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Abstract  One of the essential components of rotary systems is bearing which is supporting load of rotor. Active magnetic 
bearings can remove contact point between rotor and supports by magnetic force. Controlling magnetic force is key point of 
this system to keep mechanical balancing of rotor. Due to high revolution speed of rotors, disturbances produce instability. 
The Disturbance Observer Algorithm (DO) is an approach to reduce effects of disturbances. The DO Controller was 
combined to generic PID Controller to improve performance of AMB. In DO, estimation mass is vital to enhance stability and 
accuracy of that. So, artificial neural network and iterative learning were hybridized to DO as intelligent techniques in 
estimation mass. Simulation assessment reveals iterative learning showed superior results in terms of accuracy and stability 
of AMB responses to the disturbances. 
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1. Introduction 
Bearing plays important role in rotary machineries such as 

pumps, turbines, engines, and compressors etc. one of the 
bearing family which was introduced recently is Active 
Magnetic Bearing (AMB). This type of bearing can prepare 
proper conditions to remove any physical contact between 
rotor and bearing via magnetic field. So, rotor weight and 
external loads are supported without contact, and rotational 
speed can reach to very higher values. To prevent of failure, 
the air gap between rotor shaft and stator (electromagnetic 
coils) must be kept constant via controller system. AMBs are 
nonlinear and unstable naturally, and most of controller 
designs are based on linear dynamic models [1]. The PD 
controller for an AMB evaluated and compared to fuzzy 
controller [2]. They were success to reduce instability of 
AMB. Using PID controller in low frequency range showed 
that AMB has low damping property [3]. In other hand, 
based on a research finding, the PID controller is not suitable 
for AMB [4]. Moreover, LQR was exploited in AMB, and 
results demonstrated better performance compared to PID [5, 
6]. Generally, PID controllers are not suitable for high speed 
disturbances. One of the control schemes which were used to 
face on this problem is Disturbance Observer (DO). Current  
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paper is aimed to develop Disturbance Observer Algorithm 
with using Iterative Learning (IL) and Neural Network (NN) 
to cancel disturbances effect.  

2. Dynamic Model of AMB 
As stated previous, the major duty of control system is 

stabilizing rotor motion around balancing point. Thus, 
controller must supply return force for rotor to balancing 
point like as spring force. Besides, force control must present 
damping to decrease vibration around balancing point. 

The magnets forces are related to electrical current 
according to bellow equation: 

F = μ0N2Ag i2

4g0
2                     (1) 

As can be seen in equation (1), force has inverse 
relationship to square of air gap. Moreover, force equation is 
nonlinear. Normally, Linearization techniques are utilized to 
make it linear equation. Typically two magnets are employed 
front of together and work to have positive and negative 
forces. Refer to Fig.1 magnet force, fx, can be reached as 
following: 

𝑓𝑓𝑥𝑥 = 𝑓𝑓+ − 𝑓𝑓− = 𝑘𝑘 �(𝑖𝑖0+𝑖𝑖𝑥𝑥 )2

(𝑠𝑠0−𝑥𝑥)2 −
(𝑖𝑖0−𝑖𝑖𝑥𝑥 )2

(𝑠𝑠0+𝑥𝑥)2� cos𝛼𝛼     (2) 

By simplification and linearization previous equation we 
have: 
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𝑓𝑓𝑥𝑥 = 4𝑘𝑘𝑖𝑖0
𝑠𝑠0

2 (cos𝛼𝛼)𝑖𝑖𝑥𝑥 + 4𝑘𝑘𝑖𝑖02

𝑠𝑠0
3 (cos𝛼𝛼)𝑥𝑥 = 𝑘𝑘𝑖𝑖𝑖𝑖𝑥𝑥 − 𝑘𝑘𝑠𝑠𝑥𝑥   (3) 

𝑘𝑘𝑖𝑖 ≡
4𝑘𝑘𝑖𝑖0
𝑠𝑠0

2 (cos𝛼𝛼) ,     𝑘𝑘𝑠𝑠 ≡
4𝑘𝑘𝑖𝑖02

𝑠𝑠0
3 (cos𝛼𝛼)      (4) 

