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Abstract  The new general methodology for the analogue system optimization was elaborated by means of the control 
theory formulation in order to improve the characteristics of the process of system designing. A special vector of control is 
defined to redistribute the compute expense between a network analysis and a parametric optimization. This approach gen-
eralizes the design process and generates a set of the different optimization strategies that serves as the structural basis to the 
construction of optimal designing strategy. The principal difference between this new methodology and theory that was 
elaborated before is the more general approach in the definition of the system parameters and more broadened structural basis. 
The main equations for the system optimization process have been elaborated. These equations include the special control 
functions that generalize the total process of optimization of system. Numerical results that include as passive and active 
nonlinear networks demonstrate the efficiency and perspective of the proposed approach. 
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1. Introduction 
The computer time reduction for designing of large sys-

tem is one of the sources of the total improvement of quality 
of designing. This problem has a great significance because 
it has a lot of applications, for example on VLSI electronic 
circuit design. Any traditional system design strategy in-
cludes two main parts: the mathematical model of the 
physical system that can be defined by the algebraic or in-
tegral equations and optimization procedure that achieves the 
optimum point of the objective function of design. 

There are some powerful methods that reduce the neces-
sary time for the circuit analysis. Because a matrix of the 
large-scale circuit is a very sparse, the special sparse matrix 
techniques are used successfully for this purpose[1]. Other 
approach for reducing the amount of computational required 
for both linear and nonlinear equations is based on the de-
composition techniques. The partitioning of a circuit matrix 
into bordered-block diagonal form can be done by branches 
tearing as in[2], or by nodes tearing as in[3] and jointly with 
direct solution algorithms gives the solution of the problem. 
The extension of the direct solution methods can be obtained 
by hierarchical decomposition and macromodel representa-
tion [4]. Other approach for achieving decomposition at the  
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nonlinear level consists on a special iteration techniques and 
has been realized in[5] for the iterated timing analysis and 
circuit simulation. Optimization technique that is used for 
the circuit optimization and designing gives a very strong 
influence on the total computer time too. The numerical 
methods are developed both for the unconstrained and for the 
constrained optimization[6] and will be improved later on. 
The practical aspects of these methods were developed for 
the electronic circuits designing with the different optimiza-
tion criterions[7]. The fundamental problems of the devel-
opment and adaptation of the automation designing systems 
were examined in some early papers[8,9]. 

The above described ideas of system designing can be 
named as the traditional approach or the traditional strategy 
because the method of analysis is based on the Kirchhoff 
laws. 

The other formulation of the circuit optimization problem 
was developed on heuristic level some decades ago[10]. This 
idea was based on the Kirchhoff laws ignoring for all the 
circuit or for the part of the circuit. The special cost function 
is minimized instead of the circuit equation solving. This 
idea was developed in practical aspect for the microwave 
circuit optimization[11] and for the synthesis of high- per-
formance analogue circuits[12] in extremely case, when the 
total system model was eliminated. The authors of the last 
papers affirm that the designing time was reduced signifi-
cantly. This last idea can be named as the modified tradi-
tional design strategy. 

Nevertheless all these ideas can be generalized to reduce 
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the total computer time for the system designing. This gen-
eralization can be done on the basis of the control theory 
approach and includes the special control function to control 
the designing process. This approach consists of the refor-
mulation of the total designing problem and generalization 
for obtaining a set of different designing strategies inside the 
same optimization procedure[13]. The number of the dif-
ferent designing strategies, which appear in the generalized 
theory, is equal to 2M  for the constant value of all the con-
trol functions, where M is the number of dependent pa-
rameters. These strategies serve as the structural basis for 
construction of different strategies with the variable control 
functions. However, the developed theory[13] is not the most 
general. In the limits of this approach only initially de-
pendent system parameters can be transformed to the inde-
pendent parameters but the inverse transformation is not 
supposed. The more general approach for the system de-
signing supposes that initially independent and dependent 
parameters of system are completely equal in rights, i.e. any 
system parameter can be defined as independent or de-
pendent one. In this case we have more vast set of the de-
signing strategies that compose the structural basis. 

