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Abstract  The Ant Colony Optimizat ion (ACO) algorithm is used as a multi-object ive optimization technique to size a 
most popular analog circuit, the CMOS operational amplifier (Op-Amp). The work consist of finding the more convenient 
transistors sizes, including the channel widths and lengths, in o rder to  meet or reach the specified requirements such as the 
voltage gain Av, the Common Mode Rejection Ratio CMRR, the die area A, the power consumption P and the Slew Rate 
SR. SPICE simulat ions are used to strengthen and to validate the obtained sizing/performances. 
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1. Introduction 
Over the past decade, significant progress has been real-

ized with the appearance of a new generation of powerful 
and approximate optimization methods, known as metaheu-
ristics[1]. Such methods are used to solve real-world  prob-
lems within a reasonable amount of time. They always offer 
‘good’ approximat ion of the ‘best’ solutions for optimization 
problems[2]. One of the incoming problems to be resolved in 
the nearer future is the sizing of electronic circu its given the 
continuous increase of the integration densities. So, the 
designers and electronic engineers had a good and exciting 
challenge to reach, that is to find a technique, which can 
easily determine the components sizing, taken into account a 
well determined specifications. Some (meta-) heuristics were 
proposed in the literature and were used by some designers to 
optimize the sizing of the analog components automatically, 
such as Tabu Search[3,4], Genetic A lgorithms (GA)[5], local 
search (LS)[6], Wasp Nets (WN)[7], Bacterial Foraging 
Optimization (BFO)[8], Particle Swarm Optimization 
(PSO)[9] and recently  Ant Colony Optimizat ion (ACO)[10,
11]. 

These algorithms have often dealt with single-object ive 
optimizations; however, the optimizat ion of analog circu its 
is generally a multi-objective problem. They are always 
formed by at least two conflicting performance functions. 

That  means that  improv ing  one perfo rmance resu lts 
automatically into the degradation of another one. In this 
way a set of several meta-heuristics algorithms have been 
developed, such as Mult i-ob jective Optimizat ion Genet ic 
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Algorithm (MOGA)[12], Multi-object ive Optimization 
Particle Swarm Optimization (MOPSO)[13]. 

In the domain of meta-heuristic methods, an important 
interest has been paid to the Ant Colony Optimization algo-
rithm. The basic idea is to imitate the cooperative behaviour 
of ant colonies in order to solve combinatorial optimization 
problems within  a reasonable amount of time, The ACO is 
actually recognized as one of the most successful strands of 
swarm intelligence[14]. Some ACO-based algorithms have 
been proposed such as the multi-object ive optimization 
problems MOACO[15], the Mult iple Objective Ant-Q Al-
gorithm (MOAQ)[16], the Pareto-Ant Colony Optimization 
(P-ACO)[17] and the Ant Algorithm for Bi-criterion Opti-
mization Problems[18]. 

In a previous work, we have adapted and used the 
MOACO algorithm for a two  objectives electronic circu it 
optimization namely the Second Generat ion Current Con-
veyors[19]. At the present we propose to use the same algo-
rithm in order to optimize the sizing of the CMOS Op-Amp, 
which is a  more popular analog  circuit requiring many h ighly 
interdependent performances. 

Thus the subsequent section will present an overview of 
the ACO technique fo llowed by with  a presentation of the 
proposed adaptation of the ACO technique for analog cir-
cuits optimization and introduces the MOACO. The third 
deals with the optimal sizing of the CMOS Operat ional 
Amplifier (Op-Amp) and presents the main results and 
simulations. Finally, the paper will be concluded in the final 
section. 

2. Algorithm Presentation 
2.1. Ant Colony Optimization  

The ACO technique is inspired by the collective behavior 
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of deposition and monitoring of some traces as it is observed 
in insect colonies [20,21], such as ants. It is for example well 
known that ants deposit pheromone on the ground in order to 
mark some favourable paths that should be followed by other 
members of the colony. Fig. 1 shows an illustration of the 
ability of ants to find the shortest path between food and their 
nest. Ants communicate indirectly through dynamic changes 
in their environment (pheromone trails). 

