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Abstract  Optimum processor has received considerable attention in many areas of practical applications since it repre-
sents a reference tool against which the performance of any unknown processor is compared under any situation of operating 
conditions. As the performance of the processor under test closes to that of the optimum processor as it becomes more at-
tractable. In the field of radar target detection, little attention has been paid to the performance evaluation of the optimum 
(fixed-threshold) detector. Therefore, it is of outstanding importance to analyze the performance of this detector in the more 
recent cases of environmental situations. Since the integration of M pulses represents one of the most important techniques 
that are used to improve the detection processing of a radar target, especially in nonideal environments, this manuscript is 
devoted to the performance evaluation of the fixed-threshold detection scheme when the radar receiver incorporates a video 
integrator amongst its basic elements to collect data from M-pulses in order to decide the presence or absence of the target 
under test which is assumed to be stationary or fluctuating. For fluctuating targets, the cases of noncoherent integration with 
fully-correlated, fully-decorrelated, and partially-correlated target returns are analyzed here. Additionally, incoherent inte-
gration of M-pulses, in which the consecutive sweeps themselves are correlated, is treated. In each case, closed form ex-
pression is derived for the detection performance of the detector under consideration given that its false alarm rate is held 
constant. The background noise and the successive pulses are assumed to be Gaussian stationary and fluctuating following 
χ2-distribution, respectively.  

Keywords  Optimum Detector, Noncoherent Integration, χ2-Distribution with K Degrees of Freedom, Partially- Corre-
lated Targets, Nonfluctuating Targets 

1. Introduction 
The detection of signals in the presence of noise is one of 

the most basic and important problems encountered by 
communication systems designers. Although a great deal of 
work has been done in this area, most of this work has been 
based on the assumption that the signal and noise statistics 
are known. Although this is a reasonable assumption for 
many important problems, it is invalid for many others. 
Constant false alarm rate processors are useful for detecting 
radar targets in background for which all parameters in the 
statistical distribution are not known and may be nonsta-
tionary[1,14].  

In most treatments of detection theory, emphasis is placed 
on the determination of optimal detectors requiring an es-
sentially complete statistical description of the input signal 
and noise. There may be compelling reasons which lead to 
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consideration of other nonoptimal detectors. Amongst these 
reasons: a complete statistical description of the input may 
not be available, the statistics of the input data set may vary 
with time or may change from one application to another, 
and the optimal detector may be too complex to implement. 
Adaptive detectors have been developed to meet the first two 
conditions and can perform in a near optimal sense in an 
unknown or changing environment by proper adaptation of 
the detector structure[6,13]. 

In most radar systems, there is relative motion between the 
radar and an observed target. Therefore, the cross section 
measured by the radar fluctuates over a period of time as a 
function of frequency and the target aspect angle. This ob-
served radar cross section (RCS) is referred to as the radar 
dynamic cross section. This dynamic RCS may fluctuate in 
amplitude and/or phase. For most radar applications, phase 
fluctuations introduce linear error in the radar measurements, 
and thus they are not of a major concern. However, there are 
some cases, such as those require high precision and accu-
racy, where the phase fluctuation is detrimental. Amplitude 
fluctuations, on the other hand, can vary slowly or rapidly 
depending on the target size, shape, dynamics, and its rela-
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tive motion with respect to the radar. Due to the wide variety 
of sources for these fluctuations, changes in RCS are mod-
eled statistically as random processes[4]. 

The fluctuation rate of a radar target may vary from es-
sentially independent return amplitudes from pulse-to-pulse 
to significant variation only on a scan-to-scan basis. There 
are many distributions that can be used to characterize most 
target populations of interest. The Swerling models are a set 
of assumptions about the rate of target fluctuation relative to 
the pulse repetition frequency of a coherent radar system that 
employs noncoherent integration. Target amplitudes are 
Rayleigh distributed for SWI and SWII cases, while they 
have χ2-distributed for SWIII and SWIV models. From the 
correlation point of view, the correlation coefficient between 
the two consecutive echoes in the dwell-time is equal to unity 
for the SWI and SWIII cases while it equals zero for the 
SWII and SWIV models. In SWI and SWIII, the amplitude 
of the entire pulse train is assumed to fluctuate randomly 
from scan to scan; however, all pulses within a train have the 
same amplitude. The amplitude fluctuation is Rayleigh in the 
case of SWI model while it is of one dominant-plus-Rayleigh 
distribution in the SWIII fluctuation model. In SWII and 
SWIV, on the other hand, the amplitude of each pulse in the 
train is a statistically independent random variable with a 
Rayleigh or a one dominant-plus-Rayleigh probability den-
sity function, respectively[2,12]. 

The χ2-distribution with 2κ degrees of freedom represents 
the sum of squares of "2κ" normally distributed random 
variables or the sum of the squared magnitudes of κ complex 
Gaussian random variables. It is more general than the 
Swerling models. In addition to Swerling and Marcum 
(nonfluctuating) models, the χ2-distribution includes the 
Weinstock model (κ<1), and the generalized model (κ a 
positive real number). On the other hand, the Rayleigh (SWI 
& SWII cases) model represents the χ2-distribution with two 
degrees of freedom (κ=1), while that with four degrees of 
freedom (κ=2) model contains (SWIII & SWIV cases). This 
family of models is used to represent complex targets such as 
aircraft and have the characteristic that the distribution is 
more concentrated about the mean as the value of the pa-
rameter κ is increased.  

It is often assumed that the Swerling cases bracket the 
behavior of fluctuating targets of practical interest. However, 
recent investigations of target cross section fluctuation sta-
tistics indicate that some targets may have probability of 
detection curves which lie considerably outside the range of 
cases which are satisfactorily bracketed by the Swerling 
cases. An important class of targets is represented by the 
so-called moderately fluctuating Rayleigh and χ2 targets, 
which when illuminated by a coherent pulse train, return a 
train of correlated pulses with a correlation coefficient in the 
range 0<ρ<1 (intermediate between SWII and SWI models 
in the case of Rayleigh targets) and (intermediate between 
SWIV and SWIII models in the case of χ2 targets)[7,10-11].  

The use of moving target indicator (MTI) is useful in re-
ducing the returns from stationary or slowly moving clutter 

However, its presence amongst the contents of the detection 
system complicates the analysis of that system since its 
output sequence is correlated even though its input sequence 
may be uncorrelated[3,5]. Therefore, it is of great impor-
tance to evaluate the performance of fixed-threshold detector 
in the case where the radar receiver employs MTI to detect 
moving targets. 

Our goal in this paper is to analyze the performance of the 
fixed-threshold algorithm for a target fluctuation model that 
obeys Swerling and Marcum models along with partially 
correlated χ2 targets with two and four degrees of freedom. 
Moreover, the performance of a radar signal processor that 
consists of a nonrecursive MTI followed by a square-law 
detector, a video integrator, and a fixed-threshold scheme is 
evaluated. In section II, the problem under investigation is 
formulated and the performance of the processor under 
consideration is evaluated for the standard Swerling models 
as well as the nonfluctuating model. The processor per-
formance for moderately fluctuating χ2 targets with two and 
four degrees of freedom is analyzed, in section III. Section 
IV treats the problem of M-correlated sweeps and the per-
formance evaluation of the fixed-threshold detector under 
such type of environmental conditions. In section V, we 
present a brief discussion along with our conclusions. 