2. Problem Formulation 
In accordance with the new system designing methodol-

ogy[13] the design process can be defined as the problem of 
the minimization of cost function  for NX R∈  by the 
optimization procedure and by the analysis of the modified 
electronic system model. The optimization procedure can be 
determined in continuous form as: 

( )dx
dt

f X Ui
i= ,  Ni ,...,2,1=           (1) 

The modified electronic system model can be expressed in 
the next form: 

( ) ( ) 01 =− Xgu jj ,           (2) 
where N=K+M, K is the number of independent system 
parameters, M is the number of dependent system parameters, 
X is the vector of all variables ( )NKKK xxxxxxX ,...,,,,...,, 2121 ++= ; 
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; . 
The functions of the right hand part of the system (1) de-
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'  is equal to ( )ix t dt− ; ( )ηi X  is the implicit function 

( ( )i ix Xη= ) that is determined by the system (2), C(X) is the 
cost function of the design process. 

The problem of searching of the optimal algorithm of de-
signing is determined now as the typical problem of the 
functional minimization of the control theory. The total 
computer designing time serves as the necessary functional 
in this case. The optimal or quasi-optimal problem solution 
can be obtained on the basis of analytical[14] or numeri-
cal[15-19] methods. By this formulation the initially de-
pendent parameters for NKKi ,...,2,1 ++=  can be trans-

formed to the independent ones when ju =1 and it is de-

pendent when u j =0. On the other hand the initially inde-
pendent parameters for Ki ,...,2,1= , are independent ones 
always. 

We developed in the present paper the new approach that 
permits to generalize more the above described designing 
methodology. We suppose now that all of the system para-
meters can be independent or dependent ones. In this case we 
need to change the equation (2) for the definition of system 
model and the equation (3) for the right parts. 

The equation (2) defines the system model and is trans-
formed now to the next one: 

( ) ( )1 0i ju g X− = , 1, 2,...,i N= , j ∈ J       (4) 
where J is the index set for all those functions ( )jg X  for 
which ui = 0, J = {j1, j2, . . .,jz}, js ∈ Π with s = 1, 2, ..., Z, Π is 
the set of the indexes from 1 to M, Π = {1, 2,. .., M}, Z is the 
number of the equations that will be left in the system (4), Z 
∈{0, 1. . ., M}. The traditional designing strategy (TDS) is 
defined by the control vector (11…100…0) with K units and 
M zeros, the modified traditional designing strategy (MTDS) 
is defined by the control vector (11…1) with N units. The 
right hand side of the system (1) is defined now as: 
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for 1, 2,...,i N= . 
F(X,U) is the generalized cost function and is defined as: 

         (6) 

This new approach for the process of designing was de-
veloped[20] in more generalized form than in[13]. It gene-
ralizes the methodology for the system designing and pro-
duces more representative structural basis of different 
strategies. The total number of different designing strategies, 

which compose the structural basis, is equal to 
0

M
i
K M

i
C +

=
∑ . We 

expect the new possibilities to accelerate the designing 
process. 

3. Numerical Results 
New generalized methodology has been used for optimi-
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zation of some non-linear electronic circuits. The numerical 
results correspond to the integration of the system (1) with 
variable step. The cost function C(X) has been defined as a 
sum of squares of differences between before defined and 
current value of some node voltages. 

3.1. Example 1 

In Figure 1 there is a three node nonlinear circuit. 

 
Figure 1.  Three-node circuit topology 

This example includes seven parameters, i.e. four admit-
tances 1 2 3 4, , ,y y y y  and three nodal 1 2 3, ,V V V . The nonlin-

ear elements were defined by the: ( )2
1 1 1 1 2n n ny a b V V= + ⋅ − , 

( )2
2 2 2 2 3n n ny a b V V= + ⋅ − . 
The vector X includes seven components: 2

1 1x y= , 2
2 2x y= , 

2
3 3x y= , 2

4 4x y= , 5 1x V= , 6 2x V= , 7 3x V= . The mathematical 
model of this circuit (4) includes three equations (M=3), and 
the functions ( )jg X  are defined by the formulas: 

( ) ( ) ( ) ( )22 2 2
1 1 1 2 5 1 1 5 6 5 6 0n ng X x x x x a b x x x x ≡ − + + + + − − =   

( ) ( ) ( )
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g X x x a b x x x x

a b x x x x
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( ) ( ) ( )22
3 4 7 2 2 6 7 7 6 0n ng X x x a b x x x x ≡ + + − − =   

The optimization procedure (1), (5) includes seven equa-
tions. The cost function C(X) is defined by the formula: 
( ) ( ) ( ) ( )2 2 2

1 2 1 2 3 2 3 3C X V V k V V k V k= − − + − − + − . 