 
Figure 1.  Self-adaptive behaviour of a real ant colony, (a) the ants go in 
the search of food; (b) ants follow a path between nest and food source; ants 
choose, with equal probability, whether to shortest or longest path; (c) the 
majority of ants have chosen the shortest path 

The ACO was initially used to solve graph related prob-
lems, such as the travelling sales man problem[22], vehicle 
routing problem[23], Optical networks routing[24], and 
bioinformat ics problems[25]. A graph is composed of ver-
tices and edges. Each ant constructs its own path from the 
starting to the final vertex by ‘‘walking’’ along edges con-
necting the vertices by deposing a certain  amount of 
pheromones (a chemical substance) that evaporates during 
the time, unless it is reinforced by another ant ‘walking’ 
along the same edge. Thus, the ‘best’, i.e. the shortest, path is 
determined on the base of these pheromones. Besides, 
movement of the ants is highly conditioned by their visibility 
regarding the final objective. 

For solving such problems, ants randomly select the ver-
tex to be visited. When an ant k  is in the vertex i, the prob-
ability for going to the vertex j is given by the following 
expression[26,27]: 
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where k
iJ is the set of neighbours of the vertex i  of the kth 

ant, ijτ  is the amount of pheromone trail on the edge (i, j), 

α and β are weightings that control the pheromone trail ijτ

and the visibility value, ijη  given by: 

1
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Where ijd is the distance between vertices i and j. 
The pheromone rate values are updated during each itera-

tion by all the m ants that have built a solution in the iteration 
itself. The pheromone rate ijτ , which is associated with the 
edge joining vertices i and j, is updated as follows: 

1(1 ) m k
ij ij k ijτ ρ τ τ== − ⋅ + ∆∑           (3) 

where ρ is the evaporation rate, m is the number o f ants, and
( )k

ij tτ∆  is the quantity of pheromone laid  ‘deposited, or 
dropped of’on edge (i, j) by ant k : 
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if ant k  used edge (i, j) in its tour, otherwise 
Q is a constant and Lk is the length of the tour constructed 

by the ant k . 
The ACO approach attempts to solve an optimizat ion 

problem by iterat ing the following two steps: 
• The Candidate solutions are constructed using a 

pheromone model, that is, a  parameterized probability d is-
tribution over the solution space; 
• The candidate solutions are used to modify the phero-

mone values in a way that is deemed to bias future sampling 
toward high quality solutions. 

2.2. Adaptation 

The main  idea consists of constructing a graph that imi-
tates the movement of the ants[28,29]. Then, we construct a 
graph composed of the discretized variab le vectors, corre-
sponding to the graph vertices. Thus, each ant will construct 
its path by a random displacement from a variable value to 
another, as it is shown in Fig. 2; V1, V2, V3…VN constitute 
the discrete variable vectors. 

 
Figure 2.  A pictorial graph showing the movement of the ants 

In short, each ant k  will randomly chose a path (values of 
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V1, V2 …), accord ing to the probability given by expression 
(1), and form a non-connected directed graph while ran-
domly  generating a rate of pheromone at the formed graph 
edges. At each iterat ion, the path giving the min imum value 
of the objective function (OF) sees its pheromone rate in-
creasing, in contrast with the other paths, for which the 
pheromone rates start to evaporate with respect to expression 
(3). 