2. Statistical Background and Model 
Description 

A radar echo is invariably immersed in additive noise and 
possibly in clutter return. Since noise and clutter are random 
phenomena, a decision concerning the presence or absence 
of a target is statistical in nature. In order to minimize the 
number of incorrect decisions, it seems reasonable to take 
advantage of a priori information concerning the echo signal 
structure and the statistical properties of the noise and clutter. 

The detection of a signal in noise can be formulated as a 
problem in hypothesis testing procedure in which the hy-
pothesis that the received waveform doesn't contain a signal 
(H0) is to be tested against the hypothesis that the received 
waveform does contain a signal (H1). If the signal to be de-
tected is deterministic that is its structure is completely 
known, then H1 is called a simple alternative. When the 
signal to be detected, on the other hand, is a member of finite 
or infinite set of signals, then H1 is called a composite hy-
pothesis alternative. 

An essential feature of statistical decision detection theory 
is the decision rule used to arrive at a decision. The decision 
rule depends only on the observed waveform and not on 
signal. A decision rule that leads to decision d as a result of 
observation v is denoted by D(d|v). The essence of the deci-
sion problem is to choose decision rules that accomplish the 
mapping of the points of the observation space into points in 
decision space with a pre-assigned probability in an optimum 
way with respect to a particular criterion of excellence[1]. 

The Neyman-Pearson (NP) theory of hypothesis testing 
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antedates the development of statistical decision theory. 
They define an optimum test as one that minimizes the 
probability of certain errors. In a test of hypothesis Hi, i=0 or 
1, two types of errors can be made: H1 may be rejected when 
it is true, or it may be accepted when it is false. It seems 
reasonable that an optimum test should minimize the prob-
ability of committing both types of errors; that is the test 
should have a small probability of rejecting H1 when it is true 
and a large probability of rejecting H1 when it is false.  

The goal of the decision theory is to develop a criterion by 
which the most likely outcome could be selected. Since 
everything that is known about a random variable (RV) is 
contained in its probability density function (PDF), it is 
therefore of importance that the theory be formulated as a 
function of this PDF. Consider a sample point x in observa-
tion space defined by its PDF ƒ(x). The a priori density 
function for the null hypothesis is therefore written ƒ(x|H0) 
and the simple alternative as ƒ(x|H1).  

Now, if a single observation of x is made, which of the 
hypotheses can be assumed to be true? Defining the condi-
tional probabilities P(H0|x); which means H0 occurs given 
sample x, and P(H1|x); which means H1 occurs given sample 
x. A decision rule can be formulated as follows: 

( ) ( )
( ) ( )

0 1 0

1 0 1

H x H x is selected

H x H x is selected
P P H
P P H

 〉


≥
      (1) 

It should be noted that P(H0) and P(H1) are a priori prob-
abilities, that are assigned as a result of prior knowledge. 
P(H0|x) and P(H1|x), on the other hand, are a posteriori 
probabilities, that are assigned after observations are made. 
Using the well-known relation that relates the joint prob-
ability density with the marginal and the conditional prob-
ability densities, Eq.(1) can be reformulated as: 
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ℓ(x) is called the likelihood ratio.  
The above formula implies that there is a threshold value 

of x=T above which H1 is chosen and below which H0 is 
selected. This means simply that the decision criterion was to 
maximize the a posteriori probabilities given the a priori 
probabilities. However, additional information concerning 
the relative importance of the two hypotheses may have to be 
taken into account in forming the best decision strategy. The 
introduction of the cost or loss into the decision process 
allows us to carry out this task.  

If we associate a cost Cjk with each of the underlined joint 
probabilities, an average cost can be defined as: 

( ) ( ) ( ) ( )00 0 0 11 1 1 01 0 1 10 1 0, , , ,C C D H C D H C D H C D HP P P P∆ + + +  (3) 

The problem is to minimize the average cost and obtain a 
likelihood ratio that includes cost. To obtain the desired ratio 
test, Eq.(3) needs to be written in terms of the PDF's ƒ(x|H0) 
and ƒ(x|H1). From the conservation of probability, we have  
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The likelihood ratio at x=t can be found by differentiating 
Eq.(4) with respect to t and setting the result to zero. This 
leads to 
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According to Eq.(5), the decision rule can be formulated 
as 

( ) ( )
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            (6) 

In the case of a communication system, the a priori 
probabilities at the receiver are usually assumed to be equal. 
However, in the case of radar, the a priori knowledge of the 
signal statistics is generally unknown. Moreover, costs are 
generally difficult to assign in the radar problem. Therefore, 
it is required to determine the optimum threshold setting for a 
receiver if only the PDF's of the noise and signal-plus-noise 
are known. The NP solved this problem by maximizing the 
detection probability under the constraint of a prescribed 
false alarm probability. It is the decision process employed in 
most radar systems and is used as the baseline detection 
criterion in many applications. This rule doesn't require the a 
priori probabilities or cost functions. 

The decision rule to be developed minimizes the total type 
II error probability subject to the constraint of a fixed total 
type I error probability. Since the type II error probability is 
given by P(D0|H1), the problem becomes one of maximizing 
the detection probability P(D1|H1). The type I error, on the 
other hand, is the false alarm probability P(D1|H0), which is 
chosen to be a constant determined by the noise statistics in 
the absence of the signal and the desired threshold setting. 
The average error probability to be minimized is then 

( ) ( )0 1 1 0e D H D HP P Pγ∆ +           (7) 
Here, the second term is a constant and doesn't affect the 

minimization process. However, the right side of Eq.(7) is 
equal to the average cost given by Eq.(3) under the substitu-
tions C00=C11=0, C01P(H1)=1 and C10P(H0)=γ. Using the 
solution given by Eq.(5) with the values of Cjk above leads to 
evaluating the unknown Lagrange multiplier γ which be-
comes equal to the likelihood ratio at x=t. The threshold 
setting T follows simply from the false alarm probability Pfa= 
P(D1|H0) after replacing t by T. Thus, 

( )0fa
T

x H dxfP
∞

= ∫           (8) 

The corresponding detection probability Pd = P(D1|H1) is 
given by 

( )1d
T

x H dxfP
∞

= ∫
           

 (9) 

Fig.(1) shows the block diagram of the resulting detection 
scheme. Here, we consider a radar system in which time 
diversity transmission is employed and assume that M pulses 
hit the target. The receiver model has a white Gaussian noise, 
which is independent from pulse to pulse. The received IF 
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signal is applied to a matched filter, which is specifically 
designed to maximize the output signal-to-noise ratio. 

The output of this filter is then passed through a square- 
law device to extract the baseband signal. This signal is then 
sampled and the sampling rate is assumed to be such that the 
samples are statistically independent. The square-law de-
tected video range samples are then compared to the pre- 
assigned detection threshold to decide whether the target is 
present or absent.  

3. Multipulse Analysis of Optimum 
Detector 

3.1. Swerling Models 

Time diversity transmission is often used to circumvent 
the high probability of a deep fade on a single transmission 
which may result in loss of the signal. One way to combat 
deep fades is to postdetection integrate the received obser-
vations from each range resolution sample. The final deci-
sion, about the presence or the absence of a target, is made by 
comparing the integrated signal to a threshold. In this case, 
the signal and noise are represented by vectors; each one of 
them has M components. The components of each vector are 
uncorrelated as well as the components of the noise vector 
are uncorrelated with those of the signal vector. 