The total structural basis contains 
3
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strategies of designing. For instance, the structural basis of 
the previous developed methodology includes only 32 8=  
different strategies. The designing results for all “old” 
strategies and for some of the new strategies are presented in 
Table 1. 

Among the “old” strategies (14-21) there are three strate-
gies (17, 18, and 21) that have the designing time lesser than 
the traditional strategy 14. However, the time gain is not very 
large. The best strategy 18 among all of the “old” strategies 
has the time gain 1.86 only. Nevertheless, among the new 
strategies we have some ones (2, 6, 10, 11, 12, 13) that have 
the design time significantly lesser than the TDS and they 
have the time gain more than 14. The optimal strategy among 

all of the presented strategies is the number 11. It has the 
computer time gain 23.1 times with respect to the traditional 
strategy of designing. 

Table 1.  Some Strategies of Structural Basis for Three-node Circuit 

N Control functions  Calculation results
vector Iterations Total design

 U (u1,u2,u3,u4,u5,u6,u7) number time (sec)
1          ( 0 1 0 1 1 1 1 ) 1127 0.8414
2          ( 0 1 1 0 1 1 1 ) 63 0.0122
3          ( 0 1 1 1 0 1 0 ) 2502 1.8411
4          ( 0 1 1 1 1 0 1 ) 1390 0.9731
5          ( 0 1 1 1 1 1 0 ) 224 0.3571
6          ( 0 1 1 1 1 1 1 ) 43 0.0125
7          ( 1 0 1 1 1 1 0 ) 354 0.5205
8          ( 1 0 1 1 1 1 1 ) 2190 1.1601
9          ( 1 1 0 0 1 1 1 ) 326 0.5042

10          ( 1 1 1 0 0 1 1 ) 23 0.0161
11          ( 1 1 1 0 1 0 1 ) 14 0.0099
12          ( 1 1 1 0 1 1 0 ) 27 0.0103
13          ( 1 1 1 0 1 1 1 ) 51 0.0102
14          ( 1 1 1 1 0 0 0 ) 59 0.2291
15          ( 1 1 1 1 0 0 1 ) 167 0.2732
16          ( 1 1 1 1 0 1 0 ) 174 0.2911
17          ( 1 1 1 1 0 1 1 ) 185 0.1543
18          ( 1 1 1 1 1 0 0 ) 63 0.1228
19          ( 1 1 1 1 1 0 1 ) 198 0.2451
20          ( 1 1 1 1 1 1 0 ) 228 0.2582
21          ( 1 1 1 1 1 1 1 ) 293 0.1765  

3.2. Example 2 

This example corresponds to the active network with 
transistor in Figure 2. 

 
Figure 2.  One-stage transistor amplifier 

The Ebers-Moll static model of transistor has been 
used[21]. The vector X includes six components: 2

1 1x y= , 
2
2 2x y= , 2

3 3x y= , 4 1x V= , 5 2x V= , components: 2
1 1x y= , 2

2 2x y= , 
2
3 3x y= , 4 1x V= , 5 2x V= , 6 3x V= . The model (4) of this network 

includes three equations (M=3), the optimization procedure 
(1) includes six equations (K+M=6).  

The total “old” structural basis contains eight different 
strategies of designing. The total number of the different 
designing strategies that compose the new structural basis of 
the second level of generalized theory is equal to 

3

6
0

42i

i
C
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The strategy that has the control vector (111000) is the TDS 
in terms of the first level of generalized methodology. In this 
case only three first equations of the system (1) are included 
in optimization procedure to minimize the generalized cost 
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function F(X,U). The model of the circuit includes three 
equations too. The cost function C(X) was defined by 
( ) ( ) ( )2 2

4 5 2 6 5 1C X x x m x x m= − − + − −       , where 1 2,m m  are the 
before defined voltages on transistor junctions. 