 

Figure 1.  Mode of differences in AMB actuator [1] 

The magnetic force around balance point can be 
considered as bellow: 

𝑓𝑓𝑥𝑥(𝑥𝑥, 𝑖𝑖) = 𝑘𝑘𝑖𝑖𝑖𝑖𝑥𝑥 − 𝑘𝑘𝑠𝑠𝑥𝑥             (5) 

The rotor revolution in magnetic field produces voltage in 
bearing stator like as electrical motor. This induced voltage 
is related to rotor revolution speed (x). So, the total voltage 
of amplifier to face on inductance will be [1]: 

𝑢𝑢 = 𝑅𝑅𝑅𝑅 + 𝐿𝐿 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑖𝑖 + 𝑘𝑘𝑢𝑢

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑥𝑥             (6) 

3. Design Position Control 
Firstly, a generic controller from PID family was designed 

to control position of rotor in balancing point. Fig.2 and 3 
present block diagram of AMB controller and simulated that 
in MATLAB/Simulink, respectively. Also, AMB parameters 
are listed in Table 1. The PID parameters were reached by 
crude method. 

Table 1.  AMB parameter [1] 

Units Value Symbol 

Kg 0.1 m 

N/m -104 ks 

N/A 10 ki 

N 100 feΔ 

m 0 r 

 

 

 

Figure 2.  Block diagram of AMB controller [1] 

 

 

Figure 3.  The schematic PID designed for AMB 
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4. Integration Disturbance Observer to 
AMB Position Controller 

The main concept of the DO scheme is exemplified in 
Fig.4. The output of system can be mentioned in terms of the 
reference control input, the external disturbance, and the 
measurement noise. In fact, the DO prepares compensation 
force calculated from disturbance, and it is returned to 
actuator to face to disturbances. This outer loop increases 
stability of the system by force control. 

 

Figure 4.  Block diagram of DO 

Regards to Fig.4, the u(s) will be as: 

            (7) 

Where, c(s) is PID control signal, and 𝑑̂𝑑(𝑠𝑠) is disturbance 
estimation. The position signal, Y(s), is converting to 
estimated force signal by following equation: 

M(s)=d/dt[d/dt[Y(s)]]*m             (8) 
Where, m is estimated mass of rotor. The result of 

subtracting actuated force and estimated force the 
disturbance force, 𝑑̂𝑑(𝑠𝑠), can be acquired. The key part of DO 
is estimation of mass, and accuracy of controller can be 
increased by that [9]. Various techniques can be utilized to 
this purpose such Fuzzy Logic [11], On-line NN [10], IL 
[12-14], Off-line ANN [15-18]. In this paper, the results of 
integration NN and IL in predicting estimated mass to AMB 
controller are compared together.  

4.1. Iterative Learning Algorithm in DO Controller of 
AMB 

The iterative learning algorithm (ILA) is an intelligent 
technique during the performance of a dynamical system be 
improved and improved as time increased based on reducing 
the error. Uchiyama first time represented the basic concept 
of the ILA [19]. Fig.5 reveals a block diagram of the 
proportional-Integral-Derivative type (PID-type) of ILA. 

The input signal, uk, and the recent output signal, yk, are 
stored in memory each iteration of processing. The system 
error, ek = yd- yk, is assessed by the learning algorithm where 

yd is the preferred output of the system. Subsequently, 
algorithm computes a new input signal uk+1 refer to this error 
signal, which is saved for next iteration. The next input 
command is selected where as it causes to the performance 
error to be decreased on the subsequently iteration. To have 
enhanced convergence and stability in output of algorithm, 
integrator and derivative units were integrated to ILA which 
is called PID-ILA. The equations explaining PID-ILA is 
affirmed following: 

           (9) 

        (10) 

    (11) 

Where Φ , Γ and Ψ are proportional, derivative and 
integral learning parameters, respectively. The coefficients 
of ILA “ Φ , Γ , and Ψ ” were tuned as 0.0001 by 
Heuristic method. The simulated DO-IL is exemplified in 
Fig. 6, and results of that is discussed and compared to 
DO-NN and PID in next section.  