When the input time sequence to the square-law detector 
is normally distributed, its output obeys the exponential PDF 
with parameter μ[6]. Thus, 

1( ) ( )expq

xx U xf µ µ
 

= − 
 

     (10) 

U(x) denotes the unit step function. Under the null hy-
pothesis of no target in a range cell and homogeneous 
background, μ represents the total clutter-plus-thermal noise 
power, which is denoted by "ψ". Under the alternative hy-
pothesis of the presence of a target, on the other hand, μ is 
replaced by ψ(1+α) ; with "α" being the average SNR of the 
target. The replacement of the PDF in the definitions of false 
alarm and detection probabilities, Eqs.(8,9) with that given 
in Eq.(10) yields  
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Fq(.) represents the cumulative distribution function (CDF) 
associated with the random variable q, which represents the 
cell under test (CUT). From the above expression, it is ob-
vious that the CDF of the CUT is the backbone of the 
analysis of the fixed-threshold detector. In the case of non-
coherent integration of M pulses, the CUT is composed of M 
samples; each one of them belongs to one pulse of the suc-
cessive train of pulses. Thus, the CUT is represented by a RV 
"Q" created by the summation of M random variables qi's as: 

1

M

Q q
=

∆ ∑




      (12) 

Since each of the random variables qi’s has an exponential 
distribution, Eq.(10), Q has a gamma distribution for its 
PDF[13]. Thus, 

1 1 1( ) ( )
( ) expQ

M xMx U x
Mf xµ µ

   −= −   Γ   
  (13) 

 
Figure 1.  Architecture of fixed threshold detector with postdetection integration
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In the above expression, Γ(M) denotes the gamma func-
tion. The CDF associated with the above PDF is[14] 

( )1
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−
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−   = − Γ +    ∑ (14) 

For our analysis to be generalized, the χ2-distribution must 
be considered. If α  denotes the average M-pulse SNR, the 
PDF of the target return when it is fluctuating obeying 
χ2-distribution is[4]: 
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Where 1F1(.) represents the confluent hypergeometric 
function.  

The above expression represents the PDF of the sum of the 
squares of 2κ = K Gaussian random variables where κ de-
notes the degrees of freedom of this distribution. The CDF 
associated with this PDF becomes 
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In the above expression, (κ)j denotes the Pochhammer 
symbol which is defined as: 
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The four well-known cases of Swerling model can be 
deduced from this relation by choosing the degrees of free-
dom κ as; 

1

2
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for SWIII
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κ


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
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      (18) 

Once the CDF of the tested cell is calculated, the processor 
detection performance becomes completely determined, as 
Eq.(11) states. It is of importance to note that the selection 
between the probability of false alarm and that of detection is 
based on the SNR parameter ( α ) which in this case repre-
sents the absence ( α =0) or the presence ( α ≠0) of the radar 
target.  

3.2. Partially-Correlated χ2 Targets 

The classical models of Swerling for target echo fluctua-
tion are not practically sufficient to represent most of the 
radar target fluctuation. There is an important class of these 
fluctuation models which is known as moderately fluctuating 
targets. The illumination of this class of radar targets by a 
coherent pulse train, return a train of correlated pulses with a 
correlation coefficient in the range 0<ρ<1 (intermediate 
between SWII and SWI models in the case of Rayleigh tar-
gets) and (intermediate between SWIV and SWIII models in 

the case of χ2 targets). In this case, it is important to note that 
the components of the noise vector remain the same as in the 
previous case, while the components of the signal vector are 
correlated with each other with a correlation coefficient ρ 
and the signal's vector components still uncorrelated with 
those of the noise vector, as in the case of Swerling fluctua-
tion models. The detection of partially correlated χ2 targets 
with two (κ=1) and four (κ=2) degrees of freedom is there-
fore of great importance   

As shown in[11], the MGF of the radar target that is 
fluctuating following χ2 with two (K=2) degrees of freedom 
is given by 

( )1

1( )
1 1

M

Q S
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=
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On the other hand, for χ2- fluctuation model with four 
(K=4) degrees of freedom is[12] 
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In the above formulas, λi’s are the nonnegative eigenval-
ues associated with the correlation matrix Λ.  

In view of Eqs.(19 & 20), the solution for partially corre-
lated case requires the computation of the eigenvalues of the 
correlation matrix Λ. To calculate these eigenvalues, it is 
assumed that:  

i- the statistics of the signal are stationary 
ii- the signal can be represented by a first order Markov 

process.  
Under these assumptions, Λ is a Toeplitz nonnegative 

definite matrix, the general form of which can be written as:  
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Since the calculation of the CDF of the target return is the 
backbone of the processor performance determination, let us 
go to evaluate it for the MGF's given in Eqs.(19, 20). To 
carry out this task, it is well-known that there is a direct 
relation between the laplace transformation of the CDF and 
the MGF, to which it is associated, according to 
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Where 
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The Laplace inverse of the above formula results in the 
required CDF. Thus, 
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Once the CDF of the CUT is computed, the fixed- 
threshold detector becomes completely evaluated as Eq.(11) 
demonstrates.  

3.3. Numerical Results 

Let us now go to carry out the numerical evaluation of the 
previous derived formulas on a PC to show the reliability of 
the mathematical formulation of the optimum detector per-
formance and to see to what extent they are valid. Since the 
detection threshold represents the backbone of this per-
formance and its selection is more sensitive to the required 
rate of false alarm, we start our calculations with this im-
portant parameter. Fig.(2) displays the detection threshold 
"T" in dB as a function of false alarm probability for dif-
ferent numbers of noncoherently integrated pulses. Since the 
optimum processor is of fixed-threshold type of detection 
techniques, once its threshold is setting, it is held unchanged 
either the environmental circumstances remain stationary or 
fluctuate with time. In other words, the optimum processor 
assumes always that the operating environment is ideal 
without any nonhomogeneities. The results of this figure 
illustrate that as M increases, the detection threshold in-
creases.

