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Abstract  In this paper, we have synchronized the Mimas-Tethys system (MTS: Natural moons of Saturn) with driven 
damped pendulum (DDP) using a robust adaptive sliding mode controller (RASMC) together with uncertainties, external 
disturbances and fully unknown parameters. A simple suitable slid ing surface, which includes synchronization errors, is 
constructed and appropriate update laws are used to tackle the uncertainties, external d isturbances and unknown parameters. 
All simulations to achieve the synchronization for the proposed technique for the two non-identical systems under 
consideration are being done using Mathematica.  
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1. Introduction 
Since more than the last two decades, the control and 

stabilization of chaos synchronization of chaotic systems 
has become more and more popular in  recent years and 
received a considerable interest among nonlinear scientists. 
Chaos is a  phenomenon of nonlinear dynamics that has 
some s pecific characterist ics  s uch  as  ext raord inary 
sensit iv ity to in it ial cond it ions and  system parameter 
variat ions, broad Fourier t ransform spect ra and fractal 
properties of the motion in the phase space. Due to these 
especial characteristics, chaos has been used in many 
pract ical engineering areas such as chemical react ions, 
power converters, secure communicat ions, info rmat ion 
processing, biological systems and mechanical systems[1–3] 
and various control techn iques have been  proposed for 
controlling and synchronizing of chaotic systems, including 
slid ing mode contro l, optimal control, adapt ive control, 
nonlinear feedback control, backstepping method, passive 
control, fuzzy logic control, PID control, etc[4–11]. Most of 
the above mentioned works on chaos synchronization have 
focused on chaotic systems without model uncertainties and 
external disturbances. It has been observed practically that 
st ructu ral variat ions  o f the s ystems  and  un -modeled 
dynamical uncertainties are present in the chaotic system 
dynamics due to the modeling errors. So, synchronization of  
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chaotic systems with uncertainties and external disturbances 
is effectively significant in  the applications. In this direction, 
some researchers have proposed a number of techniques for 
synchronization of uncertain identical as well as 
non-identical chaotic systems that includes nonlinear 
feedback control, slid ing mode control, backstepping 
procedure, linear state feedback control, active control and 
neural fuzzy control[12–21]. 

Nevertheless, the previous techniques have studied 
chaotic systems with fully (or partially) known parameters. 
While, in  practice, it is hard  to exact ly determine the values 
of the system parameters in priori. Therefore, 
synchronization of chaotic systems with unknown 
parameters is essential and useful in real-life applicat ions. 
Consequently, some approaches, such as sliding mode 
control, finite-t ime based control, adaptive control, optimal 
control, fuzzy & backstepping control have been developed 
for synchronization of two identical as well as nonidentical 
chaotic systems with unknown parameters[22–34]. Sliding 
mode control[35] is a robust control method which has 
many interesting features such as low sensitivity to external 
disturbances and robustness to the plant uncertainties due to 
structural variat ions and un-modeled dynamics. The sliding 
mode controller is composed of an equivalent control part 
that describes the behavior of the system when the 
trajectories stay over the sliding surface and a variab le 
structure control part that enforces the trajectories to reach 
the sliding surface and remain on it evermore. Adaptive 
control is a suitable approach to overcome system 
uncertainties, especially uncertainties derived from 
uncertain parameters. Adaptive slid ing mode control has the 
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advantages of combining the robustness of the sliding mode 
control with the tracking facilit ies of the adaptive control. 

The main  purpose of this paper is to study the 
synchronization phenomenon of a MTS with DDP using a 
robust adaptive sliding mode controller (RASMC) in the 
presence of uncertainties, external d isturbances and fully 
unknown parameters in both master and slave chaotic 
systems[36] together with the assumption that the bounds of 
the uncertainties and external d isturbances are unknown in 
advance. A simple suitable slid ing surface, which includes 
synchronization errors, is constructed. Appropriate update 
laws are derived to tackle the uncertainties, external 
disturbances and unknown parameters. Then, on the basis of 
the update laws, the RASMC is designed to guarantee the 
existence of the slid ing motion. The stability and robustness 
of the proposed RASMC is proved using Lyapunov stability 
theory for the MTS and DDP. 