 
Figure 5.  Block diagram of the PID-type of ILA 

4.2. Neural Network Algorithm in DO Controller of 
AMB 

A typical NN multilayer feed forward structure involves 
of neurons as input, hidden and output layers. They are 
interrelated through weights refreshed as the training process. 
Threshold or activation functions are applied at the output. 
The mainly ordinary equation that stated the input/output 
relationship of a neuron is expressed as following: 

1

m

i i
i

y f w I b
=

 = + 
 
∑             (12) 

Where Ii is the set of inputs, wi is the synaptic weight 
connecting the jth input to the ith neuron, bi is a bias, f( ) is the 
activation function, and yi is the output of the ith neuron 
considered. The back propagation error algorithm is 
normally used as training algorithm. This algorithm tuned 
the weights and biases during learning process via 
input-target sets by minimizing the error between target and 
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network output. The NN algorithm were exploited to predict 
estimated mass and send it to DO algorithm which was 
hybridized to AMB controller (called NN-DO). The 
proposed NN includes 6 hidden layers, and each layer has 5 

neurons. The input of NN is error signal, and output of that is 
estimated mass. Training was performed offline with 
Levenberg-Marquardt (LM) Algorithm. The NN-DO 
simulated by MATLAB/Simulink is represented in Fig.7. 

 

 
Figure 6.  Applied DO-IL in AMB 

 

Figure 7.  AMB PID controller integrated to NN-DO 

 

5. Results and Discussion 
Fig.8 illustrates responses of AMB to the step input via 

PID Controller, IL-DO, and NN-DO. As can be seen, the 
overshoot by conventional PID is higher than NN-DO and 
IL-DO. Moreover, the overshoot of IL-DO is half of NN-DO, 
and both of them reach to set point faster than PID. In Fig.9, 
previous result is zoomed to better comparison. The stability 
of output by IL-DO was increased. Therefore, the robustness 
of AMB was increased and variation was decreased 
dramatically by DO Controllers. 

Subsequently, white noise random disturbance was 
exposed to the AMB. The output of three controllers is 
shown in Fig.10.  

Regards to Fig.10, PID Controller generates higher peaks 
in output while IL-DO and NN-DO peaks are very lower 
than PID. The notable point is that peaks obtained by IL-DO 
are lower than NN-DO. For more comparison, these time 
domain results transformed to frequency domain and 
unveiled in Fig.11 to 13. As can be observed, the peaks of 
IL-DO and NN-DO is very lower to PID. In other words, the 
peaks of DO controllers results is one tenth of PID Controller 
output. 
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Figure 8.  Time responses of AMB with different controllers 

 
Figure 9.  Magnification of Fig.7 for more comparisons 

 
Figure 10.  AMB responses to the White Noise Random disturbance with three controllers 
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Figure 11.  PID responses to the White Noise Random disturbance in frequency domain 

 

Figure 12.  IL-DO responses to the White Noise Random disturbance in frequency domain 

 

Figure 13.  NN-DO responses to the White Noise Random disturbance in frequency domain 
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6. Conclusions 
A novel controller called the disturbance observer (DO) 

was integrated to the active magnetic bearing. The DO 
Controller can eliminate effect of disturbances by simple 
inner control loop. This DO controller was combined to 
artificial neural network and iterative learning algorithm 
named NN-DO and IL-DO, respectively. The designed 
controllers were simulated for the suppression of 
disturbances inserted to AMB balance point. The results of 
simulations illustrate that the performance of DO is better 
than traditional PID Controller. In addition, combining NN 
and IL to DO generates different responses of AMB with 
higher stability. IL-DO shows superior efficiency in 
suppression of overshoot compared to NN-DO. However, 
complementary study should be conducted to investigate the 
effects of other forms of disturbances, uncertainties and 
parametric changes in practical condition.  
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