 
Figure 2.  M-sweeps detection threshold as a function of false alarm probability of fixed threshold detector for χ2 fluctuating targets 

 
Figure 3.  M-sweeps detection probability, as a function of the target signal-to-noise ratio of the fixed threshold detector forχ2 target fluctuation model 
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Figure 4.  M-sweeps detection performance of fixed threshold processor for χ2 fluctuating targets with K degrees of freedom

The correspondence between M and T can be explained as 
follows: as M increases, the effective value of the cell under 
test (CUT) increases and since the false alarm rate is kept 
constant, the detection threshold must be raised for the false 
alarm rate to be kept at its designed value without any 
changes. On the other hand, T decreases as the false alarm 
rate increases. This is because there is a strong correspon-
dence between the false alarm probability and the integration 
interval. As the rate of false alarm increases, the integration 
interval increases and consequently the detection threshold 
decreases, given that the number of integrated pulses (M) is 
held constant. In the limit, the detection threshold tends to 
zero as the false alarm rate tends to one. In this situation of 
operating conditions, all the detection decisions of the 
processing scheme are false. This behavior is common either 
the processor makes its detection decision based on sin-
gle-sweep data or collects data from M-sweeps. Once the 
detection threshold is setting, it is of importance to show the 
effect of the strength of the target return on the detection 
performance of the processor under consideration. Since this 
threshold is a function of false alarm rate, we perform our 
numerical results for a false alarm probability of 10-6 which 
is held constant throughout this research. Fig.(3) depicts the 
detection performance of the optimum scheme as a function 
of the strength of the signal returned from the target to be 
detected for several values of noncoherently integrated 
pulses when the target under test is either stationary or 
fluctuating in accordance with SWI, SWII, SWIII, and 
SWIV. The candidates of this figure are parametric in M as 
well as the fluctuation model of the target to be detected. It is 
of importance to note that the label MAR on a specified 
curve indicates that it is drawn for a stationary or Marcum 
model for the tested target. For weak SNR, the SWI fluc-
tuation model gives the highest detection probability, the 
SWIII comes next, after that the SWII model reserves its tour, 
and the SWIV fluctuation case has the lowest value of de-
tection probability. This classification is according to the 
Swerling fluctuation models. However, the nonfluctuating 

(stationary) model gives generally the worst detection per-
formance in this region of operating SNR. On the other hand, 
as the returned signal from the radar target becomes strong, 
the reverse of the above classification takes place. This 
means that the stationary model has the highest detection 
performance and the SWI fluctuation model presents the 
worst value of detection probability. For M=2, the SWII and 
SWIII fluctuation models give identical performances, as the 
theoretical analysis demonstrates. Additionally, the target 
fluctuation models SWI and SWII have the same detection 
behavior in the absence of noncoherent integration (M=1). 
Moreover, the χ2-fluctuation models with four degrees of 
freedom (SWIII & SWIV) present identical detection per-
formances in the case of single sweep source of data. The 
curves of monopulse case are included amongst the candi-
dates of this figure as references against which the M-sweeps 
numerical results are compared to show to what extent the 
detector performance can improve with noncoherent inte-
gration of M pulses. It is shown that as M increases, better 
detection performances are obtained and lower SNR values 
are required to attain a pre-assigned level of detection. Due 
to the important role that the degrees of freedom of 
χ2-fluctuation model can play in determining the processor 
detection performance, Fig.(4) is devoted to present the 
variations of detection probability with this important pa-
rameter for constant levels of signal strength in the absence 
as well as in the presence of noncoherent integration. For 
each number of integrated pulses, three values of SNR (α=-5, 
5, and 10dB) are chosen to demonstrate the previous con-
cluded remarks from the presentation of Fig.(3). For weak 
level of signal strength (α=-5dB), the probability of detec-
tion attains its maximum value for lower values of degree of 
freedom (Κ=1) and it decreases monotonically till Κ=10 
after which it remains constant without any changes. For 
moderate level of signal strength (α=5dB), on the other hand, 
the same behavior is anticipated with the exception that the 
processor gives higher level of detection relative to the case 
where the target return is weak. As the strength of the re-
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turned signal increases (α=10dB), the processor perform-
ance improves and the detection probability reaches a value 
which is higher than that attained for α=5dB and rests un-
changed whatever the degree of freedom is. When the target 
signal becomes strongest, the reverse of the processor reac-
tion against weak level of signal strength is demonstrated. 
This means that the detection performance reaches its lowest 
value at Κ=1 after which it increases monotonically till it 
attains its maximum value after which it rests constant re-
gardless of the degree of freedom. After this brief discussion 
about the results of monopulse case, let us consider the 
multipulse case. As M augments, the single-sweep behavior 
is observed with some improvements in the detection per-
formance for each case of the three selected levels of signal 
strength. As we have previously stated, lower levels of SNR 
are required to achieve a predetermined level of detection as 
the number of noncoherently integrated pulses increases. 
The behavior of curves of Figs.(3-4) confirms this predict-
able remark.  

Now, we will go to calculate another important charac-
teristic of the fixed-threshold detection scheme. This inter-
esting parameter is known as receiver operating characteris-
tic (ROC) in radar terminology. This parameter describes the 
variation of the detection probability with the rate of false 
alarm for a given level of signal strength when the radar 
receiver noncoherently integrates M pulses to establish its 
detection threshold in order to decide the presence or ab-
sence of stationary or fluctuating radar target. The obtained 
numerical results of this parameter are displayed in Fig.(5) 
for a signal level of 5dB. This value of α is chosen low in 
order to prove the validity of the concluded remarks which 
are extracted from the results of the previous figures. For low 
rate of false alarm, the SWI fluctuation model has the highest 
detection performance and as the false alarm rate increases, 
its superior behavior is quickly reversed to be the worst one 
for higher rates of false alarm. The SWIII model comes in the 
next class in both regions of operating false alarm rate. Then 
the SWII fluctuation model reserves its third place, the 
SWIV model follows it and finally the nonfluctuating model 
which gives the worst detection performance in the region of 
lower rates of false alarm and the highest detection prob-

ability for higher values of false alarm rate. When the 
probability of false alarm is low, the detection threshold is 
high and for the detection scheme to be sensitive to the target 
signal, the successive returns must be highly correlated. 
Therefore, the SWI and SWIII fluctuation models have the 
best detection performance. Since the strength of correlation 
increases as the degree of freedom decreases, the SWI model 
has a detection behavior which exceeds that of the SWIII 
model given that the false alarm rate is held low. As the rate 
of false alarm increases, the detection threshold decreases 
correspondingly and the reverse manner of the previous 
sequence is observed. In other words, when the detection 
threshold decreases, the area, to be integrated, under the 
distribution of the received signal increases and conse-
quently the processor detection performance will be im-
proved. In this case, the effective value of the signal, to be 
compared with the detection threshold, increases as the 
correlation between the successive returns decreases and 
attains its maximum value in the case where these returns 
become uncorrelated. Hence, SWII model gives higher 
performance than SWI, and the detection performance of 
SWIV model exceeds that of SWIII model. In addition, as 
the degree of freedom increases, the signal's effective value 
increases and consequently the processor performance im-
proves, given that the signal's strength is of considerable 
level. Therefore, the SWIII fluctuation model given higher 
performance than that of SWI model although the successive 
returns are fully correlated in both cases and the superiority 
of the SWIV model exceeds that of the SWII although the 
successive returns are uncorrelated. Since the target 
cross-sectional area is fixed in the successive returns in the 
case of stationary target, this model has the highest detection 
performance in the region of large values of false alarm rate 
and it has the worst detection behavior in the region where 
the false alarm is held at low rate owing to the resulting 
threshold in each case. In all cases, there is an improvement, 
relative to the single-sweep case, in processor performance 
when the radar receiver incorporates a video integrator 
amongst its basic elements and this improvement increases 
as the number of noncoherently integrated pulses increases.

