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Abstract  Th is paper modifies parameter identificat ion of singular systems with the aid of transformation of singular 
system to a new Strong equivalent counterpart. Singular systems should be transformed to an equivalent model in the first 
step of identification process. In fact choosing an appropriate equivalent singular model is of crucial importance. 
Inconvenient equivalent model may lead to divergence, excessive computation time and imprecise estimat ion results. Indeed 
a more desirable estimat ion result would be attained by reducing the number of init ial conditions. Tradit ional reduction 
methods used before for this purpose, but they resulted low accurate estimations because important dynamics of system have 
been omitted wrongly using those equivalencies. In this paper, a more accurate equivalency transformat ion of singular 
systems called  Strong equivalency in combination with the Least Square identification algorithm is performed  with the aim of 
revising the mentioned problems. This combination of the Strong equivalency together with the identification procedure is 
used for the first time. Thus this new configuration improves not only the estimation error convergence, but also the output 
tracking. Performance of the proposed method is illustrated in a practical singular electric  network. 
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1. Introduction 
Singular systems are widely seen in electrical and 

electronic networks, mathematics, chemical processes, 
economic and neural networks and etc. Accordingly an 
increasing attention has been dedicated to such systems 
during recent years[1-9]. However singular systems are 
called by d ifferent names according to their various types of 
applications. They are known as generalized state space 
systems in the field of control theory and mathematics, 
descriptor systems in engineering and economics, 
differential-algebraic equations in numerical analysis and 
semi-state systems in the electric circuit fields. 

Singular studies are mainly categorized into two main  
parts. Actually most of the researches on singular systems 
are performed during 1960 to 1978. These were involved 
with the equivalency of differential-algebraic equations and 
the singular systems theory. Since 1980, the behaviour of 
such systems has also been investigated typically in control 
theory. 

Order reduction techniques and equivalency forms have 
played an important ro le in t reatment o f singular problems 
in different fields. In fact, usual procedure for dealing with 
this kind of system is to (either explicitly o r implicitly)  
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reduce it to an equivalent regular state space system. 
Studies on reduction procedure of singular equations 

were surveyed by Gantmacher in  1959[4]. Then, in  1966 
Polak introduced an algorithm to reduce a d ifferential 
system to a linear time independent state form[10]. In 1969 
Fettweis and in 1975, Desoer and Dervisoglu explained a 
method for reducing the state equation of algebraic  - 
differential systems in circu it theory[11],[12]. In parallel, 
Luenberger proposed an algorithm for the state equation 
reduction of singular discrete systems in 1977. Using 
Shuffle algorithm, a singular discrete system can be 
changed to an equivalent system regardless of the infin ite 
impulsive modes in the system response[6]. Besides,[13-19] 
have made great progress in the field of controllability, 
observability and stability of singular systems. 

All of the above reports use similar defin itions based on 
regular theory of the reduction technique. In essence, an 
equivalent system representation based on regular theory 
keeps most of the original system's dynamics except the 
infinite impulsive modes. Accordingly neglecting infin ite 
modes is the special problem in  these ancient reduction 
approaches. 

Indeed Rosenbrock is a pioneer researcher who took the 
first step in improving the singular equivalency equations 
by introducing restricted system equivalence (RSE) model 
based on generalized theory[17]. Although the proposed 
technique improved the former reduction methods, there 
were yet some deficiencies involved. 

However, St rong equivalency model is known as a 
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desired and flexible model for such systems[19]. Regarding 
this, the aim of this paper is to modify singular system 
identification by implementing Strong equivalency in it. As 
a matter of fact, an inappropriate equivalent model for 
singular identification may lead to divergence, excessive 
computation and identification with low accuracy. To  avoid 
these difficulties, primarily a new Strong equivalency 
model on the singular system is employed and then the 
identification algorithm is used on the equivalent model. In 
addition identification process is applied on the RSE 
equivalent model and results of the two methods are 
compared.  

