
International Journal of Control Science and Engineering 2014, 4(1): 16-25 
DOI: 10.5923/j.control.20140401.03 

Kalman Filter Applied to a Digital Computing Process   
to Find Its Latency 

Paulo David Battaglin*, Gilmar Barreto 

Department of Semiconductors, Instruments and Photonics, DSIF, School of Electrical and Computing Engineering, FEEC, State 
University of Campinas, UNICAMP, Campinas, SP, Brazil 

 

Abstract  Instantaneous observability is a method used here to watch a system whose internal states vary very fast. It is a 
system property which allows us to estimate the system internal states. A discrete computing process which is time-varying 
can be represented by a mathematical model. This model has linear, discrete, stochastic and time-varying equations which 
contain matrices and vectors whose elements are deterministic functions of discrete time k. This computing process is 
performed during a period of time called latency. The process is performed in four steps in sequence, the system states: new 
process, ready-queue, CPU running, process end. The system property instantaneous observability depends on the pair of 
matrices {A(k), C(k)} and regards the possibility to estimate the system internal states when the system state equations are 
known. The problem is the system states are inside and they are not always accessible directly. In this paper we propose a 
method to determine: the instantaneous observability matrices at discrete time k, the system state estimation and the system 
latency when the system output measurements are known. We will show when instantaneous observability property comes 
true, the system instantaneous internal states and latency can be estimated. This is an advantage compared to usual 
observability method based on static scenarios. The potential application of the results is a prediction of data traffic-jam on a 
computer process. In a broader perspective, the instantaneous observability method can be applied on identification of 
pathology, weather forecast, navigation, tracking, stock market and many other areas. 

Keywords  Digital computing process, Instantaneous observability, Discrete time-varying system, Latency, Kalman 
filtering 

 

1. Introduction 
An end-user participates in a teleconference on a personal 

computer, which is connected through the Internet to another 
end-user located at a remote place. This teleconference 
triggers the creation and execution of many computer 
processes inside this end-user’s personal computer. We will 
look at a simple computing process which can be represented 
by a mathematical model that is a system of linear, discrete, 
stochastic and time-varying equations. 

Our objectives are: evaluate the end-user satisfaction who 
is running an application on a personal computer, so that the 
end-user has a perception that everything is going on like a 
real time; determinate the latency: when end-user receives 
fast communications on a personal computer’s monitor 
screen through sound, image and other messages within the  
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smallest possible time which is the latency; apply the 
instantaneous observability property on the system of linear, 
discrete, stochastic and time-varying equations; and apply 
the Kalman filtering on this system. 

The current literature issued [1-3] present a ready queue 
processing time using lottery analysis, an application where 
the processing time of jobs in ready queue is predicted, and 
have given their contributions to the field. 

The approach we will present here is a method to evaluate 
computing process latency and the latency of each inner state 
of it through the Kalman filtering in the time domain. The 
scope of this article is an extent of perception about what is 
going on inside a computing process as far as time domain is 
concerned. Each inner state process was estimated using a 
state space methodology through a Kalman filter which we 
have built. We have not seen a work like this and for this 
reason we think it has significance in relation to the other 
researches. The notation to be used within Kalman filter in 
this paper is summarized in Table 1.  
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Table 1.  Notations 

E(k)    connecting matrix between system noise and system 
state vector 

𝒓𝒓𝒔𝒔(k)   System noise vector 
F(k)    matrix that connects measurement noise vector and 

measurement vector 
𝒓𝒓𝒎𝒎(k)   measurement noise vector 
𝑲𝑲𝒓𝒓(𝑘𝑘)  noise covariance matrix 
𝑲𝑲𝒓𝒓𝒔𝒔(𝑘𝑘)  System noise covariance matrix 
𝑲𝑲𝒓𝒓𝒎𝒎(𝑘𝑘)  Measurement noise covariance matrix   
𝑘𝑘𝜏𝜏        discrete time when event 𝒙𝒙�(𝑘𝑘𝜏𝜏) occurs  
𝒙𝒙�−(0)     estimated state vector initial condition at discrete time  

k = 0  
𝒙𝒙�−(0)   initial condition of estimated state vector error at 
 discrete time k = 0  
𝑲𝑲𝑥𝑥
−(0   Initial condition of covariance matrix of state vector at 

         discrete time k = 0  
𝒙𝒙�−(k)  State estimation vector “a priori” at discrete time k 
𝑲𝑲𝑥𝑥
−(𝑘𝑘)  State estimation covariance matrix “a priori” at discrete 

time k 
𝑮𝑮𝑘𝑘(k)  Kalman filter gain matrix “a priori” at discrete time k 
𝒙𝒙�−(k+1) state estimation vector “a priori” at discrete time k+1 
𝑲𝑲𝑥𝑥
−(𝑘𝑘 + 1)  State estimation covariance matrix “a priori” at discrete 

time k+1   
y(k)    measurement vector obtained at the system output at 

discrete time k 
In(k)    innovation vector calculated from y(k) at discrete time k  
𝑮𝑮𝑘𝑘(k|k)  Kalman filter gain matrix which was filtered at discrete  
   time k 
𝒙𝒙�+(k|k)  state estimation vector which was filtered at discrete  
  time k 
𝑲𝑲𝑥𝑥