 
Figure 5.  M-sweeps receiver operating characteristics (ROC's) of fixed-threshold scheme for χ2 target fluctuation model when the strength of the target 
signal (SNR) is 5dB 
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Figure 6.  M-sweeps required signal-to-noise ratio (SNR), in dB, to achieve an operating point (1.0E-6, Pd) of fixed-threshold detector for χ2 target 
fluctuation model 

Let us turn our attention to another category of numerical 
results that measure the goodness of the processor per-
formance. This category is concerned with searching of the 
required SNR to achieve a pre-assigned level of detection 
given that the false alarm rate is taken constant. Fig.(6) de-
picts the variation of the necessary SNR, to attain the re-
quired probability of detection, as a function of the demand 
level of detection for a constant false alarm probability of 
10-6 when the target under consideration is either stationary 
or fluctuating following Swerling models in the absence 
(M=1) as well as in the presence of noncoherent integration 
(M>1). For low values of detection level, the required SNR 
increases linearly with a noticeable rate of increasing till the 
pre-assigned probability of detection reaches 10% after 
which the rate of increasing becomes relatively low and 
continues in this manner till the required level of detection 
attains 90% beyond which the required SNR augments rap-
idly with the demand probability of detection. The inclusion 
of the monopulse results amongst the candidates of the cur-
rent figure is for the purposes of comparison. An accurate 
vision on the behavior of the curves of this figure indicates 
that the stationary model has the lowest rate of increasing in 
all the three distinct regions of the required level of detection, 
while the SWI fluctuation model gives the highest rate of 
increasing in each one of these regions. In other words, the 
behaviors of the nonfluctuating and the SWI models embrace 
those of other models considered in this manuscript. This 
means that the Marcum model requires the highest SNR to 
achieve a pre-assigned level of detection given that this level 
is weak (Pd<30%), and the SWI model requires the lowest 
value of SNR under the same conditions of operation. On the 
other hand, as the demand level of detection becomes 
stronger, the reverse behavior is exactly observed. In each 
one of these situations, the SWII, SWIII, and SWIV fluc-
tuation models necessitate intermediate values of SNR that 
lie between these two extremes. Additionally, as M increases, 
lower SNR values are required to respond the necessary level 
of detection whether the target under test fluctuating or 

nonfluctuating. It is of interesting to note that the SWI and 
SWII models have identical behavior in the absence of 
noncoherent integration (M=1). Also, the behaviors of SWIII 
and SWIV fluctuation models are the same under sin-
gle-sweep case. Moreover, the behavior of SWIII model, 
under noncoherent integration of two pulses (M=2), is a copy 
of that corresponding to SWII fluctuation model. 

The computation of the required SNR to respond the de-
mand level of detection is very interesting, especially, if the 
problem under consideration is associated with the radar 
target detection. After the calculation of the SNR necessary 
to achieve any level of detection, let us now go to fix the 
level of detection at acceptable value (Pd=90%) and research 
for the SNR value that is capable to carry out this task when 
the degrees of freedom (Κ) of the χ2- fluctuation model vary 
from one to infinity, given that the radar receiver contains a 
postdetection integrator amongst its basic contents and the 
false alarm rate is held constant at 10-6. The obtained results 
are illustrated in Fig.(7) which plots the required SNR 
against Κ for a number of integrated pulses of 2, 3, 5, 7, and 9 
along with the single-sweep curve as a reference against 
which the M-sweeps curves are compared. This presentation 
demonstrates the role that the parameter Κ can play on the 
behavior of the radar system of detection. It is obvious that 
the required SNR decreases rapidly with the degrees of 
freedom till Κ=4 after which it is slowly decreasing until 
Κ=20 beyond which it rests approximately unchanged. This 
behavior is common for any number of integrated pulses 
with the exception that as M increases, lower values of SNR 
are required to reach the required level of detection. The last 
presentation concerning the evaluation of the SNR is asso-
ciated with the variation of this important parameter as a 
function of the number of integrated pulses M taking into 
account that the demand level of detection is held fixed at the 
previous chosen value of 90%. Fig.(8) displays this evalua-
tion for two constant rates of false alarm (10-8&10-6). The 
independent parameter of this plotting represents the number 
of noncoherently integrated pulses which varies from 2 to 15 

0

4

8

12

16

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
eq

ui
re

d 
SN

R
 "

dB
"

Probability of detection "Pd"

M=1, SWI & SWII

M=1, SWIII & SWIV

M=1, MAR

M=2, SWI

M=2, SWII & SWIII

M=2, SWIV

M=2, MAR

M=4, SWI

M=4, SWII

M=4, SWIII

M=4, SWIV

M=4, Mar



102  Mohamed Bakry El_Mashade:  Analytical Performance Evaluation of Optimum Detection of χ2 
  Fluctuating Targets with M-Integrated Pulses 

 

in addition to the fundamental monopulse (M=1) situation. 
The behavior of the curves of this figure sustains our ex-
tracted notes about the processor performance which is si-
multaneously examined against postdetection integration 
and the situation of the radar target from the stationarity 
point of view. The new contribution of the present figure is to 
show to what extent the required SNR raised as the demand 
rate of false alarm is lowered to reach 10-8 which is practi-
cally attractable given that the detection level is kept con-
stant. For M=1, the optimum processor requires a SNR of 
22.4dB to achieve an operating point of Pfa=10-8 and Pd=90%, 
while it demands a SNR of 21.1dB to achieve the same level 
of detection except that the rate of false alarm augments to 
10-6, given that the radar target fluctuates in accordance with 
χ2-model with two degrees of freedom. If the radar receiver 
integrates 15 successive pulses, the corresponding values to 

the above stated rates of false alarm are 13.3dB and 12.3dB, 
respectively, when the target fluctuates following SWI 
model, while they are 5.6dB and 4.75dB, respectively, when 
the fluctuation model of the target under test follows SWII 
model. This example demonstrates the utility of pulse inte-
gration in improving the performance of the radar system of 
detection. However, as M increases, the complexity of the 
constructed system increases in addition to increase the 
processing time taken by the system in formulating the de-
cision of detection. Practically, a compromise factors are 
taken into account in choosing the number of integrated 
pulses and the complexity of the detection system in such a 
way that the implemented system becomes as simple as 
possible in addition to formulate its decision as fast as pos-
sible and in a very accurate manner. 

 
Figure 7.  M-sweeps required signal-to-noise ratio (SNR), to achieve an operating point of (1.0E-6, 0.9), against degrees of freedom K of fixed- thresh-
old detector for χ2 fluctuating targets 

 
Figure 8.  M-sweeps required SNR to achieve an operating point (Pfa, Pd), against number of integrated pulses of fixed-threshold detector for χ2 fluctu-
ating targets 
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Figure 9.  M-sweeps detection performance of fixed threshold processor for partially-correlated χ2 target fluctuation model with 2-degrees of freedom 

 
Figure 10.  M-sweeps detection performance of fixed threshold processor for partially- correlated χ2 target fluctuation model with 4-degrees of freedom