In the multi-ob jective problem, we seek to optimize sev-
eral functions that are usually interdependent. So, the con-
cept of Pareto optimality is used[30,31]. This approach 
consists, of the following, with n parameters (decision 
variables) and K objectives: 

( ) ( ) ( ) ( )( )1 2, , , ,kMin f x f x f x f x= 

 with ( )1 2, , , .nx x x x X= ∈

 

A decision vector Xa∈  dominates another 
( )baXb >∈  if, and only if: 

( ) ( ) ( ) ( )1,2, , 1, 2, ,i i j ji k f a f b j k f a f b∀ ∈ ≤ ∧∃ ∈ < 

 

 
Figure 3.  Non-dominated solutions for two-objective optimization 
problem 

Random initialization of the pheromone value 
Do 

For each iteration 
For each ant 

Create the set X of the ant; 
Label: Determine the objective weight Pk for 

each objective k randomly; 
For each project k 
-select a project; 

-add it to X; 
End 

If set X is feasible and efficiencies 
-store set X and remove dominated ones; 

If Not Goto Label 
End if 

For each project  k 
-determine the best solution and update 

pheromone; 
End 
End 
End 
END 

Figure 4.  Pseudo code for the proposed MOACO algorithm 

In the mult i-object ive optimizat ion problem, a set of 
non-dominated solutions form the Pareto frontier. An ex-
ample is shown in Figure 3, where the solid (filled) circles 
represent the non-dominated solutions which  form the Pareto 
frontier, while the open circles represent the dominated 
solutions. This result corresponds to a two-objective opti-
mization problem, where the goal was the minimization of 
the two objectives, i.e. to search for the non-dominated 
solutions located along the Pareto frontier. 

To resolve the multiobjective problems, we proposed the 
algorithm shown in Figure 4. In the initialization phase: Ants 
are generated each starting with a set X, the object ive weights 
Pk is determined randomly for each ant. In the construction 
phase of the algorithm, each ant tries to construct a feasible 
set X by using a pseudo-random proportional ru le. After a set 
has been constructed, its feasibility and efficiency is deter-
mined. Pheromone updating is performed by using the best 
solution Xk of the current iteration for each objective k . 

3. Operational Amplifier Optimization 
The two-stage CMOS operational amplifier (Op-Amp) 

shown in Figure 5, is considered as an example for the 
validation of our proposed algorithm. In fact  the design of 
the Op-Amp continues to pose a challenge as transistor 
channel lengths scale down with each generation of CMOS 
technologies[32]. 
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Figure 5.  A two stage CMOS operational amplifier 

Performances of an Op-Amp are evaluated via several 
parameters such as: 
• The open-loop voltage gain Av:  
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• The power d issipation P: 
( )( )5 7dd ss biasP V V I I I= − + +              (6) 
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• The Common Mode Rejection Rat io CMRR :  
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• The die Area A : 
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• The Slew Rate SR: 
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Those expressions (5) and (7), were obtained by consid-
ering the s mall signal equivalent transistor’s models. Vdd and 
Vss are respectively the positive and the negative supply 
voltages; W1-W8 and L1-L8 are the gates widths and the 
channels lengths of the transistors M1-M8 respectively. Ibias is 
the bias current, gm refers to the transconductance of the 
MOS transistor, Cox, λn, λp, μn and μp  are technological 
parameters. Cc is a compensation capacitor and CTL is the 
total capacitance at the output node which can be expressed 
as: 

6 7TL LC C Cgd Cgd= + +                    (10) 
Cgd6 and Cgd7 denote to the parasitic grid to drain ca-

pacitance for transistor M6 and M7 respectively. 
Determining the optimal dimensions of the transistors for 

a specific design involves a tradeoff among all these per-
formance measures. Each transistor must be in saturation. 
Expressions (11)-(14) g ive the corresponding constraints, 
that have to be satisfied when computing optimal sizes of the 
transistors M1(and M2), M5, M6 and M7 respectively. 

1
min

3

2
cm, ss TP TN

n ox

IV V V V
Wμ C
L

− − − ≥
 
 
 

         (11) 

5

5

1

1
max,

22









+








≥+−

L
WC

I

L
WC

IVVV
oxPoxP

TPcmdd
µµ  (12) 

7
,min

6

2
out ss

n ox

I
V V

WC
L

µ
− ≥

 
 
 

              (13) 

7
,max

7

2
dd out

P ox

I
V V

WC
L

µ
− ≥

 
 
 

               (14) 

where 5 7 5
5 7 1

8 8

,  ,  and   
2bias bias

W W
IL LI I I I I

W W
L L

   
   
   = = =
   
   
   

while 
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where, Vtp and Vtn are the PMOS and the NMOS threshold 
voltages, respectively. 