+(k|k)  state estimation covariance matrix which was filtered at  
  discrete time k 

2. The Digital Computing Process 
Process is a software running program on a digital 

computer, which can be associated within the operating 
system internal activities and can be related to end-user 
programs. A process execution is performed sequentially 
over time. The process under investigation is performed in a 
sequence of four steps: new process, ready queue, CPU 

running, end of process. New Process represents the time of a 
new process creation 𝑇𝑇𝑁𝑁 and the connection to the next step. 
Ready queue represents the time each process remains in a 
line till it is dispatched to a CPU for execution. This time is 
represented by a stochastic variable 𝑇𝑇𝑖𝑖  associated to 
dispatching priorities and initial waiting time on a CPU. 
CPU Running represents the process running time on a 
central processing unit,  𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 . End of Process represents the 
time of departure of a process that was executed and its 
connection to the output and the end-user,  𝑇𝑇𝑠𝑠. Each of the 
four steps can be represented by a mathematical model. The 
block diagram that represents the process under investigation 
is shown in Figure 1 below. 

u(k) and y(k) are the input vector and the output vector 
respectively as well as the matrix D(k) connects the input to 
the output for control purposes. 

The output y(k) and input u(k) ratio is a function of 
discrete time k which can be obtained through a discrete time 
convolution of the four steps in sequence. The z-transform 
was applied to this function of discrete time k that relates 
output and input of process as well as we have got a discrete 
transfer function that depends on z variable as per equation 
(1):  

𝑌𝑌(𝑧𝑧)
𝑈𝑈(z) 

 = [ 𝑧𝑧−(𝑇𝑇𝑁𝑁+ 𝑇𝑇𝑠𝑠+𝑇𝑇𝑖𝑖)  
(1−𝑧𝑧−1)4  −  𝑧𝑧−(𝑇𝑇𝑁𝑁+ 𝑇𝑇𝑠𝑠+𝑇𝑇𝑖𝑖)

(1−𝑧𝑧−1)3(1−𝑒𝑒−350𝑇𝑇𝑧𝑧−1)
]  (1) 

The values of 𝑇𝑇𝑁𝑁, 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶  and 𝑇𝑇𝑆𝑆 are set up. Then equation 
(1) can be decomposed by a method of partial fractions, 

𝑌𝑌(𝑧𝑧)
𝑈𝑈(z) 

=  𝑧𝑧−�0,2+𝑇𝑇𝑖𝑖�(1− 𝑒𝑒−350𝑇𝑇  ) 𝑧𝑧4

(𝑧𝑧−1)4(𝑧𝑧−𝑒𝑒−350𝑇𝑇)
  

 ≡ 𝑎𝑎1
(𝑧𝑧−𝑒𝑒−350𝑇𝑇) + 𝑎𝑎2

(𝑧𝑧−1)
 + 𝑎𝑎3

(𝑧𝑧−1)2 + 𝑎𝑎4
(𝑧𝑧−1)3 + 𝑎𝑎5

(𝑧𝑧−1)4 

𝑎𝑎1,𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4, 𝑎𝑎5 are z-functions to be determined.  The 
partial fractions obtained will allow us to build a block 
diagram as we can see in Figure 2 below. 

Based on the block diagram of figure 2 we can write the 
state equation (2) and measuring equation (3) with state 
variables in discrete time domain for a digital computing 
process as follow [4]:  

x(k+1) = A(k) x(k) + B(k) u(k)       (2) 
𝒚𝒚(k) = C(k) x(k) + D(k) u(k)        (3) 

 

Figure 1.  The block diagram illustration of a digital computing process with four steps in sequence 
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Figure 2.  State variables block diagram of the digital process transfer function  

The vectors u(k) ∈  ℝ𝑝𝑝 , x(k) ∈  ℝ𝑛𝑛 , y(k) ∈  ℝ𝑞𝑞  are 
respectively the system input, the system state and the 
system output. The matrices A(k) ∈ ℝ𝑛𝑛×𝑛𝑛 , B(k) ∈ ℝ𝑛𝑛×𝑝𝑝 , 
C(k) ∈ ℝ𝑞𝑞×𝑛𝑛e D(k) ∈ ℝ𝑛𝑛×𝑝𝑝  are respectively the dynamic 
system matrix, input coupling matrix, measurement 
sensitivity matrix and input-output coupling matrix which 
can be seen in reference [9]. 