Till now, we are concerned with target returns which are 
fully correlated (SWI & SWIII cases) or fully decorrelated 
(SWII & SWIV cases), from the fluctuation point of view. 
The next category of presentation is associated with the 
evaluation of the performance of fixed-threshold detector for 
partially correlated χ2 fluctuating targets. This category 
comprises Figs.(9-10). In these figures, the detection prob-
ability is plotted as a function of the radar target signal 
strength and parametric in the correlation coefficient be-
tween the target returns when this target fluctuates following 
χ2-model with two and four degrees of freedom, respectively, 
and for a number of integrated pulses of 2 and 4. The curves 
of these figures are labeled in the number of postdetection 
integrated pulses, M, and the correlation coefficient between 
the target returns (ρ). From the results of these figures, it is 
observed that as the correlation between successive returns 
increases, the processor performance becomes more de-
graded. In addition, for low SNR, the processor performance 

improves as the correlation coefficient between consecutive 
sweeps increases and this behavior is rapidly inverted as the 
strength of the target signal becomes stronger. Moreover, as 
the number of noncoherently integrated pulses increases, the 
processor performance improves and less SNR value is 
needed to attain the same level of detection. Additionally, the 
processor performance for χ2-fluctuation model with four 
degrees of freedom (K=4) exceeds that for χ2-model with 
two-degrees of freedom (K=2) under the same conditions of 
operation. In both cases, the degradation in detection per-
formance is negligible when the successive returns are 
weakly correlated, while it is significantly clear for highly 
correlated returns. The results of these figures demonstrate 
that the processor performance improves as the number of 
degrees of freedom ‘Κ’ increases, given that the correlation 
coefficient ‘ρ’ is held constant. To illustrate the influence of 
the signal correlation on the processor detection performance, 
the detection probability is plotted against ρ for different 
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levels of signal strength when the fluctuation of the radar 
target follows χ2-model with 2- and 4-degrees of freedom. 
This plotting is shown in Fig.(11) for the case where the 
radar receiver integrates two pulses (M=2) before formulat-
ing its detection decision. The family of curves of this figure 
is labeled in the degrees of freedom (Κ) of the target fluc-
tuation model in addition to the signal strength (α).For weak 
signal strength (α=-5dB), the processor performance im-
proves as the target returns become strongly correlated, as 
we have previously shown. This behavior is valid till the 
target return becomes stronger en face of noise (α=10dB) 
after which the normal behavior takes its place. The normal 

behavior in this text means that the processor performance 
degrades as the correlation coefficient between consecutive 
returns increases. From this presentation, we conclude that 
the processor performance increases with ρ when the 
strength of the target return is weak, while this performance 
becomes worsen, as ρ increases, for stronger target signal. 
On the other hand, Fig.(12) shows the same characteristics 
for a number of integrated pulses of 4. Examining the can-
didates of this plot demonstrates that they have the same 
characteristics as those of Fig.(11) except that the level of the 
signal strength at which the processor alters its behavior is 
lowered.

 
Figure 11.  M-sweeps detection probability versus correlation coefficient between consecutive sweeps of fixed threshold detector for partially-correlated 
χ2 targets when M=2 

 
Figure 12.  M-sweeps detection probability versus correlation coefficient between consecutive sweeps of fixed threshold detector for partially- corre-
lated χ2 targets when M=4 

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n 
"P

d"

Correlation coefficient "r"

K=2, a=-5 K=4, a=-5 K=2, a=0 K=4, a=0
K=2, a=5 K=4, a=5 K=2, a=10 K=4, a=10
K=2, a=15 K=4, a=15

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n 
"P

d"

Correlation coefficient "r"

K=2, a=-5 K=4, a=-5
K=2, a=0 K=4, a=0
K=2, a=5 K=4, a=5
K=2, a=10 K=4, a=10
K=2, a=15 K=4, a=15



  Electrical and Electronic Engineering 2011; 1(2): 93-111 105 
  

 

 
Figure 13.  M-sweep required SNR, to achieve an operating point of (1.0E-6, 9.0E-1), as a function of consecutive sweeps correlation coefficient of 
fixed-threshold detector for χ2 fluctuating targets 

 
Figure 14.  M-sweeps required SNR, to achieve an operating point of (1.0E-6, Pd), of fixed-threshold detector for partially-correlated χ2 targets 

The last category of curves associated with the partially- 
correlated χ2-fluctuating targets is concerned with the cal-
culation of the required SNR to attain a specified level of 
detection, either this level is fixed throughout the entire 
candidates of the figure as in the case of Fig.(13), or vary as 
in the case of Fig.(14), given that the false alarm rate is kept 
constant at 10-6. The examination of the curves of Fig.(13) 
illustrates that they are classified into two separate families. 
The first family depicts the variation of the calculated SNR 
with the correlation coefficient between the consecutive 
target returns when this target fluctuates following χ2-model 
with two-degrees of freedom, while the second family 
represents the same thing in the case where the radar target 
fluctuation obeys χ2-model with four-degrees of freedom. As 
predicted, the χ2-fluctuation model with 4-degrees of free-
dom requires less level values, in comparison with that of 
2-degrees of freedom, for signal strength (SNR) to achieve 
the needed level of detection given that the operating cir-

cumstances are kept the same in the two cases. The mo-
nopulse results, which are independent of the correlation 
coefficient, are included in this figure as a reference to see to 
what extent the necessary SNR, to verify an operating point 
of (Pfa=1.0E-6, Pd=9.0E-1), decreases with integration of 
M-pulses. It is obvious that as ρ increases, there is a small 
increasing in the required SNR till ρ reaches 80% beyond 
which the rate of increasing becomes significantly noticeable. 
Additionally, the χ2-model with higher degrees of freedom 
needs lower values of SNR than that with lower degrees of 
freedom on the condition that the operating environment is 
the same in the two cases. Moreover, the rate of increasing of 
the χ2-model with higher degrees of freedom is lower, even 
in the region where the correlation between the consecutive 
returns becomes stronger (ρ≥80%), than that in the case of 
χ2-model with lower degrees of freedom. It is of outstanding 
importance to note that the required signal strength for the 
detection processor to achieve a specified level of detection 
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decreases by increasing either the degree of freedom of the 
χ2-model or the number of noncoherently integrated pulses, 
or increasing both of them. The results of Fig.(14), which is 
an alternative version of Fig.(13), ), support these concluded 
remarks. In this situation, the necessary SNR to attain a 
specified value of detection probability is drawn against the 
needed level of detection on the condition that the false alarm 
probability is fixed at 10-6. The candidates of this figure are 
parametric in M, Κ, and ρ. The insight vision on the behavior 
of the curves of the figure demonstrates that there are two 
groups of these curves: one of them represents the results for 
two integrated pulses, while the other denotes those when the 
radar receiver noncoherently integrates four pulses. Each one 
of these groups has a common point at which the calculated 
SNR is approximately constant regardless of the level of 
correlation or the degree of freedom. This point corresponds 
to 27% and 31% levels of detection for M=2 and 4, respec-
tively. For probability of detection values less than the 
critical value, the required SNR decreases as either ρ in-
creases or Κ decreases. As the detection level exceeds the 
critical level, the behavior of the curves is reversed, i.e. the 
necessary signal strength to attain a given level of detection 
decrease as either the strength of correlation between con-
secutive returns decreases or the degree of freedom of the 
χ2-fluctuation model increases. Either the operating region is, 
the rate of change of the computed SNR increases as the 
distance from the critical point increases. Additionally, as M 
increases, the critical point shifts towards higher level of 
detection and the detection scheme demands lower signal 
levels in order to perform a pre-assigned level of detection. 