Outcome of apply ing the proposed method is found 
satisfying in comparison with the previous methods. The 
verification procedure indicates the effectiveness of the 
proposed equivalence model in simplifying the complexity 
of singular identification and improving the difficulties 
involved with the algebraic equations in these systems.  

The rest of the paper is organized  as follows: in section 2 
a general form of a singular system and its problems of 
identification are described. Section 3 presents singular 
equivalency approaches and the usual way they are used. 
Section 4 exp lains a recursive algorithm of parameter 
identification. The results of the proposed algorithm and a 
traditional method are presented through a simulation 
approach by an illustrative electrical network in section 5. 
Finally the work is closed by a conclusion in section 6.  

2. Problem Formulation 
Consider the following representation form of a linear 

singular system of order n: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) , 0
( ) ( ) ( ) ( )

E x t A x t B u t w t t
y t C x t v t
θ θ θ

θ
= + + ≥

= +


 (1) 

where x(t) is an n dimensional vector of system state 
variables, u(t) is an m dimensional vector of input and y(t) is 
the output vector of length k . E, A, B and C are real matrices 
with appropriate dimensions, considering E as a singular 
matrix. θ  is the regression parameter vector containing 
unknown parameters of  E, A, B  and C.  

Signals w(t) and v(t) are the process and the system output 
white Gaussian noises respectively with zero mean and 
variances of W and V.  

The target here is to estimate accurately the parameters of 
system matrices in presence and in free of noise. 

Considering the singularity of matrix E, impulsive modes 
usually exist in this type of system. These specific modes 
cause dependent state space equations. Dependency of the 
states produce significant t roubles meanwhile singular 
identification process. In fact the initial conditions have to be 
evaluated by chance in each iteration of the identification 
algorithm. 

The usual alternative to meet the identification criteria 
here is to reduce the number of non zero in itial conditions in 
order to have less dependent equations. Thus a reliab le 

equivalency transformat ion based on the generalized theory 
is needed in the first step of singular identification. Secondly 
identification process can be implemented on the equivalent 
model.  

3. Singular Equivalency 
Singular systems have more complicated form, including 

not only the finite dynamic modes but also the infinite 
dynamic and non-dynamic modes. This complicat ion makes 
singular systems analysis difficult, especially  for 
identification process and the controller design. Singular 
equivalencies may cope with these difficu lties. On the other 
hand, choosing a sufficient and confident equivalency model 
relevant to our special work is an important process.  

Most of the previous works done on singular systems 
equivalency are mainly based on the regular theory without 
paying attention to the structural and dynamical 
characteristics of equation (1). In fact, those methods are 
based on transforming the original singular system in (1) to 
the following state space system of order sE A− . The 

methods are called  order reduction methods. See[4],[10] for 
further info rmation. 

( ) ( ) ( )

( ) ( ) ( ) ( )

x t Ax t Bu t
y t Cx t D p u t

= +

= +



              (2) 

where p=d/dt and D(s) is the polynomial part of G(s) i.e. the 
transfer function of system (1). Indeed an order reduction 
generates loss of information which is a main drawback of 
equivalency based on reduction techniques.  

Later Rosenbrock introduced a new equivalency method 
with the aid of Kronecker form of (sE-A)[4]. Accordingly a 
bounded equivalency of the system, RSE based on the 
generalized theory was developed[17]. 

Canonical Kronecker form of (sE-A) with the existence of 
non-singular matrices M and N can be described in the 
Laplace domain as follows: 

0( )
0

r

n r

sI AM sE A N
I sE

 
 
 − 

−
− =

− 

           (3) 
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M  

      
= =              (4) 

where identity matrices rI and n rI − have r and n-r 

dimensions respectively, n is the system regular degree of 

freedom and E is the nilpotent matrix with k=n-r index 

which is equal to singular system index. Vector of state 

variables can be divided into two fo llowing sub vectors: 

( )( )
( )

x tx t N
x t
 
 
 
 

=


                   (5) 

where ( )x t  and ( )x t  are regular and singular subsystem 
state vectors respectively. System (1) can be written in the 
following Lap lace form:  



 International Journal of Control Science and Engineering 2013, 3(3): 73-80 75 
 

 

( ) (0 )
0 ( ) ( )

X s ExsE A B
C U s Y s

    
    
         

−− − =             (6) 

From the Rosenbrock definition[17], equation (6) of the 
original system is written in the fo llowing RSE form. 
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(7) 

B  and B  denote appropriate sub blocks of MB. 
Similarly C and C  are sub blocks of CN.  