A(k) = 

⎣
⎢
⎢
⎢
⎡
 

𝑒𝑒−350𝑘𝑘𝑘𝑘  0   0   0   0 
   0   1   0   0   0
   0   1   1   0   0
   0   0   1   1   0
   0   0   0   1   1 ⎦

⎥
⎥
⎥
⎤
, so that A(k) ∈ ℝ5×5 

B(k) = 

⎣
⎢
⎢
⎢
⎡
1
1
0
0
0⎦
⎥
⎥
⎥
⎤
 , so that B(k) ∈ ℝ5×1 

C(k) = (1 − 𝑒𝑒−350𝑇𝑇).

⎣
⎢
⎢
⎢
⎡  ∆

[𝑘𝑘 − (𝑇𝑇𝑁𝑁 +  𝑇𝑇𝑠𝑠 + 𝑇𝑇𝑖𝑖)]
4∆[𝑘𝑘 − (𝑇𝑇𝑁𝑁 +  𝑇𝑇𝑠𝑠 + 𝑇𝑇𝑖𝑖)]
6∆[𝑘𝑘 − (𝑇𝑇𝑁𝑁 +  𝑇𝑇𝑠𝑠 + 𝑇𝑇𝑖𝑖)]
4∆[𝑘𝑘 − (𝑇𝑇𝑁𝑁 +  𝑇𝑇𝑠𝑠 + 𝑇𝑇𝑖𝑖)]
 ∆[𝑘𝑘 − (𝑇𝑇𝑁𝑁 +  𝑇𝑇𝑠𝑠 + 𝑇𝑇𝑖𝑖)] ⎦

⎥
⎥
⎥
⎤
𝑇𝑇

 

so that C(k) ∈ ℝ1×5 

∆[𝑘𝑘 − (𝑇𝑇𝑁𝑁 +  𝑇𝑇𝑠𝑠 + 𝑇𝑇𝑖𝑖)] = �  1, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = (𝑇𝑇𝑁𝑁 +  𝑇𝑇𝑠𝑠 + 𝑇𝑇𝑖𝑖)
0,        𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑘𝑘

� 

∆ is Kronecker’s delta function for discrete signals. 
D(k) = 1, so that D(k) ∈ ℝ 
Note that A(k) and C(k) are time-varying matrices and C(k) 

has a stochastic variable 𝑇𝑇𝑖𝑖 . The CPU running has two states: 
waiting for a process and running a process. These estates 
added to the other three states make A(k) ∈  ℝ5×5 . The 
system input vector u(k) is an impulse train with constant 

amplitude of 0.07 second over each discrete time interval as 
well as the solution of Eq. (2) and (3) is the state vector x(k). 
The system latency is the summation of vector x(k) elements. 

3. Instantaneous Observabilty Method 
The determination of the instantaneous observability for a 

linear, discrete and time-varying system depends on time 
interval over which the instantaneous observability matrix is 
determined. The system is represented by equations (2) and 
(3) shown before.  

The algebraic point of view of instantaneous observability 
condition it may be presented such as: a linear, discrete, 
time-varying system is observable, if and only if, its 
instantaneous observability matrix 𝓞𝓞(𝑘𝑘) has a rank equals to 
n at each instant of time k, so that n is system state vector 
dimension [5].  

The matrices A(k) and C(k) are time-varying and discrete 
in time k, for k = 0, 1, 2, …, (n−1). Then the pair of 
n-dimension matrices {A(k), C(k)} is observable at instant 
𝑘𝑘0 if there exists a finite time k > 𝑘𝑘0, so that,  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 [𝓞𝓞(𝑘𝑘)] = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

⎣
⎢
⎢
⎢
⎡
𝑶𝑶0(𝑘𝑘)
𝑶𝑶1(𝑘𝑘)
𝑶𝑶2(𝑘𝑘)
⋮

𝑶𝑶𝑛𝑛−1(𝑘𝑘)⎦
⎥
⎥
⎥
⎤

 = n       (4) 

𝑶𝑶𝑚𝑚+1(𝑘𝑘) = 𝑶𝑶𝑚𝑚(𝑘𝑘)A(k) + 𝑶𝑶𝑚𝑚(𝑘𝑘) − 𝑶𝑶𝑚𝑚(𝑘𝑘 − 1)  (5) 
𝑶𝑶0(𝑘𝑘) = C(k)                (6) 

[6] m is the number of row-block matrices so that we have 
m = 0, 1, 2, … , n-1. 

The equation (4) is the general shape of the instantaneous 
observability matrix concerning a linear, discrete and 
time-varying system. The equation (5) is the generating 
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function of each instantaneous observability matrix block 
𝑶𝑶𝑚𝑚+1(𝑘𝑘). The equation (6) is the initial block 𝑶𝑶0(𝑘𝑘) of the 
instantaneous observability matrix. m is the index of block 
generating function for instantaneous observability matrix, 
which runs from value zero up to the system order minus one. 
The instantaneous observability matrix generation is focused 
on the hypothesis that the linear, discrete and time-varying 
system is instantaneous observable at the instant k, and there 
exist times k = 𝑘𝑘1 , 𝑘𝑘2 , … , 𝑘𝑘𝑛𝑛−1, so that k > 𝑘𝑘0  to have 
valid the equation (4).  