The strategy 16 that corresponds to the control vector 
(111111) is the MTDS. All six equations of system (1) are 
involved in the optimization procedure, but the model (2) has 
been vanished in this case. Other strategies can be divided in 
two parts. The strategies that have units for three first com-
ponents of the control vector define the subset of “old” 
strategies. These are the strategies from 9 to 15 of Table 2. 

Table 2.  Some Strategies of Structural Basis for One-stage Amplifier 

N Control functions  Calculation results
vector Iterations Total design

 U (u1,u2,u3,u4,u5,u6) number time (sec)
1          ( 0 1 1 1 0 0 ) 12850 10992.33
2          ( 0 1 1 1 0 1 ) 47 19.73
3          ( 0 1 1 1 1 0 ) 30015 10998.24
4          ( 1 0 1 1 1 0 ) 55992 25094.21
5          ( 1 0 1 1 1 1 ) 1195 170
6          ( 1 1 0 0 1 1 ) 174 60.01
7          ( 1 1 0 1 0 1 ) 606 220.21
8          ( 1 1 0 1 1 1 ) 778 139.11
9          ( 1 1 1 0 0 0 ) 9311 7977.01

10          ( 1 1 1 0 0 1 ) 7514 4989.11
11          ( 1 1 1 0 1 0 ) 75635 43053.12
12          ( 1 1 1 0 1 1 ) 324 60.11
13          ( 1 1 1 1 0 0 ) 25079 10970.12
14          ( 1 1 1 1 0 1 ) 243 40.11
15          ( 1 1 1 1 1 0 ) 10232 2398.53
16          ( 1 1 1 1 1 1 ) 2418 196.21  

We can see that two strategies 12 and 14 have the total 
computer time lesser that others. Strategy 14 corresponds to 
the optimal one in this case and it has time gain 198 times 
with respect to the TDS. Strategies numbered from 1 to 8 are 
the “new” strategies of the second level of generalization. 
Strategy 2 has the minimal design time among all strategies 
and has more than twice time gain with respect to the best 
“old” strategy 14. The time gain achieves 404 times in this 
case. However, more impressive results were obtained ana-
lysing more complex networks. 

 
Figure 3.  Three-node transistor amplifier 

3.3. Example 3 
In Figure 3 there is a transistor amplifier that has three 

independent variables as admittance 1 2 3, ,y y y  (K=3) and 
three dependent variables as nodal voltages 1 2 3, ,V V V  (M=3) 
at the nodes 1, 2, 3. The vector X includes six components, as 
for previous example. The control vector U includes six 

components ( )1 2 3 4 5 6, , , , ,u u u u u u . 
The model of the circuit (4) includes three equations and 

the optimization procedure (1), (5) includes six equations. 
The cost function C(X) is defined by the formula: 
( ) ( )2

1 1CC X I m= − , where 1m  is a given collector current for the 

first transistor. The total structural basis contains 
3

6
0

42i

i
C

=

=∑  

different strategies. For instance, the structural basis of the 
previous developed methodology includes only 32 8=  dif-
ferent strategies. The results of the optimization process for 
some strategies for new structural basis and old structural 
basis are shown in Table 3. 

Table 3.  Some Strategies of Structural Basis for Example 3 

N Control functions  Calculation results
vector Iterations Total design

 U (u1,u2,u3,u4,u5,u6) number time (sec)
1          ( 0 0 0 1 1 1 ) 71         0.0467
2          ( 0 0 1 1 1 1 ) 28         0.0119
3          ( 0 1 0 1 1 1 ) 25         0.0111
4          ( 0 1 1 1 0 1 ) 42         0.0176
5          ( 0 1 1 1 1 1 ) 38         0.0108
6          ( 1 0 1 0 1 1 ) 43         0.0201
7          ( 1 0 1 1 1 1 ) 49         0.0062
8          ( 1 1 0 1 1 1 ) 31         0.0051
9          ( 1 1 1 0 0 0 ) 2256         2.0992

10          ( 1 1 1 0 0 1 ) 59         0.0256
11          ( 1 1 1 0 1 1 ) 47         0.0132
12          ( 1 1 1 1 0 1 ) 34         0.0045
13          ( 1 1 1 1 1 1 ) 46         0.0036  

Five last strategies are defined from the old structural ba-
sis and other strategies are from the new structural basis. As 
we can see the MTDS (number 13) is the best between both 
structural bases. The time gain of this strategy comparing 
with TDS is equal to 583. The new structural basis does not 
produce more fast strategies, but there many strategies that 
have time gain more than 100 times. 