4. Performance of Optimum Detector 
Processing M-Correlated Sweeps 

4.1. Detector's Structure 

Clutter is a term used to describe any object that may 
generate unwanted radar returns that may interfere with 
normal radar operations. It can be classified in two categories: 
surface clutter and volume clutter. Surface clutter includes 
trees, vegetation, ground terrain, man-made structures, and 
sea surface. It manifests in airborne radars in the look-down 
mode. It is also a major concern for ground-based radars 
when searching for targets at low grazing angles. Volume 
clutter, on the other hand, has large extent and includes chaff, 
rain, birds, and insects. It consists of a large number of small 
dipole reflectors that have large radar cross section values. It 
is released by hostile aircraft or missiles in an attempt to 
confuse the defense. Surface clutter changes from one area to 
another, while volume clutter may be more predictable[4]. 

The power spectrum of stationary clutter is concentrated 
around DC (f=0) region. However, clutter is not always 
stationary; it actually exhibits some Doppler frequency 
spread because of wind speed and motion of the radar scan-
ning antenna. Therefore, the clutter power spectrum can be 
represented as the sum of fixed (stationary) and random 

components. Nevertheless most of the clutter power is 
lumped around zero Doppler with some spreading, it is 
modeled by Gaussian-shaped power spectrum with its mean 
at zero in addition to integer multiples of the pulse repetition 
frequency. 

Since clutter represents an unwanted signal, it is custom-
ary needed to avoid or reduce it to a large extent as possible. 
In continuous wave radars, clutter is avoided or suppressed 
by ignoring the receiver output around DC, since most of the 
clutter power is found in that region. Pulsed radar systems 
may utilize special filters that can distinguish between 
slowly moving or stationary targets and fast moving ones. 
This class of filters is known as moving target indicator 
(MTI). In other words, the MTI filter is introduced to sup-
press target-like returns produced by clutter and allow re-
turns from moving targets to pass through with little or no 
degradation. However, the presence of MTI complicates the 
analysis of the detection system performance since its output 
sequence is correlated even though its input sequence may be 
uncorrelated. In the reminder of this section, our scope is to 
evaluate the performance of the fixed-threshold detector 
when it is incorporated in a radar receiver with MTI filter. 
The block diagram of the system to be analyzed is shown in 
Fig.(15). For M consecutive sweeps with sweep-to-sweep 
correlation coefficient ρℓk, the correlation matrix of the in-
tegrator output takes the form[5]: 

12 13 14 1

21 23 24 2

31 32 34 3

41 42 43 4

1 2 3 4

1 ... ... ...
1 ... ... ...

1 ... ... ...
1 ... ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...
... ... ... 1

M

M

M

M

M M M M

ρ ρ ρ ρ
ρ ρ ρ ρ
ρ ρ ρ ρ
ρ ρ ρ ρ

ρ ρ ρ ρ

 
 



∆ 




 

Θ 0 1kρ




 ≤ ≤






 (29) 

The previous matrix can be diagonalized by means of an 
orthogonal transformation which is determined by the solu-
tion of its associated eigenvalue problem. The resulting 
eigenvalues (λi's) and eigenvectors ( ( )iW 's) determine the 
interferences and the signal gains, respectively. In terms of 
these important parameters, the MGF of the integrator output 
for the target cell Q has a form given by[3] 
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Where 
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1 1

M M j j

j k
k

Wg W
= =

∆ ∑ ∑




          (31) 

In the above formulas, gj denotes the jth signal gain cor-
responding to the jth eigenvector. ψ represents the total 
clutter-plus-thermal noise power, α indicates signal-to-noise 
ratio (SNR) of the target under test. This means that the 
returns from the primary target fluctuate in accordance with 
Swerling I model[5]. 
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Figure 15.  block diagram of fixed-threshold detector with incoherent integration

In order to analyze the performance of the processor under 
consideration, it is required to obtain the t-domain repre-
sentation of Eq.(28), i.e., the PDF of the content of the cell 
under test Q. To carry out this inverse, Eq.(28) can be for-
mulated in another simpler form as: 

( ) 1
0 1

1
.........M MQ

M

S
c S c S cG ==

+ + +
     (32) 

The coefficients ci's are functions of λi, 
( )iW , gj, and α. If 

the roots of this Mth order polynomial are determined, either 
analytically or numerically, its Laplace inverse can be easily 
evaluated. Letting ωj's, j=1, 2, ….., M, denote these roots, 
Eq.(30) can be rewritten as: 
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           (33) 

For fixed-threshold scheme, we are concerned with CDF 
instead of PDF. As in the case of noncoherent integration of 
M pulses, once the MGF of the random variable Q repre-
senting the CUT is calculated, the S-domain representation 
of its associated CDF can be easily obtained. Thus,  
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The t-domain version of the above formula is 
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We repeat again that once the CDF of the tested cell is 

mathematically formulated, the optimum detection per-
formance is completely determined, as we have previously 

demonstrated in M-sweeps analysis.  

4.2. Numerical Results  

After formulating the processor performance for M- cor-
related sweeps, it is of great importance to provide a variety 
of numerical results for the performance of the fixed- 
threshold detector in order to take an idea about the role that 
each parameter can play in controlling the behavior of the 
detection scheme against the environmental changes. Since 
the choice of the detection threshold represents the principal 
parameter of the processor performance, Fig.(16) depicts the 
variation of this threshold with the selected rate of false 
alarm for several values of the sweep-to-sweep correlation 
coefficient when the radar receiver integrates 2 and 4 con-
secutive pulses to formulate the background level against 
which the target return is compared to decide its presence or 
absence. For lower rate of false alarm, the required threshold 
to achieve this rate becomes of high level. However, this 
level varies as the correlation between consecutive sweeps 
changes. It attains its maximum value when the successive 
sweeps are fully correlated (ρ=1) and decreases as the cor-
relation coefficient decreases till it attains its minimum value 
in the case where the consecutive sweeps become uncorre-
lated (ρ=0). As the false alarm rate increases, the different 
curves approach each other till they become coincide at a 
false alarm probability of 0.316, for two consecutive sweeps, 
beyond which the reverse behavior is noticed. It is 
well-known that as the correlation between consecutive 
sweeps increases, the effective value of the noise level de-
creases and this in turn leads to increase the detection 
threshold for the required rate of false alarm to be held con-
stant. On the other hand, as M increases, the threshold in-
creases, as we have previously explained in Fig.(2), given 
that the correlation level as well as the false alarm rate rest 
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unchanged. To illustrate the effect of correlation on the de-
termination of the detection threshold, Fig.(17) shows the 
changing of the threshold (in dB) with the sweep-to-sweep 
correlation coefficient for various values of the required 
level of false alarm as well as the number of integrated cor-
related pulses. The behavior of the curves of this figure in-
dicates that there is a negligible increment in the detection 
threshold till the correlation level of the consecutive sweeps 
reaches 12% after which it increases, in approximately a 
linear manner. The rate of increasing is nearly the same, for 
fixed number of integrated pulses, whether the required rate 
of false alarm is low or high. For fixed level of false alarm, 
on the other hand, the rate of increasing varies as M increases. 
There is a small incremental change in the rate of increasing 
of the detection threshold as M varies from 2 to 4. 