From equations (5) and (6) we obtain the instantaneous 
observability matrix blocks to build equation (4) as follow: 

𝑶𝑶0(𝑘𝑘) = C(k)                 (6) 

𝑶𝑶1(𝑘𝑘) = [C(k)A(k) + C(𝑘𝑘) – 𝑪𝑪(𝑘𝑘 − 1)]     (7) 
𝑶𝑶2(𝑘𝑘) = C(k)𝑨𝑨2(k) + C(k). [2A(k) + 𝑰𝑰] −C(𝑘𝑘 − 1). 

. [𝑨𝑨(k) + A(k −1) + 2𝑰𝑰] + C(𝑘𝑘 − 2)]       (8) 
⋮ 

𝑶𝑶𝑛𝑛−1(𝑘𝑘)=[𝑶𝑶𝑛𝑛−2(𝑘𝑘)A(k) +𝑶𝑶n−2(𝑘𝑘) − 𝑶𝑶n−2(𝑘𝑘 − 1)]  (9) 

The rank of each stacked matrix in equation (4) is defined 
as the number of linearly independent column vectors. This 
is equals to the number of linearly independent row vectors 
too. Therefore, each matrix block in equation (4) has the 
dimension q × n, then equation (4) rank is 

rank ≤ min (nq, n) 
The global dimension of these stacked matrices is n. q×n, 

n is the number of linearly independent columns and it is also 
the smallest dimension, and then equation (4) rank is n. Then 
we conclude the above equation (4) belongs to ℝ𝑛𝑛.𝑞𝑞 × 𝑛𝑛  [7].  

Consequently, we can build an instantaneous observability 
matrix set over time shown by equation (10),  

𝓞𝓞(𝑘𝑘) = {O(𝑘𝑘1), 𝑶𝑶(𝑘𝑘2), O(𝑘𝑘3),..., O(𝑘𝑘∞)}    (10) 

This set we call Set of Instantaneous Observability 
Matrices of a Linear, Discrete and Time-Varying System. 
Instantaneous Observability takes into account the 
possibility to estímate the system instantaneous state vector 
x(k) based on output measurements, assuming that the state 
equations (2) and (3) are known. 

The rank condition for an instantaneous observability 
matrix of a linear, discrete and time-varying system can be 
presented in a manner equivalent to the condition of being a 
positive definite matrix. The product of a transposed 
instantaneous observability matrix by its instantaneous 
observability matrix is shown in equation (11) as follows 

[𝓞𝓞(𝑘𝑘)]𝑇𝑇. 𝓞𝓞(𝑘𝑘) = 𝑮𝑮𝑂𝑂(𝑘𝑘)           (11) 
and 𝑮𝑮𝑂𝑂(𝑘𝑘) ∈ ℝ𝑛𝑛×𝑛𝑛 . The result of this product is a square 
matrix called Instantaneous Observability Gramian Matrix 
𝑮𝑮𝑂𝑂(𝑘𝑘) of a linear, discrete and time-varying system. The 
elements of this matrix are n-dimension vectors result of 
inner products which vary in time. When the determinant of 
𝑮𝑮𝑂𝑂(𝑘𝑘)  is different of zero, it means this matriz is 
nonsingular and it is invertible. Hence, there exists a matrix 
 𝑮𝑮𝑂𝑂(𝑘𝑘)−1 so that  

 𝑮𝑮𝑂𝑂(𝑘𝑘)−1. 𝑮𝑮𝑂𝑂(𝑘𝑘) = I 
The column vectors of an instantaneous observability 

Gramian matrix for a given system are linearly independent. 
Consequently these vectors are mutually orthogonal and they 
build a base of dimension ℝ𝑛𝑛  related to Euclidean inner 
product. This Gramian is a qualitative algebraic 
characterization of the solution uniqueness. The output 
vector y(k) has elements which are available and system state 
equation solution ís possible and unique, and the system state 
solution is the state vector x(k) [8]. 

Determinant of 𝓞𝓞(𝑘𝑘) was computed based on equation 
(10) and Figure 3 has the results over discrete time k.  

 
Figure 3.  Determinant of Instantaneous Observability Matrix 
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Figure 4.  Rank of Instantaneous Observability Matrix 

 
Figure 5.  Determinant of Instantaneous Observability Gramian Matrix 
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have seen the system is instantaneously observable and it 
means the system internal states can be estimated. The 
Kalman filter will make this estimation. 

4. Kalman Filter Applied to a Digital 
Computing Process 

In preparation for applying the Kalman filter to the system 
equations that represents the digital computing process 
defined in section 2, we will arrange the Kalman filter 
equations with the appropriate notation, so as to facilitate a 
visualization for filtering algorithm. We will use the concept 
"a priori" which refers to values obtained before the 
measurement, as well as the concept "a posteriori" that refers 
to that after obtaining the values measured at the system 
output.  