3.4. Example 4 

The next example corresponds to the three-stage transistor 
amplifier in Figure 4. 

 
Figure 4.  Three-stage transistor amplifier 

In this case the vector X includes 14 components. Seven 

components define the independent parameters 2
1 1x y= , 2

2 2x y= , 
2
3 3x y= , 2

4 4x y= , 2
5 5x y= , 2

6 6x y= , 2
7 7x y=  and other seven com-

ponents 8 1x V= , 9 2x V= , 10 3x V= , 11 4x V= , 12 5x V= , 13 6x V= , 
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14 7x V=  define the dependent parameters in accordance with 
the traditional approach. The cost function C(X) for the de-
sign problem was defined by the formula similar to the pre-
vious examples. 

The structural basis consists of 128 different design 
strategies according to the first level of generalization. On 
the other hand the structural basis of the second level of 
generalization is equal to 

7

14
0

9908i

i
C

=

=∑ . Once again we have 

very broadened structural basis in the second case. The re-
sults of the analysis for some strategies of designing for this 
network are presented in Table 4. The designing strategies 
numbered from 12 to 25 belong to the subset that appears in 
limits of the first level of designing methodology. 

Table 4.  Some Strategies of Structural Basis for Three-stage Amplifier 

N Control functions  Calculation results
vector Iterations Total design

 U (u1,u2,...,u14) number time (sec)
1  ( 0 0 0 0 0 0 0 1 1 1 1 1 1 1 ) 72 0.549
2  ( 0 0 0 0 0 0 1 1 1 1 1 1 1 1 ) 235 1.031
3  ( 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ) 506 1.031
4  ( 0 0 0 0 1 1 1 1 1 1 1 1 1 1 ) 891 2.981
5  ( 0 0 0 1 1 1 1 1 1 1 1 1 1 1 ) 660 1.051
6  ( 1 1 0 1 1 1 1 1 1 1 1 1 1 1 ) 316 0.352
7  ( 1 1 1 0 1 1 1 1 1 1 1 1 1 1 ) 662 0.709
8  ( 1 1 1 1 0 1 1 1 1 1 1 1 1 1 ) 801 0.986
9  ( 1 1 1 1 1 0 1 1 1 1 1 1 1 1 ) 532 0.956

10  ( 1 1 1 1 1 1 0 0 0 0 0 0 0 1 ) 11993 129.003
11  ( 1 1 1 1 1 1 0 1 1 1 1 1 1 1 ) 308 0.032
12  ( 1 1 1 1 1 1 1 0 0 0 0 0 0 0 ) 38775 351.456
13  ( 1 1 1 1 1 1 1 0 0 0 0 0 0 1 ) 100843 742.993
14  ( 1 1 1 1 1 1 1 0 0 0 0 1 0 0 ) 45407 440.014
15  ( 1 1 1 1 1 1 1 0 0 1 0 0 0 0 ) 2643 29.002
16  ( 1 1 1 1 1 1 1 0 1 0 0 0 0 0 ) 82811 1163.987
17  ( 1 1 1 1 1 1 1 0 1 1 1 1 1 1 ) 1127 1.021
18  ( 1 1 1 1 1 1 1 1 0 0 0 0 0 0 ) 10454 89.019
19  ( 1 1 1 1 1 1 1 1 0 1 1 1 1 1 ) 540 0.955
20  ( 1 1 1 1 1 1 1 1 1 0 1 1 1 1 ) 53880 61.042
21  ( 1 1 1 1 1 1 1 1 1 1 0 1 1 1 ) 1008 1.007
22  ( 1 1 1 1 1 1 1 1 1 1 1 0 1 1 ) 5647 6.012
23  ( 1 1 1 1 1 1 1 1 1 1 1 1 0 1 ) 226 1.885
24  ( 1 1 1 1 1 1 1 1 1 1 1 1 1 0 ) 7441 7.999
25  ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) 3979 2.005  

The strategy 12 that corresponds to the control vector 
(11111110000000) is the TDS. The strategy 19 that corre-
sponds to the control vector (11111111011111) has the 
minimum computer time among all the strategies of this 
subset. The time gain in this case is equal to 368 times. The 
strategies from 1 to 11 belong to the subset of new design 
strategies. Six strategies of this subset have the design time 
lesser than the best strategy of the “old” structural basis. The 
best strategy among new structural basis has the time gain 
11715 times with respect to the TDS and has an additional 
time gain 31.8 times comparing to the better “old” strategy. 