2. Description of RASMC 
For the n-dimensional master and slave systems[36] with 

uncertainties, external disturbances and unknown 
parameters are g iven as follows: 

Master system: 
( ) ( ) ( ) ( , ) ( )mt t t= + + ∆ +x f x F x f x dθ .  (2.1) 

Slave System: 
( ) ( ) ( ) ( , ) ( ) ( )st t t t= + + ∆ + +y g y G y g y d uψ . (2.2) 

Where [ ]1 2( ) , ,..., T
nt x x x=x

 
are the state vectors, 

[ ]1 2( ) ( ), ( ),..., ( ) T
nf f f=f x x x x  are the continuous 

nonlinear functions, ( ), 1, 2,...,iF i n=x , is ith row of an 
n n×  matrix ( )( )F x  whose elements are continuous 

nonlinear functions, [ ]1 2, ,..., T
nθ θ θ=θ  are the unknown 

vector parameters, [ ]1 2( , ) ( , ), ( , ),..., ( , ) T
nt f t f t f t∆ = ∆ ∆ ∆f x x x x  

and 1 2( ) ( ), ( ),..., ( )
Tm m m m

nt d t d t d t =  d  are the vectors of 

unknown uncertainties and external d isturbances of the 

master system respectively. [ ]1 2( ) , ,..., T
nt y y y=y  are 

the state vectors, [ ]1 2( ) ( ), ( ),..., ( ) T
ng g g=g y y y y  are 

the continuous nonlinear functions, ( ), 1, 2,...,iG i n=y , 

is ith row of an n n×  matrix ( )( )G y  whose elements are 

continuous nonlinear functions, [ ]1 2, ,..., T
nψ ψ ψ=ψ  are 

the unknown vector parameters, 

[ ]1 2( , ) ( , ), ( , ),..., ( , ) T
nt g t g t g t∆ = ∆ ∆ ∆g y y y y  and 

1 2( ) ( ), ( ),..., ( )
Ts s s s

nt d t d t d t =  d  are the vectors of 

unknown uncertainties and external d isturbances of the 
slave system, respectively, and 

[ ]1 2( ) ( ), ( ),..., ( ) T
nt u t u t u t=u  is the vector of control 

inputs. 

Assumption 1: Since the trajectories of chaotic systems are always bounded, then the unknown uncertainties ( , )t∆f x  

and ( , )t∆g y  are assumed to be bounded. Therefore, there exist appropriate positive constants m
iα  and 

, 1, 2,...,s
i i nα =  such that 

( , ) m
i if t α∆ <x  and ( , ) , 1, 2,...s

i ig t i nα∆ < =y                  (2.3) 

⇒  ( , ) ( , ) , 1, 2,...,i i if t g t i nα∆ −∆ < =x y , where 
iα  are unknown constants        (2.4) 

Assumption 2: In general, it is assumed that the external disturbances are norm-bounded in 1C , i.e. ( )m m
i id t β<  

and ( ) , 1, 2,...,s s
i id t i nβ< =                                (2.5) 

⇒  ( ) ( ) , 1, 2,...,m s
i i id t d t i nβ− < = ,  where iβ  are unknown constants          (2.6) 

To solve the synchronization problem, the error between the master system (2.1) and slave systems (2.2) can be defined 
as ( ) ( ) ( )t t t= −e x y . Then from (2.1) and (2.2), the error dynamics can be written as: 

( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( )m st t t t t t= + + ∆ + − − −∆ − −e f x F x f x d g y G y f y d uθ ψ .       (2.7) 
It is clear that the synchronization problem can be transformed to the equivalent problem of stabilizing the error system 

(2.7). The objective of this paper is that for any given master chaotic system (2.1) and slave chaotic system (2.2) with the 
uncertainties, external disturbances and unknown parameters a suitable feedback control law ( )tu  is designed such that 

the asymptotical stability of the resulting error system (2.7) can be achieved in the sense that lim ( ) ( ) 0
t

t t
→∞

− →x y  for 

the systems under consideration. 
Let us consider now, the appropriate sliding surface with the desired behavior. Therefore, the sliding  surface suitable for 

the technique can be designed as: 
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( ) ( ), 1, 2,...,i i is t e t i nλ= =                                  (2.8) 

where [ ]( )1 2( ) ( ) ( ), ( ),..., ( )i ns t t s t s t s t∈ = s  and the sliding surface parameters iλ  are positive constants. 

After designing the suitable sliding surface, let us determine the input control signal ( )tu  to guarantee that the error 
system trajectories reach to the slid ing surface ( ) 0t =s  (i.e. to satisfy the reaching condition ( ) ( ) 0t t <s s ) and stay on 
it, forever. Therefore, to ensure the existence of the sliding motion a discontinuous control law is proposed as: 

( )ˆˆ ˆˆ( ) ( ) ( ) ( ) ( ) sgn( ) sgn( ), for 1, 2,...,i i i i i i i i i i i iu t f g F G s k s i nθ ψ α β= − + − + + + =x y x y
  (2.9) 

Where îθ , ˆ iψ , ˆiα , îβ  are estimat ions for iθ , iψ , iα , iβ  respectively and 0, 1, 2,...,ik i n> =  are the 
switching gain constant. 