The vectors and matrices with values "a priori" will be 
represented by a superscript minus "-" as 𝒙𝒙�−(k), 𝒙𝒙�−(k+1), 
𝑲𝑲𝑥𝑥
−(𝑘𝑘)  e  𝑲𝑲𝑥𝑥

−(𝑘𝑘 + 1). The vectors and matrices with values 
"a posteriori" will be represented by a superscript plus "+" as 
𝒙𝒙�+(𝑘𝑘|𝑘𝑘) and 𝑲𝑲𝑥𝑥

+ (𝑘𝑘|𝑘𝑘). 
Filtering is the processing of y(k) measurement obtained at 

the system output to improve or refine the estimates of the 
state  𝒙𝒙�−(k) and 𝑲𝑲𝑥𝑥

−(𝑘𝑘) at time k. After this, we will obtain 
the filtered estimates  𝒙𝒙�+ (k|k) and 𝑲𝑲𝑥𝑥

+ (k|k) which will 
propagate. Similarly to the measurement y(k +1), to enhance 
or refine the estimates of the state  𝒙𝒙�−(k+1), 𝑲𝑲𝑥𝑥

−(𝑘𝑘 + 1) at 
time k +1. After this, we obtain the filtered estimates 
 𝒙𝒙�+(k+1| k+1), 𝑲𝑲𝑥𝑥

+(k+1| k+1) which will propagate.  
The matrix equations (12), (13) and (14) below represent 

the mathematical model of the linear, discrete, stochastic and 
time-varying system; the system Gaussian white noise 
component 𝒓𝒓𝒔𝒔 (k) was added on equation (12), the 
measurement Gaussian white noise component 𝒓𝒓𝒎𝒎(k) was 
added on equation (13) and the noise covariance matrix 
𝑲𝑲𝒓𝒓(𝑘𝑘)  is shown by equation (14). These noises are not 
correlated. Matrix equations (15) to (24) represent the 
Kalman filter and its initial conditions concerning the values 
"a priori" and "a posteriori" for each discrete time interval k. 

 Mathematical model of the linear, discrete, stochastic 
and time-varying system 

 x(k+1) = 𝑨𝑨(k) x(k) + B(k) u(k) + E(k) 𝒓𝒓𝒔𝒔(k)     (12) 
y(k) = C(k) x(k) + D(k) u(k) + F(k) 𝒓𝒓𝒎𝒎(k)      (13) 

𝑲𝑲𝒓𝒓(𝑘𝑘) = �
 𝑲𝑲𝒓𝒓𝒔𝒔(𝑘𝑘)  0 

0 𝑲𝑲𝒓𝒓𝒎𝒎(𝑘𝑘)� . ∆(𝑘𝑘 – 𝑘𝑘𝜏𝜏)     (14) 

 Kalman filter initialization with initial conditions 
𝒙𝒙�−(0) = E[𝒙𝒙−(0)] = 𝒎𝒎𝑥𝑥

−(0) 
𝒙𝒙�−(0) = 𝒙𝒙�−(0) − 𝒙𝒙−(0) 

𝑲𝑲𝑥𝑥
−(0) = E[𝑥𝑥�−(0)(𝑥𝑥�−)𝑇𝑇(0)]           (15) 

 Kalman filter Gain before measurement 
𝑮𝑮𝑘𝑘(k)=[𝑨𝑨(k)𝑲𝑲𝑥𝑥

−(𝑘𝑘)𝑪𝑪𝑇𝑇(𝑘𝑘)][𝑪𝑪(𝑘𝑘)𝑲𝑲𝑥𝑥
−(𝑘𝑘)𝑪𝑪𝑇𝑇(𝑘𝑘) + 𝑲𝑲𝑅𝑅𝑠𝑠(𝑘𝑘)]−1(16) 

 Processing before the measurement-propagation 
 𝒙𝒙�−(k+1) = 𝑨𝑨(k)𝒙𝒙�−(k) + B(k) u(k) + E(k) 𝒓𝒓𝒔𝒔(k)   (17) 

 𝑲𝑲𝑥𝑥
−(𝑘𝑘 + 1) = 𝑨𝑨(k)𝑲𝑲𝑥𝑥

−(𝑘𝑘)𝑨𝑨𝑇𝑇(𝑘𝑘)–𝑮𝑮𝑘𝑘 (k)C(k)𝑲𝑲𝑥𝑥
−(𝑘𝑘)𝑨𝑨𝑇𝑇(𝑘𝑘)  

  +𝑮𝑮𝑘𝑘(k)C(k)𝑲𝑲𝑥𝑥
−(𝑘𝑘)𝑪𝑪𝑇𝑇(𝑘𝑘)𝑮𝑮𝑘𝑘𝑇𝑇(𝑘𝑘) 