3.5. Example 5 

The last example corresponds to the transistor amplifier in 
Figure 5. 

In this case the vector X includes 13 components. Five 
components define the independent parameters 2

1 1x y= , 
2
2 2x y= , 2

3 3x y= , 2
4 4x y= , 2

5 5x y=  and other eight components 

6 1x V= , 7 2x V= , 8 3x V= , 9 4x V= , 10 5x V= , 11 6x V= , 12 7x V= , 

13 8x V=  define the dependent parameters in accordance with 
the traditional approach.  

Table 5.  Some Strategies of Structural Basis for Transistor Amplifier 
N Control functions  Calculation results

vector Iterations Total design
 U (u1,u2,...,u13) number time (sec)

1  ( 0 0 1 1 1 1 1 0 1 1 1 1 1 ) 131         0.0680
2  ( 0 0 1 1 1 1 1 1 1 1 1 1 1 ) 138         0.0477
3  ( 0 1 0 1 1 1 1 1 1 1 1 1 1 ) 118         0.0441
4  ( 0 1 1 0 1 1 1 1 1 1 1 1 1 ) 83         0.0343
5  ( 0 1 1 1 0 1 1 1 1 1 1 1 1 ) 142         0.0536
6  ( 0 1 1 1 1 0 1 1 1 1 1 1 1 ) 123         0.0464
7  ( 0 1 1 1 1 1 1 1 1 1 1 1 1 ) 155         0.0422
8  ( 1 0 0 1 1 1 1 1 1 1 1 1 1 ) 232         0.0754
9  ( 1 0 1 0 1 1 1 1 1 1 1 1 1 ) 338         0.0982

10  ( 1 0 1 1 0 1 1 1 1 1 1 1 1 ) 247         0.0668
11  ( 1 0 1 1 1 0 1 1 1 1 1 1 1 ) 145         0.0402
12  ( 1 0 1 1 1 1 0 1 1 1 1 1 1 ) 247         0.0657
13  ( 1 0 1 1 1 1 1 0 1 1 1 1 1 ) 156         0.0478
14  ( 1 0 1 1 1 1 1 1 0 1 1 1 1 ) 502         0.1425
15  ( 1 0 1 1 1 1 1 1 1 0 1 1 1 ) 300         0.1145
16  ( 1 0 1 1 1 1 1 1 1 1 1 0 1 ) 287         0.0825
17  ( 1 0 1 1 1 1 1 1 1 1 1 1 0 ) 132         0.0425
18  ( 1 0 1 1 1 1 1 1 1 1 1 1 1 ) 77         0.0171
19  ( 1 1 1 0 1 1 1 1 1 1 1 1 0 ) 83         0.0248
20  ( 1 1 1 0 1 1 1 1 1 1 1 1 1 ) 254         0.0602
21  ( 1 1 1 1 0 1 1 1 1 1 1 1 1 ) 176         0.0339
22  ( 1 1 1 1 1 0 0 0 0 0 0 0 0 ) 6990       24.7500
23  ( 1 1 1 1 1 0 0 0 0 0 0 0 1 ) 90         0.1454
24  ( 1 1 1 1 1 0 0 0 0 0 0 1 1 ) 246         0.3410
25  ( 1 1 1 1 1 0 0 0 0 0 1 1 1 ) 203         0.2231
26  ( 1 1 1 1 1 0 0 0 0 1 1 1 1 ) 875         0.7300
27  ( 1 1 1 1 1 0 0 0 1 1 1 1 1 ) 299         0.1530
28  ( 1 1 1 1 1 0 0 1 1 1 1 1 1 ) 301         0.1210
29  ( 1 1 1 1 1 1 0 0 0 0 0 0 1 ) 159         0.2040
30  ( 1 1 1 1 1 1 0 0 0 1 1 1 1 ) 777         0.6000
31  ( 1 1 1 1 1 1 0 1 1 1 1 1 0 ) 89         0.0380
32  ( 1 1 1 1 1 1 0 1 1 1 1 1 1 ) 216         0.0611
33  ( 1 1 1 1 1 1 1 0 0 0 0 0 1 ) 157         0.1450
34  ( 1 1 1 1 1 1 1 0 1 1 1 1 0 ) 59         0.0191
35  ( 1 1 1 1 1 1 1 0 1 1 1 1 1 ) 153         0.0530
36  ( 1 1 1 1 1 1 1 1 0 1 1 1 0 ) 303         0.1100
37  ( 1 1 1 1 1 1 1 1 0 1 1 1 1 ) 379         0.0980
38  ( 1 1 1 1 1 1 1 1 1 0 1 1 0 ) 90         0.0420
39  ( 1 1 1 1 1 1 1 1 1 0 1 1 1 ) 190         0.0750
40  ( 1 1 1 1 1 1 1 1 1 1 0 1 0 ) 132         0.0361
41  ( 1 1 1 1 1 1 1 1 1 1 0 1 1 ) 207         0.0452
42  ( 1 1 1 1 1 1 1 1 1 1 1 0 0 ) 155         0.0571
43  ( 1 1 1 1 1 1 1 1 1 1 1 0 1 ) 257         0.0573
44  ( 1 1 1 1 1 1 1 1 1 1 1 1 0 ) 121         0.0350
45  ( 1 1 1 1 1 1 1 1 1 1 1 1 1 ) 607         0.0871  