This transformat ion divides the original system into two  
subsystems. Accordingly important properties of system 
behaviour at infinity will be preserved. As a result, behaviour 
of x in the orig inal system will be similar to the state 
variables behaviour of the RSE system. 

Although this approach has superiority over the 
conventional reduction techniques, there are still some 
shortcomings. This is due to considering some of 
unnecessary restrictions on the algebraic subsystem. On the 
other hand, the two subsystems' parameters should be 
estimated separately and this produces inaccuracy in 
identification process. 

A kind of Strong equivalency is used including extra 
constraints over the Rosenbrock equivalency procedure to 
overcome the mentioned difficult ies. Equation (6) can be 
stated here as equation (8) under the Strong equivalency. 

1 1 1

1 1

0
0

sE A BM N RsE A B
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      
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           

− −− − =    (8) 

where M and N are non-singular matrices and 0QE ER= = . 
The constraints here are on R and Q matrices. Therefore two 
systems S  and 1S  are Strong equivalent if and only if 
standard forms for them are related by Strong operation as in 
(8).  

In addition this should be considered that finding 
appropriate matrices in th is approach is innovative and varies 
depending on the type of singularity problem. 

It can be clearly seen that the Strong equivalency provide 
one integrated system rather than two separate sub-systems 
in RSE model. So system can be identified more easily and  
precisely with the aid of Strong equivalency. On the other 
hand the Strong model reflects the original systems' 
informat ion better.  

Experiments ind icated that this equ ivalency transformati
on is more reliable and effective for identification process 
than others[19]; therefore this model is employed in this 
paper in  combination with  identification algorithm to 
identify singular system parameters.  

4. Identification Algorithm 

Recursive Least Square (RLS) algorithm is applied in this 
case due to its efficiency in parameter  identificat ion. 

Considering equation (8) and (7), the objective here is to 
identify equivalent system parameters through the following 
procedure which is summarized in three steps of:  

1. Update unknown vector of parameters by:  
ˆˆˆ( ) ( 1) ( )( ( ) ( ) ( 1))Tt t K t y t t tθ θ ϕ θ= − + − −      (9) 

2. Reconstruct the Gain matrix K(t) as: 
ˆ( ) ( ) ( ) ( 1) ( )( ( ) ( 1))TK t P t t P t t I t tϕ ϕ ϕ θ= = − + −  (10) 

3. Finally update the Covariance matrix by: 

1

( ) ( 1) ( 1) ( )

( ( ) ( 1) ( )) ( ) ( 1)
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ϕ

ϕ ϕ ϕ

ϕ

−

= − − −

+ − −

= − −

   (11) 

where  denotes the parameter vector containing 
estimated values at time t.  is the regression vector, 

and are covariance and gain matrices, respectively. 
,  and number of iterat ions must be initially 

defined as in itial conditions. , and  will be 
repeatedly updated in each iteration until the estimated 
parameters converge to the real values via a stopping criteria. 

According to the first stage of the algorithm, output y(t) 
value is needed in each iteration. Output of the system 
depends on the state variables as well. Therefore init ial 
conditions of the states are required during the process. So 
inappropriate equivalent model may cause divergence from 
the real results which may be ensued by excessive time 
consumption as it happened in identification on RSE model.  

In contrary outcomes of identificat ion algorithm on the 
proposed equivalent model are satisfactory and very close to 
the real parameters of the original system. 