–𝑨𝑨(k)𝑲𝑲𝑥𝑥
−(𝑘𝑘)𝑪𝑪𝑇𝑇(𝑘𝑘)𝑮𝑮𝑘𝑘𝑇𝑇(𝑘𝑘)+𝑲𝑲𝑅𝑅𝑠𝑠(𝑘𝑘)     (18) 

 Getting the measurement y(k) at the system output and 
calculate the innovation   

In(k)                    (19) 
 Kalman filter Gain after measurement: filtered Gain 
𝑮𝑮𝑘𝑘(k|k) = 𝑲𝑲𝑥𝑥

−(𝑘𝑘)𝑪𝑪𝑇𝑇(𝑘𝑘)[𝑪𝑪(𝑘𝑘)𝑲𝑲𝑥𝑥
−(𝑘𝑘)𝑪𝑪𝑇𝑇(𝑘𝑘) + 𝑲𝑲𝑅𝑅𝑚𝑚 (𝑘𝑘)]−𝟏𝟏 (20) 

 State update to the measurement: filtered state 

𝒙𝒙�+(k | k) = 𝒙𝒙�−(k) + 𝑮𝑮𝑘𝑘(k | k)[ y(k) 
− C(k) 𝒙𝒙�−(𝑘𝑘) − D(k) 𝒖𝒖(k)]       (21) 

𝑲𝑲𝑥𝑥
+(𝑘𝑘 | 𝑘𝑘) = 𝑲𝑲𝑥𝑥

−(𝑘𝑘) 
 –𝑲𝑲𝑥𝑥

−(𝑘𝑘)𝑪𝑪𝑇𝑇(𝑘𝑘)[𝑪𝑪(𝑘𝑘)𝑲𝑲𝑥𝑥
−(𝑘𝑘)𝑪𝑪𝑇𝑇(𝑘𝑘) + 𝑲𝑲𝑅𝑅𝑚𝑚 (𝑘𝑘)]−𝟏𝟏𝑪𝑪(𝑘𝑘)𝑲𝑲𝑥𝑥

−(𝑘𝑘)(22) 

 Propagation of state until the following interval k 
𝒙𝒙�−(k+1)=𝑨𝑨(k)𝒙𝒙�+(k | k)+B(k) u(k)+𝑮𝑮𝑘𝑘(k | k) In(k)  (23) 

𝑲𝑲𝑥𝑥
−(𝑘𝑘 + 1) = 𝑨𝑨(k)𝑲𝑲𝑥𝑥

−(𝑘𝑘 | 𝑘𝑘) 𝑨𝑨𝑇𝑇(𝑘𝑘)– 

–𝑮𝑮𝑘𝑘(𝑘𝑘 | 𝑘𝑘) C(k)𝑲𝑲𝑥𝑥
−(𝑘𝑘 | 𝑘𝑘) 𝑨𝑨𝑇𝑇(𝑘𝑘) +  

+𝑮𝑮𝑘𝑘(𝑘𝑘 | 𝑘𝑘)C(k)𝑲𝑲𝑥𝑥
−(𝑘𝑘 | 𝑘𝑘)𝑪𝑪𝑇𝑇(𝑘𝑘)𝑮𝑮𝑘𝑘𝑇𝑇(𝑘𝑘 | 𝑘𝑘) + 

+ 𝑮𝑮𝑘𝑘(𝑘𝑘 | 𝑘𝑘) 𝑲𝑲𝑅𝑅𝑚𝑚 (𝑘𝑘)𝑮𝑮𝑘𝑘𝑇𝑇(𝑘𝑘 | 𝑘𝑘) + 

–𝑨𝑨(k)𝑲𝑲𝑥𝑥
−(𝑘𝑘 | 𝑘𝑘) 𝑪𝑪𝑇𝑇(𝑘𝑘)𝑮𝑮𝑘𝑘𝑇𝑇(𝑘𝑘 | 𝑘𝑘) + 𝑲𝑲𝑅𝑅𝑠𝑠(𝑘𝑘)   (24) 

Test: Was the last measure processed? 
○ If not, go to the equation (19)  
○ If so, finish processing the Kalman filter algorithm for 

digital computing process [9]. 

5. The Latency of a Digital Computing 
Process 

When an end-user submits an application and sometime 
later receives fast communications on a personal computer’s 
monitor screen through sound, image and other messages 
within the smallest possible time, this time is the latency.   
The utility of latency is to measure the satisfaction of this 
end-user who is using an application on a computer, so that 
the end-user has the perception that everything is happening 
in real time; when the personal computer receives rapid 
communication through sound, image and other messages 
like "a bar of sound intensity" with the lowest latency.  

In order to determine the latency of our digital computer 
process, we have set up the initial conditions to run the 
algorithm called Kalman filter; system noise and 
measurement noise are generated as Gaussian white noises, 
the Kalman filter initial conditions as per equation (15) are 
given, measurements at system output are available, matrices 
A(k), B(k), C(k), D(k), E(k), F(k) are known. The system 
input vector will be u(k) which is a train of pulses of two 
bytes. 