The cost function C(X) for the designing problem was 
defined by the formula similar to the previous examples. 

The structural basis consists of 256 different designing 
strategies according to the first level of generalization. On 
the other hand the structural basis of the second level of 

generalization is equal to 
8

13
0

7099i

i
C

=

=∑ . Once again we have 

very broadened structural basis in the second case. The re-
sults of the analysis of TDS and some strategies that have the 
designing time less than TDS are presented in Table 5. 

The designing strategies numbered from 22 to 45 belong 
to the subset that appears on the basis of the first level of 
design methodology generalization. The strategy 22 that 
corresponds to the control vector (1111100000000) is the 
TDS. This strategy has a large number of iteration steps and a 
large computer time (24.75 sec). Other strategies that are 
presented in this table have considerably less iteration 
number and computer time. For instance the MTDS with 
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control vector (1111111111111) has computer time 0.202 
sec. The time gain in this case is equal to 123.7 times. The 
strategy 34 that corresponds to the control vector 
(1111111011110) has the minimum computer time among 
all the strategies of this subset. The time gain in this case is 
equal to 1295 times. 

 
Figure 5.  Eight-node transistor amplifier 

The strategies from 1 to 21 belong to the subset of new 
design strategies. Strategy 18 of this subset has the designing 
time lesser than the best strategy of the “old” structural basis. 
This strategy belong to the new structural basis and it has the 
time gain 1447 times with respect to the TDS and has an 
additional time gain 1.12 times with respect to the better 
strategy of the first level of the generalization. 

Moreover among the “old” strategies there are 6 strategies 
that have the time gain more than 500 and 9 strategies that 
have the time gain more than 400. On the other hand among 
the “new” strategies there are 11 strategies that have the time 
gain more than 500 and 13 strategies that have the time gain 
more than 400. 

So, taking into consideration the obtained results we can 
state that the second level of generalization of the designing 
methodology gives the possibility to improve all character-
istics of the generalized design theory. Further analysis may 
be focused on the problem of searching of the optimal de-
signing strategy by means of the control vector manipulation 
into the broadened structural basis. It is intuitively clear that 
we can obtain very great time gain by means of the new 
structural basis. 

4. Conclusions 
The traditional approach for the analogue circuit design is 

not time-optimal. The problem of the optimum algorithm 
construction can be solved more adequately on the basis of 
the optimal control theory application. The time-optimal 
designing algorithm is formulated as the problem of the 
functional minimization of the optimal control theory. The 
more complete approach for the electronic network design-
ing methodology has been developed now. This approach 
generates the structural basis of the different strategies of 
designing that is more broadened than for the previous de-
veloped methodology. The potential gain of computer time 

that can be obtain on the basis of new approach is signifi-
cantly more than for the previous developed methodology. 
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