To tackle the uncertainties, external disturbances and unknown parameters, appropriate update laws are defined as: 

[ ] 0
ˆˆˆ ( ) , (0)T γ= = F xθ θ θ , 

[ ] 0ˆˆˆ ( ) , (0)T γ= − = G yψ ψ ψ , 

 
0 0

ˆˆˆˆˆˆ , (0) & (0)i i i i i i i isα β λ α α β β= = = =

 .                      (2.10) 

where [ ]1 1 2 2, ,..., T
n ns s sγ λ λ λ=  and 0̂θ , 0ψ̂ , 0ˆiα  and 0îβ  are the initial values of the update parameters θ̂ , ψ̂ , 

ˆiα  and îβ  respectively. 

In order to minimize the chattering effect due to signum function, we are replacing the sgn( )is  by tanh( )isε  for 

1ε > . Figure 1 shows that our results will not be affected. Therefore the new control input can be written as: 

( )ˆˆ ˆˆ( ) ( ) ( ) ( ) ( ) sgn( ) tanh( ), for 1, 2,...,i i i i i i i i i i i iu t f g F G s k s i nθ ψ α β ε= − + − + + + =x y x y    (2.11) 

Based on the control input in (2.9) and update laws in (2.10), to guarantee the reaching condition ( ) ( ) 0t t <s s  and to 
ensure the occurrence of the sliding motion, we have the following theorem. 

Theorem 1: Consider the error dynamics (2.7), this system is controlled by ( )tu  in (2.9) with update laws in (2.10). 
Then the error system trajectories will converge to the sliding surface ( ) 0t =s . 

In this regard, we consider a Lyapunov function (that is a positive defin ite function also) as follows: 

( ) ( )2 22 22

1

1 1 1ˆˆˆˆ( )
2 2 2

n

i i i i i
i

V t s α α β β
=

 = + − + − + − + −  ∑ θ θ ψ ψ              (2.12) 

Figure 10 shows that the derivative of Lyapunov function (2.12) is less than or equal to zero for t  is b igger than zero
(i.e. ( ) 0 for 0)V t t≤ ≥ . 

3. Description of the Systems 
Elliptically orbit ing planar oscillations of satellites in the solar system make an  interesting study. In this paper, we 

synchronize the dynamical models of MTS with DDP using RASMC. The Hamiltonian (H) of the nonlinear dynamical model 
of the Mimas-Tethys system is written from[37] in order to study the synchronization behavior. 

0 1H H H= +  
2

2
0 1 0 2 0 3 0

3cos cos cos cos
2 2 2 2

H ft ft ftφ φ φ φω φ ε σ ε σ ε σ−      = + + + + + + + + − −     
     



     (3.1) 

where φ  is the argument depending on the mean longitude of Mimas, iε  are the parameters depending on the tidal force 

(for 1, 2,3i = ), f is the main frequency, 0ω  is the mass distribution parameter and 0σ  is a constant. 

Using Hamilton’s canonical equations &d H d H
dt dt
φ φ

φ φ
 ∂ ∂

= = − ∂ ∂ 





, (3.1) can be written as 



4 Ayub Khan et al.:  Synchronization of Mimas-Tethys System with Driven Damped Pendulum  
Using a Robust Adaptive Sliding Mode Controller 

 

2
2 31 2
0 0 0 02

3 3sin sin sin sin
2 2 2 2 2 2

d ft ft ft
dt

εε εφ φ φ φω φ σ σ σ     = − − + + − + + − − −     
     

     (3.2) 

Introducing the two variables: 1xφ =  and 1 2x x= , the equation (3.1) can be written as a following system of two first 
order nonlinear d ifferential equations which is treated as master system. 

1 2
2

2 0 1 1

,
MTS:

sin ( , )
x x
x x h x tω
=

 = − +





                                  (3.3) 

Where 

31 1 2 1 1
1 0 0 0

3 3( , ) sin sin sin
2 2 2 2 2 2

x x xh x t ft ft ftεε εσ σ σ     = − + + − + + − − −     
     

 

The equation of motion of DDP is given by 

( )
2

2 2 2sin cosd g b A kt
dt R mR mR
θ θ θ= − − +                               (3.4) 

Introducing the two variables: 1yθ =  and 1 2y y= , the equation (3.4) can be written as a following system of two first 
order nonlinear d ifferential equations which is treated as slave system. 

( )
1 2

2 1 2 1 1 1

,
DDP :

sin cos
y y
y a y b y c kt
=

 = + +





                              (3.5) 

Where,  

1 2

ba
mR
−

= , 1
gb

R
−

=  and 1 2

Ac
mR

= . 