5. Simulation Results 
5.1. Equivalency Results 

A practical LCR circuit as shown in Fig. 1[20],[21] is 
transformed to its RSE and Strong equivalent model. 

The following equations can be attained using KVL and 
KCL laws.  

 
Figure 1.  A practical LCR circuit  in parameter identification 

ˆ( )tθ
φ(t)

P K
ˆ(0)θ (0)P
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Figure 2.  Estimated and real parameters-identification on RSE- without 
noise 
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where v(t) is the voltage of the system as output  whilst i(t) 
is the input current source. Equation (12) can be transformed 
to a state space form in (1), with A, B, C and E mat rices as 
follows: 

0 0 1 0
0 0 0 1
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.
0 0 0 0
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E

 
 
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 
 

     (13) 

with the vector of state variables as follows: 

1 2 1 2(t) (t) (t) (t) (t)x v v i i  =           (14) 

Matrix E  is seen singular, which confirms that the 
generalized order of the system is 2 (number of passive 
elements i.e. capacitors). Indeed, system includes an 
exponential mode at zero frequency and one impulsive mode. 
Controllab ility and observability of these two modes are 
analysed by the following equations from singular 
controllability and observability analysis[13-19]. 

Controllab ility matrix of equation (15) used for fin ite 
modes, has a full rank of 4 for the zero frequency mode. 
Matrix o f equation (16) is for infinite controllab ility analysis 
with a rank of 6 for this system. 
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Fin ite and infin ite observability of the system is then 
analysed by equations (17) and (18) respectively. 
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Therefore theses four equations verify that the exponential 
mode at zero frequency is observable and controllable whilst 
the impulsive mode is neither observable nor controllable. 
The latter may cause problem during the identification 
process due to existence of its init ial conditions. After 
analysing the modes of the system, equivalency methods can 
be applied on it. 

5.1.1. Restricted System Equivalency (RSE) Result 
Here, the orig inal system is transformed to its RSE 

equivalent model to recognize the effectiveness of the 
proposed model more obviously. 

From equation (6), the original system of (13) can be 
transformed to the following model with state variables of 
equation (14): 
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Regarding equation (7) and (19), the following equations 
can be attained with unknown state variables of  
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To preserve the consistency of the core problem, accept 
the results here without paying attention to the details. The 
following results are derived by matching the two state space 
equations of (19) and (20): 

21 22 12 11 12 21 22 10 , 0 , ( ) .E E E A A A A x u= = = + + + =  
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Figure 3.  Estimated and real parameters- identification on RSE- without 
noise 

Noticing the results it can be concluded that RSE 
transformation failed in init ial conditions reduction. Its 
harmful effects on identification process are completely 
observable in the subsequent sections.  

5.1.2. Strong Equivalency Result 
As a contribution the following St rong equivalency is 

employed in this section. Indeed this is inspired form the 
system analysis. Equation (12) can be manipulated to: 
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Accordingly SEA , SEB , SEC and SEE  matrices are 
defined as: 
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The above representation leads us to a new equivalent 
system by new state variables of 1 2v v+ , 1 2i i− , 1 2v v−  
and 1 2i i+ . Input and output of the new system are kept the 
same as the original system.  

By this transformation the init ial conditions of the two  
state variables 1 2( ) ( )i t i t+  and 1 2( ) ( )v t v t−  exactly  
become zero. This is an advantage of the proposed 
equivalency for accurate singular identificat ion in purpose of  
representing the system just by input-output data. This is 
because input-output data of the system is main ly used in the 
identification process. 

5.2. Singular Identification Result 

In the second step RLS identification is applied on the two 
equivalent models of prev ious section. 

5.2.1. Identification on RSE Model 
In this case, covariance matrix P(0) is init ially chosen as 
710 I . The two figures are resulted with and without v(t) and 

w(t) noises respectively. V and W variances are selected as 
0.9.  

