ,,' 1
s  is the column 

vector of derivatives.  
The Fisher in formation in the vector y [4]: 

( ) ( )
21

2

1
'

m
T

m k w
k

I θ θ
−

=

 
=  

 
∑ a R s .          (28) 

The loss of the Fisher informat ion: 

( ) ( )( ) ( ) ( )
211 2

1
' ' '

mT T
w k w

k
I θ θ θ θ

−−

=

 
∆ = −  

 
∑s R s a R s .    (29)  

The mean of the loss of the Fisher informat ion: 

( )( ) ( ) ( )
211 2

1
' ' '

mT T
w k w

k
I Eθ θ θ θ

−−

=

   ∆ = −  
   

∑s R s a R s ,   (30) 

where Eθ  denotes an expectation over the random 
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variable θ . Thus we need the transformation matrix which 
provides min imal value of I∆ . 

Theorem:   the linear transformat ion with the matrix 
1

2w
−

AR  provides min imal mean of the loss of the Fisher 

informat ion I∆ , if the column vectors 1, , ma a

 of TA  
are the orthonormal eigenvectors of  

( ) ( )( ){ }1 1
2 2' ' T

w wEθ θ θ
− −

=B R s s R ,         (31) 

corresponding to m  largest eigenvalues. At the same time 
   min 1m NI λ λ+∆ = + +

,                (32) 
where Nλ≥≥λ≥λ 21  are the eigenvalues of B . 

Proof: let rewrite (30) in the next form: 

( )( ) ( ){ } ( )
211 2

1
' ' '

mT T
w k w

k
I E Eθ θθ θ θ

−−

=

   ∆ = −   
   

∑s R s a R s  .  (33) 

 The first term does not depend on ka . Therefore we have 
minimal value of I∆  if the subtrahend is maximal. Denote 
it ( )mH aa ,,1  . Inverting averaging with summation and 
taking into account the equality: 

( ) ( ) ( )( )
21 1 1

2 2 2' ' ' TT T
k w k w w kθ θ θ

− − − 
= 

 
a R s a R s s R a , (34) 

we have: 

( ) ( ) ( )( ){ }1 1
2 21

1
, , ' '

m TT
m k w w k

k
H Eθ θ θ

− −

=

 
=  

 
∑a a a R s s R a

.(35) 

The expression in brackets is a symmetric matrix:  

( ) ( )( ){ }1 1
2 2' ' T

w wEθ θ θ
− −

=B R s s R .        (36) 

In compliance with the theorem about eigenvalues and 
eigenvectors[14] the maximal value of ( )1, , mH a a

 

takes place if 1, , ma a
 are the orthonormal eigenvectors 

of the matrix B , corresponding to m  largest eigenvalues 

1 1 mλ λ λ> > >
  and 

( )1
1

max , ,
m

m k
k

H λ
=

= ∑a a

.          (37) 

The equality 1 1 12 2w w w
− − −=R R R  implies trace of the matrix 

(36): 

( )( ) ( ){ }1' 'T
wtr Eθ θ θ−=B s R s .         (38) 

On the other hand, 
1

N
k

k
tr λ

=
= ∑B . It implies: 

 min
1

N
k

k m
I λ

+=
∆ = ∑ .                (40) 

Note we can assert, that a subspace spanned by the column 
vectors 1, , ma a

 is the m-dimensional subspace of the 
observation space with maximal Fisher informat ion content 

about the parameter θ  among any another m-d imensional 
subspaces. 
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