In order to apply the RASMC to synchronize the MTS and DDP with uncertainties (0 & 1( , )h x t  and 0 & 1( , )h y t−  

for MTS and DDP respectively), external disturbances (0 & 1 cosc kt−  and 0 & 1 cosc kt  fo r MTS and DDP 
respectively) and unknown parameters (as per equation (2.10)), it is assumed that the MTS drives the DDP. The master and 
slave systems can be rewritten in the form of (2.1) and (2.2) as follows: 



2
2
0 1 1 1

( ) ( , )( ) ( )

0 0 00 1
sin ( , ) cos0 0 0

mt t

x
x h x t c ktω

∆

        
= + + +        − −        


  

F x f xf x d

x

θ

                     (3.6) 



2 1

1 1 2 1 1 1 2

( ) ( , ) ( )( ) ( )

0 0 1 0 0 ( )
sin 0 ( , ) cos ( )

st tt

y u t
b y y a h y t c kt u t

∆

            
= + + + +            −            


   



g y g y uG y d

y

ψ

            (3.7) 

Therefore, using (2.7), the error dynamics can be expressed as: 

1 2 1( ),e e u t= −  
2

2 0 1 1 1 2 1 1 1 2sin sin ( , ) ( , ) 2 cos ( ).e x b y ay h x t h y t c kt u tω= − − − + + − −               (3.8) 

Where ( )iu t  for 1, 2i =  is defined as per the equation (2.11). 

4. Numerical Simulation 
In the proposed study, we have chosen 0.6ω = , 

1 0.05ε = , 2 0.5ε = , 3 0.9ε = , 0 0.15σ = , 

0.8f = , 1 0.1a = , 1 0.2b = , 1 0.3c = , k π=  and 

the initial values of the update vector parameters 0̂θ , 0ψ̂ , 

0ˆiα  and 0îβ  are [ ]0.1,0.2 , [ ]0.1,0.3 , [ ]0.2,0.4  

and [ ]0.3,0.5  respectively. Furthermore, The vector o f 

switching gains 1 10k = , 2 10k = , the coefficient 

10ε =  and the sliding surfaces are 1 110s e=  and 

2 25s e= . The MTS and DDP are started with the init ial 

conditions as follows: 1(0) 0.2x = , 2 (0) 0.9x = , 

1(0) 0y =  and 2 (0) 0.5y = . Figure 2 illustrates the 
synchronization errors of the MTS and DDP, as one can see 
the synchronization errors converge to the zero, which 
implies that the chaos synchronization between the MTS 
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and DDP is realized. The time responses of the update 

vector parameters θ̂ , ψ̂ , ˆiα  and îβ  are depicted in  
Figures 3–6, respectively. It is very well clear that all of the 
update parameters approach to some constants. Furthermore, 
figures 7 & 8 depict the t ime series of state vectors of the 
master and slave systems and phase plots of master and 
slave systems have been taken in figure 9, all of that also 
confirm the robust synchronization between the systems 
under consideration. Lastly in figure 10, we have plotted the 
graph of the derivative of Lyapunov function (2.12) which 
is less than or equal to zero fo r t is bigger than or equal to 
zero (i.e. ( ) 0 for 0)V t t≤ ≥ . 

 
Figure 1.  Comparison of sign(s) & Tanh(εs) for ε>1 

 
Figure 2.  Time series of e1 & e2 

  
Figure 3.  T ime series of θ1 & θ2 

 
Figure 4.  T ime series of Ψ1&Ψ2 

 
Figure 5.  T ime series of α1&α2 

 
Figure 6.  T ime series of β1 &β2 

  
Figure 7.  T ime series of χ1 & y1 
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Figure 8.  T ime series of x2 & y2 

 
Figure 9.  Phase plots of master &slave systems 

 

Figure 10.  Time Series of  

5. Conclusions 
In this paper, the problem of practical synchronization of 

chaotic systems is done using RAMSC under the effects of 
the model uncertainties, external d isturbances and unknown 
parameters in synchronizing the two nonidentical chaotic 
systems (MTS & DDP). Numerical simulations are 
presented to show the applicability and feasibility of the 
proposed study using Mathematica. We conclude the 
following three remarkable features of our proposed study. 

(1) It  is robust with respect to the model uncertainties, 
external d isturbances and unknown parameters. 

(2) It can be easily realized and implemented in real 
world applications without requiring the bounds of the 
model uncertainties, external d isturbances and unknown 
parameters to be known in advance. 

(3) It is well applicable for pract ical synchronization of 
two non-identical chaotic systems even when both master 
and slave chaotic systems are disturbed by the model 
uncertainties, external disturbances and unknown 
parameters. 
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