This optimizat ion belongs to the family  of NP hard prob-
lems; in  fact, there are 11 design parameters to optimize for 
the two-stage Op-Amp; the widths and lengths of all tran-

sistors, (W1-W8 and L), the bias current Ibias and the value of 
the compensation capacitor CC, in addition to the various 
constraints of the problem. Note that all the channel length L 
is considered the same for all the transistors. 

The considered optimization problem is a typical 
multi-objective one, consisting of minimizing two  objective 
functions (the die area and the consumed power), and 
maximizing the other performances.  

Table 1.  Parameters of ACO algorithm 

Number of iterations 10000 
Number of ants (m) 50 
Number of projects 100 
Evaporation rate (ρ) 0.1 
Quantity of deposit  pheromone by the best ant (Q) 0.2 
Pheromone factor (α) 1 
Heuristics factor (β) 1 

Table 2.  Optimal device sizing and performances 

 1 2 3 4 5 
W1,2 (µm) 102.31 100.00 115.43 100.00 107.37 
W3,4 (µm) 75.22 84.98 74.48 82.38 78.12 
W5 (µm) 15.24 18.27 18.81 13.61 17.21 
W6 (µm) 105.41 119.02 115.87 109.18 123.54 
W7 (µm) 10.68 12.80 14.63 09.01 13.60 
W8 (µm) 15.07 17.98 14.48 19.95 20.13 
L (µm) 0.82 0.95 0.88 0.90 0.92 
Io (µA) 50.53 32.11 80.00 10.00 24.43 
Cc (pF) 04.68 12.05 15.00 05 .42 08 .10 
Av (dB) 94.58 98.21 88.13 105.29 101.24 

CMRR (dB) 91.97 93.91 82.97 101.18 96.02 
P (mW) 1.37 0.87 2.57 0.23 0.33 
A (µm2) 411.20 511.13 478.38 464,86 501,82 

SR (V/µs)  119.34 76.18 257.08 16.62 45.79 

Table 3.  SPICE performance results 

 1 2 3 4 5 
Av(dB) 92.32 95.46 86.07 103.44 99.31 

CMRR(dB) 88.45 89.83 77.50 96.55 91.78 
P(mW) 1.56 1.03 3.12 0.46 0.82 
A(µm2) ------ ------ ------ ------ ------ 

SR(V/µs) 112.40 72.33 241.45 13.28 40.47 

 
Figure 6.  Spice simulation results for Gain 
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The MOACO algorithm when applied to our optimizat ion 
problem, using the parameter values given in  Table 1, g ives 
43 optimal parameter designs. Table 2 present five of these 
parameter designs and their corresponding performances. 
Also, it is to be noted that the computing time equals 184s. 

SPICE simulation results performed, using AMS 0.35μm 
technology, Voltage power supply is Vdd/Vss=+2.5V/-2.5V, 
are presented in the Tab le 3;  they show the good agreement 
with the expected ones. 

Figure 6 shows SPICE simulation results for the five op-
timal designs, of the gain. The choice between the sets of the 
determined optimal parameters, given by this MOACO 
algorithm, will depend on the desiderata of the designer. 

4. Conclusions 
The presented work proposes an adaptation of the ant 

colony optimizat ion technique to the optimal sizing of ana-
log circuits. We show the practical applicab ility of the ACO 
to optimize performances of electronics integrated circu its 
and its suitability fo r solving a mult iobjective optimization 
problem. The proposed algorithm is validated by the Opera-
tional Amplifier performances optimization. Viability of the 
technique was proved via SPICE simulations. 
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