The four following figures we will see bellow illustrate the 
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“a posteriori” behavior for filter gain, state vector, error of 
estimation covariance matrix and latency given by the 
Kalman filter, after the end-user has submitted the 
application twenty times. The figures have dashed lines 
which represent discrete values. The numbers to be 
presented have four decimals.  

Next we will see the Figure 6 with the five elements of the 
Filter Gain Matrix "a posteriori" obtained from the matrix 
equation (20). In these elements the errors on the Gain "a 
priori" were filtered and the filtering is based on the 
measurements read at the system output, under the condition 
of minimum error variance. 

This figure shows the five Kalman Filter Gain Matrix’s 
elements which have the following values: gkf11(k) = 0,0050; 
gkf21(k) = 0,0208; gkf31(k) = 0,0712; gkf41(k) = 0,1102; 
gkf51(k) = 0,0433.  

These filtered values mean the error covariance matrix has 
its elements minimized. In other words, the system state 
estimations have variances which were minimized by the 
Kalman filtering. The Gain matrix with filtered values can be 
written as, 

𝑮𝑮𝑘𝑘(k|k) = 

⎣
⎢
⎢
⎢
⎡
𝑔𝑔𝑔𝑔𝑔𝑔11(𝑘𝑘)
𝑔𝑔𝑔𝑔𝑔𝑔21(𝑘𝑘)
𝑔𝑔𝑔𝑔𝑔𝑔31(𝑘𝑘)
𝑔𝑔𝑔𝑔𝑔𝑔41(𝑘𝑘)
𝑔𝑔𝑔𝑔𝑔𝑔51(𝑘𝑘)⎦

⎥
⎥
⎥
⎤

 

Next we see Figure 7 with the estimated state vector’s five 
elements "a posteriori" which were obtained from the matrix 
equation (21). In these elements the estimation errors were 
filtered based on the measurements obtained at the system 
output. In this figure the estimated state vector elements have 
the following values: xestMf11(k) = 0.0247 second; 
xestMf21(k) = 0.0517 second; xestMf31(k) = 0.1168 second; 
xestMf41(k) = 0.1361 second; xestMf51(k) = 0.0894 second. 
The gain matrix is influenced by innovations too and so this 
matrix and vector of innovations act on the values "a priori" 
of the state vector, turning them into "a posteriori" or filtered 
values. 

The estimated state vector with filtered five elements can 
be written as, 

𝒙𝒙�+(k | k) = 

⎣
⎢
⎢
⎢
⎡
xestMf11 (𝑘𝑘) 
xestMf21(𝑘𝑘) 
xestMf31(𝑘𝑘)
xestMf41(𝑘𝑘)
xestMf51(𝑘𝑘) ⎦

⎥
⎥
⎥
⎤

 

The vertical scales of Fig. 7, 8 and 9 are not the same, in 
order to facilitate viewing and comparing the amplitudes of 
mean vector elements, the covariance matrix elements and 
latency. 

 

Figure 6.  Kalman Filter Gain Matrix’s five elements which were filtered 
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Figure 7.  Five elements of the estimated State Vector which were filtered 

 

Figure 8.  Covariance Matrix’s five elements which were filtered 
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Figure 9.  Latency of a digital computing process under investigation 

Next we see Fig. 8 with the five elements of the covariance 
matrix "a posteriori", which were obtained from the matrix 
equation (22). In these elements the errors of state estimation 
were filtered based on the measurements obtained at the 
system output. The elements of the covariance matrix have 
the following values: KxMf11(k) = 0.0024 second; 
KxMf22(k) = 0.0023 second; KxMf33(k) = 0.0032 second; 
KxMf44(k) = 0.0074 second; KxMf55(k) = 0.0198 second. 
Moreover, as the covariance matrix is time-varying, the time 
average of the trace of covariance matrix "a priori" equals to 
0.0513 second, while the time average of the trace of the 
covariance matrix "a posteriori" equals to 0.0351 second.  
In other words, the elements of the covariance matrix 
converge over the interval 

["a priori" → "a posteriori"]. This makes sense because 
the more measurements are obtained at the system output 
over the discrete time k, the better the system state 
estimation. 

The covariance matrix 𝑲𝑲𝑥𝑥
+ ( 𝑘𝑘 | 𝑘𝑘)  with five filtered 

diagonal elements can be written as 

𝑲𝑲𝑥𝑥
+ = 

KxMf11(k ) 0 0 0 0
0 KxMf22(k ) 0 0 0
0 0 KxMf33(k ) 0 0
0 0 0 KxMf44(k ) 0
0 0 0 0 KxMf55(k ) 

 

The Figure 9 above depicts the latency which is the sum of 
estimated and filtered five elements of the state vector x(k). 