Besides the process is time consuming the final value of 
the parameters had  not arrived at its optimum point. In 
addition initial conditions are chosen so that divergence does 
not occur. However it surely happens through an 
identification of a more complicated singular system. 

From Figure 3, noise trace can be completely observed 
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and the final values are not admissible.  

5.2.2. Identification on Strong Equivalent Model 
Parameters of the Strong equivalent model in (23) are 

estimated by RLS algorithm as well. 500 input output 
samples are used in this algorithm and the init ial estimates 
for the parameters are taken as zero (a possible assumption 
according to the Strong equivalency). The covariance matrix 
P(0) is initially chosen as with appropriate dimensions. 

 
Figure 4.  Estimated and real parameters-identification on Strong 
equivalency- without noise 

 
Figure 5.  Estimation error- identification on Strong equivalency-without 
noise 

Results are achieved in two different cases with and 
without noise, considering V and W variances as 0.9. Results 
of using PRBS input free of noise are shown in the following 

graphs. 
From Figure 4, it can  be observed that convergence of 

parameters identification on Strong equivalency is perfect. 
Estimation  error and output tracking  results are also found 
satisfactory from the next two graphs.  

 
Figure 6.  Output tracking- identification on Strong equivalency-without 
noise 

 
Figure 7.  Estimated and real parameters-identification on Strong 
equivalency with noise 

Parameters identificat ion results of the proposed method 
in presence of Gaussian white noise can be seen in the 
following graphs. 

However noisy data produces fluctuations in the 
outcomes, identified parameters finally converge to the 
actual values in Figure 7. The estimat ion error and output 
tracking results of Figure 8 and 9 show fluctuating patterns, 
but in a satisfactory accuracy. 

Final results of the proposed procedure on the singular 
system are summarized in the fo llowing tables: 
  

510 I
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Table 1.  Estimated Values of Parameters in Free Noise Case- 
Identification on Strong Equivalency 

Parameter       

Actual value -1 -1 -1 1 1 0 

Estimated value -1 -1.001 -1 1 -0.998 0 

 

Figure 8.  Estimation error-identification on Strong equivalency- with 
noise 

 
Figure 9.  Output tracking- identification on Strong equivalency-with 
noise 

Table 2.  Estimated Values of Parameters in Presence of Noise- 
Identification on Strong Equivalency 

Parameter 1a  2a  3a  4a  5a  6a  

Actual value -1 -1 -1 1 1 0 
Estimated 

value -1 -1.003 -1 0.81 0.85 -0.002 

Theses results confirm the significance of the proposed 

algorithm in comparison with those obtained in Figure 2 and 
3. 

Preference of the Strong equivalency is made by including 
extra constraints to the traditional Rosenbrock's RSE method. 
This model ignores unnecessary restrictions related to 
unnecessary initial conditions and improves the troublesome 
conditions of the system. However this successfully 
considers infinite mode aspects. In particular, applying the 
proposed equivalent model within the parameter 
identification process moderates singular identification 
difficult ies which are caused by algebraic equations. 

6. Conclusions 
An identification technique is implemented in th is paper to 

identify singular systems. Furthermore an appropriate 
singular equivalency is proposed within the identification 
algorithm. 

The proposed equivalency method is based on restricted 
system equivalency (RSE) with extra constraints, which 
provide more accurate equivalent model with fewer init ial 
conditions. Thus, the convergence speed of the identification 
process is improved in comparison with the previous 
approach. Significance of the proposed equivalency in 
combination with the identification algorithm is shown 
through a simulation study on a 2nd order circuit. It is seen 
that estimated values are finally converged to the actual 
original parameters with fewer estimat ion error even in 
presence of white Gaussian noise. The proposed approach 
also needs less information about the initial values due to 
transformation of system states to new equivalent states. 
This new form guarantees the convergence of the 
identification algorithm by  transforming the state variables 
with zero  in itial conditions. Simulation results from the new 
and the traditional methods signify the performance of the 
proposed equivalency technique in combination with the 
identification procedure. 
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