Once the detection threshold is constructed, the variation 
of the probability of detection as a function of the signal 
strength is taken as a figure of merit that distinguishes one 
processor over the other. Fig.(18) displays these character-
istics for the underlined scheme when M correlated sweeps 
are integrated to represent the source of data that supplies the 
obtained numerical results. As predicted, increasing the 
correlation between the consecutive sweeps degrades the 
processor performance. This degradation is of noticeable 
value in the range 3-23dB in the case of M=2, while it ex-
tends from 1dB to 21dB in the case of M=4. The worst case 
is obtained when the consecutive sweeps are fully correlated. 
As we have shown from the results of Figs.(16-17), in-
creasing ρ yields higher values for the detection threshold 
and in the same time decreases the signal strength. 

 
Figure 16.  M-correlated sweeps detection threshold as a function of the false alarm rate for different values of sweep-to-sweep correlation coefficient 

 
Figure 17.  M-correlated sweeps detection threshold as a function of consecutive pulses correlation coefficient of fixed-threshold processor 

-9

-6

-3

0

3

6

9

12

15

18

1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

D
et

ec
tio

n 
th

re
sh

ol
d 

"d
B

"

Probability of false alarm "Pfa"

M=2, r=0.1 M=4, r=0.1
M=2, r=0.3 M=4, r=0.3
M=2, r=0.5 M=4, r=0.5
M=2, r=0.7 M=4, r=0.7
M=2, r=0.9 M=4, r=0.9
M=2, r=1.0 M=4, r=1.0

10

11

12

13

14

15

16

17

18

0 0.2 0.4 0.6 0.8 1

D
et

ec
tio

n 
th

re
sh

ol
d 

"d
B

"

Strength of correlation "r"

M=2, Pfa=1.0E-4 M=3, Pfa=1.0E-4
M=4, Pfa=1.0E-4 M=2, Pfa=1.0E-6
M=3, Pfa=1.0E-6 M=4, Pfa=1.0E-6
M=2, Pfa=1.0E-8 M=3, Pfa=1.0E-8
M=4, Pfa=1.0E-8



  Electrical and Electronic Engineering 2011; 1(2): 93-111 109 
  

 

Consequently, the achieved detection level becomes 
lowered. For the same level of signal strength, the detection 
performance improves as either M increases or ρ decreases. 
Fig.(19) confirms this extracted remark. It presents the same 
processor detection performance in another manner. The 
obtained value of detection probability is plotted against the 
sweep-to-sweep correlation coefficient for different values 
of signal strength for the case where there are two and four 
integrated sweeps, given that the required rate of false alarm 
is kept at 10-6. It is obvious from the behavior of the candi-
dates of the underlined figure that the processor performance 
degrades as the correlation between the consecutive sweeps 
becomes stronger. The rate of degradation depends on the 
signal strength. It decreases as the strength of the signal 
increases. For higher signal levels (α=25dB), the degrada-
tion rate becomes of negligible value and the detection per-
formance seems unchanged with the strength of correlation 
between successive sweeps. Finally, as an excellent trend for 
measuring the detection performance of any processing 
scheme is to calculate the required SNR to achieve 
pre-assigned values for the level of detection and the rate of 
false alarm. Fig.(20) illustrates the variation of the required 
signal strength as a function of the level of correlation be-

tween consecutive sweeps. The curves of this figure are 
parametric in M and the demand rate of false alarm. The 
needed level of detection is taken as 90% throughout the 
entire candidates of the figure. The demand rate of false 
alarm is chosen to be varied from 10-4 to 10-8. The shown 
results demonstrate that as the correlation strength increases, 
more signal strengths are required to attain a given level of 
detection. In other words, as the consecutive sweeps become 
strongly correlated, the grade of degradation in the processor 
performance increases in such a way that it has its worst 
behavior when the successive sweeps are fully correlated. 
Additionally, as the required rate of false alarm decreases, 
the necessary signal strength to respond the needed level of 
detection increases owing to the higher values of the de-
manded threshold to achieve this rate. For weak correlation, 
the computed SNR seems approximately constant. As the 
correlation becomes stronger, on the other hand, the evalu-
ated signal strength increases, in a nearly linear manner, till it 
reaches its peak value at ρ equals unity. Moreover, as the 
number of integrated pulses increases, the resulting signal 
level decreases, given that the required values for the rate of 
false alarm and the level of detection are held unchanged.

 
Figure 18.  M-correlated sweeps detection performance of fixed- threshold detector for false alarm rate of 1.0E-6 

 
Figure 19.  M-correlated sweeps detection performance against the strength of correlation between consecutive sweeps of fixed-threshold scheme 
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Figure 20.  M-correlated sweeps required SNR, to achieve different operating points, against the strength of correlation between consecutive pulses of 
fixed-threshold detector

5. Conclusions 
The detection performance of an optimum radar receiver, 

which postdetection integrates M pulses from fluctuating 
targets; obeying χ2 distribution with K degrees of freedom in 
their fluctuation, is analyzed. The well-known Swerling 
cases I-IV corresponds to K=1, M, 2, and 2M, respectively. 
At the limiting case (K=∞), the processor performance at-
tains its maximum response and the radar target becomes 
stationary (nonflucruating). From the fluctuation point of 
view, target amplitudes are Rayleigh distributed for SWI and 
SWII models, while they are χ2 distributed for SWIII and 
SWIV. From the strength of correlation point of view, on the 
other hand, the correlation coefficient between the two 
consecutive echoes in the dwell-time is equal to unity for 
SWI and SWIII models, while it is zero for SWII and SWIV 
fluctuation cases. Moreover, we have analyzed the per-
formance of the fixed-threshold processor for partial signal 
correlation in the situation where the primary target is as-
sumed to be fluctuating in accordance with χ2 model with 
two and four degrees of freedom. Our analysis is based on 
evaluating the moment generating function of the incoming 
signal, which is immersed in clutter. A closed form expres-
sion for the false alarm and detection probabilities is used to 
develop a complete set of performance curves including 
detection probability against the strength of the primary 
target, required SNR to achieve a prescribed value of false 
alarm rate and level of detection. As expected, the detection 
performance of the underlined scheme for partially corre-
lated χ2 targets with two degrees of freedom is greater than 
that of SWI case and less than that for SWII target's model. 
On the other hand, the fixed-threshold processor perform-
ance, for partially correlated χ2 targets with four degrees of 
freedom, is higher than that for SWIII case and lower than 
that for SWIV target fluctuation model. Therefore, to esti-
mate the performance for partially correlated pulses, inter-
polation between the results for completely correlated and 

completely decorrelated conditions can be used as an ap-
proximation. In any one of the fluctuating families, more per 
pulse signal-to-noise ratio is required to achieve a prescribed 
probability of detection as the signal correlation increases 
from zero to unity. In addition, we have given a detailed 
evaluation of the detection performance of the fixed- 
threshold scheme when the supplemented data is fitted to it 
through a moving target indicator. Since the output sequence 
of this device is correlated, even if its input sequence is not, 
the radar receiver is supplemented by a video integrator that 
incoherently integrates M-pulses. The purpose of the inte-
grator is to enhance the detection probability of a periodic 
sequence of pulses. The numerical results provide an im-
portant insight into the effect of the system’s parameters on 
its performance. As a final conclusion, the detection per-
formance of fixed-threshold detector is related to the target 
model, the number of noncoherently or incoherently inte-
grated pulses, and the average power of the target. 
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