The sum is based on sums of averages theorem [10]. Then 
this digital computer process latency is 0.4186 second. It 
means the end-user submits an application and 0.4186 
second later receives the result on the personal computer’s 
monitor screen. If the same application is submitted twenty 
times, then each of the twenty latencies will be 0.4186 
second. The application was submitted twenty times to check 
the mathematical model and the repeatability of the results. 

6. Conclusions 
We have seen the system is instantaneously observable at 

output and it means: the measurements could be obtained at 
the system output instantaneously and the system internal 
states could be estimated by Kalman filter instantaneously. 
The input vector u(k) was given and the measurements at 
system output could be determined.  

The Kalman filter equations were built according to state 
space approach as well as it was applied to the system of 
linear, discrete, stochastic and time-varying equations which 
represents the digital computing process. The filter Gain 
matrix behavior, the estimation of the state vector and the 
error of estimation covariance matrix along discrete time k 
were determined through Kalman’s algorithm. We have 
concluded it is possible to apply the Kalman filter to a digital 
computing process and estimate its latency on an 
instantaneous basis. 
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The latency was determined by the sum of the five 
elements of the estimated and filtered state vector, based on 
the sums of averages theorem.  

The end-user expectation about latency will determine the 
level of satisfaction. If the expectation is not set up by an 
end-user, then any result can guarantee a satisfaction. If the 
end-user expectation is less than one second, then the 
end-user’s satisfaction will be assured here. If the end-user 
expectation is latency less than 0.4186 second, then the 
end-user will not be happy. Anyway, the end-user 
satisfaction level depends on the expectation.  

The potential application of the results is a prediction of 
data traffic-jam on computer processes. In a broader 
perspective, the instantaneous observability method within 
Kalman filter can be applied on other digital computer 
processes and other variables than latency can be observed. It 
is also possible to apply this method to a computer with 
several CPUs in parallel and an I/O processor, to a several 
computers like this one connected to a local area network and 
it connected to a major server, to several major servers 
connected to a mainframe supercomputer type. Beyond that 
it can be applied on identification of a pathology, weather 
forecast, navigation and tracking on ground, water, air and 
space areas; and stock market prediction.   

ACKNOWLEDGEMENTS 
We thanks CNPq – National Council of Scientific and 

Technological Developement – in Brazil for financial 
support through the doctoral scholarship granted, which 
made this research  possible at DSIF/FEEC/UNICAMP.  

 

REFERENCES  
[1] Shukla, Diwakar; Jain, Anjali; Choudhary, Amita. Prediction 

of ready queue processing time in a multiprocessor 
environment using Lottery Scheduling, Journal of Applied 
Computer Science & Mathematics, Number 11, Volume 5, 
Suceava, Romania, 2011. 

[2] Shukla, Diwakar; Jain, Anjali; Choudhary, Amita. Estimation 
of ready queue processing time under SL scheduling scheme 
in multiprocessor environment, International Journal of 
Computer Science and Security, Number 4, Volume 1, 
pp.74-81, 2010. 

[3] Shukla, Diwakar; Jain, Anjali; Choudhary, Amita. Estimation 
of ready queue processing time under Group Lottery 
Scheduling (GLS) in multiprocessor environment, 
International Journal of Computer and Applications, Number 
14, Volume 8, pp.39-45. 2010. 

[4] Cadzow, James A.; Martens, Hinrich R., Discrete-time and 
computer control systems, Prentice Hall, New Jersey, USA, 
2011. 

[5] Kalman, Rudolf Emil; Lectures on Controllability and 
Observability - Reprint, Centro Internazionale Matematico 
Estivo - Firenze - Italy, Springer-Verlag, Berlin Heidelberg, 
Germany, 2010. 

[6] Chen, Chi-Tsong; Linear System Theory and Design, 3rd. 
Edition, Oxford University Press, New York, NY, USA, 
2009. 

[7] Battaglin, Paulo David; Barreto, Gilmar; Observability of 
State Space Model in Linear Discrete Time-Varying Systems, 
Congresso Latino Americano de Control Automatico – IFAC, 
Lima, Peru, 2012. 

[8] Fairman, Frederick Walker; Linear Control Theory –The 
State Space Approach, John Wiley & Sons, New York, USA, 
2000. 

[9] Battaglin, Paulo David, Kalman Filtering applied to a Digital 
Computing Process with a Time-Varying State Space 
Approach – PhD thesis, DSIF/FEEC, University of Campinas, 
SP, Brazil, 2014. 

[10] Lemons, Don S. (2000). An Introduction to stochastic 
process in Physics, The John Hopkins University Press, 
Baltimore, MD, USA, 2002. 

 

 


	1. Introduction
	2. The Digital Computing Process
	3. Instantaneous Observabilty Method
	4. Kalman Filter Applied to a Digital Computing Process
	5. The Latency of a Digital Computing Process
	6. Conclusions
	ACKNOWLEDGEMENTS

