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Abstract  This paper addresses the hyperchaotification and the synchronization of chaotic systems. A nonlinear state 
feedback controller was designed to generate hyperchaos from the original chaotic system. The hyperchaos was identified by 
the existence of two positive Lyapunov exponents, bifurcation diagram and phase diagrams. Furthermore, effective active 
controllers are designed for synchronizing the obtained hyperchaotic system with different chaotic systems. To illustrate the 
effectiveness of the proposed approach, numerical simulation results obtained with the Lü and Qi chaotic systems are given.  
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1. Introduction 
Chaos has been extensively studied within the scientific, 

engineering and mathematical communit ies as an interesting 
complex dynamic phenomenon. Recently, the tradit ional 
trend of understanding and analysing chaos has evolved to a 
new phase of investigation: controlling and creating chaos. 
More specifically, when chaos is useful, it is generated 
intentionally. However, when chaos is harmful, it is con-
trolled[1-4]. 

Indeed, several studies have showed that chaos can be 
useful or has great potential in many disciplines and most of 
the developed methods concern with the chaotic synchroni-
zation[5-8]. Pecora and Carro ll[5] suggested that the phe-
nomenon of chaos synchronism may  serve as the basis for 
new ways for achieving secure communication. Since, many 
techniques have been proposed in order to h ide the contents 
of a message by explo iting chaotic systems. Perez and 
Cerderia have proved that messages masked by simple 
chaotic processes can be easily extracted once inter-
cepted[9].  

After, Pecora proved that this problem can be solved by 
using higher dimensional hyperchaotic systems[10]. This 
consideration has led to the development o f interesting 
techniques for hyperchaos synchronization[11,12].  

Hyperchaotic systems have the characteristics of high 
security and high efficiency. They can be broadly applied in 
nonlinear circu its, secure communications, bio logical sys-
tems and many other fields. 

In this paper, we are interested in the hyperchaotification  
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and synchronization of chaotic systems. The hyperchaotifi-
cation is obtained using a delay feedback control algorithm. 
It is based on the idea that hyperchaotic systems are usually 
defined as chaotic systems with more than one positive 
Lyapunov exponent. A closed form expression was provided 
for the controller, in terms of the system state vector and a set 
of Lyapunov exponents. Simultaneously, the controlled 
system is synchronized  with a second chaotic system, by 
applying an algorithm based on the active control theory. 

The paper is organized as follows: In section 2, we in-
troduce the hyperchaotification algorithm and its application 
to the Lü system. In section 3, the proposed synchronization 
algorithm is detailed on chaotic and hyperchaotic systems 
and we provide some simulat ion results obtained with the Lü 
and Qi systems. These results illustrate the effectiveness of 
the proposed procedure. 

 
Figure 1.  Attractors of the Lü system for 36=a , 3=b and 20=c  

2. Hyperchaotification of Lü System 
The Lü system is described by the following equations: 
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Where a , b and c  represent the system parameters 
The system of d ifferential equations is integrated using the 

fourth order Runge-Kutta method.  
For: 36=a , 3=b and 20=c , the Lyapunov exponents, 

are 1 1.33,λ =  2 0.00,λ = 3 20.10.λ = −  We deduce that for these values, the system is chaotic 
since one of the exponents is positive and the system exhib its 
a chaotic behaviour, as shown in Fig. 1. 

For the hyperchaotification of a chaotic system, the two  
following conditions must be verified : 

The dimension of the system must be at least equal to 4 
and the order of the state equation must be at least 2. 

The system must have at least two positive Lyapunov 
exponents and the sum of all the exponents must be negative. 

For this, the hyperchaotification of the Lü  chaotic system 
consists to increase the dimension of the system by adding an 
equation representing a state feedback controller in the state 
equations system. Some authors suggested to construct a 
hyperchaotic attractor of the Lü system by adding the state 
feedback controller u  on the state x . In our case, we 
choose to introduce it on y, as follows: 
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The fixed points are obtained by solving: 
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                    (3) 

And the jacobian matrix of the system is given by: 
0 0

1
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0
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J
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− − 

                  (4) 

This implies that the stability around the fixed points is 
function of (a, b, c) and also d. 

Assume that the Lyapunov exponents of the controlled 
chaotic Lü  system are λi (i = 1,...,4) satisfying λ1 > λ2> λ3> λ4, 
then the dynamical behaviours of the system can be classi-
fied as follows: 

For λ1>0;  λ2 = 0, λ4 < λ3<0 and λ1 + λ3+ λ4 <0, the system 
is chaotic. 

For λ1> λ2 > 0; λ3 =0, λ4 < 0 and λ1 + λ2 + λ3+ λ4 <0, the 
system is hyperchaotic. 

For λ1=0; λ4 < λ3 < λ2<0, the system is periodic 
The analysis of the dynamic behaviour of th is system is 

done using the bifurcation diagram and the Lyapunov ex-
ponents computed with a=36, b=36, c=20, and by increasing 
the parameter d. 

Table 1.  Lyapunov Exponents for different values of d 

d λ1  λ2  λ3  λ4  
-5 1.189 0.005 -4..321 -20.810 

-1.5 0.001 -0.120 -0.157 -20.202 
0.1 0.785 -0.001 -0.342 -19.305 
1.8 0.978 0.197 -0.004 -18.330 

Table 1 g ives the obtained Lyapunov exponents. We note 
that: 

For d=-5 and d= 0.1, we have λ1>0; λ2 ≅ 0, λ4 < λ3<0 and 
λ1+ λ3 + λ4 <0 ⇒  the system is chaotic. 

For d=-1.5; λ1 ≅ 0; λ4 < λ3 < λ2 <0⇒the system is periodic 
For d=1.8, λ1> λ2>0; λ3 ≅ 0, λ4  <0 and λ1+λ2+ λ4<0⇒the 

system becomes hyperchaotic 
The bifurcat ion diagram in  the y-d p lan, where )(nTY

represents the Poincaré section, is given in Fig. 2. It shows 
that the system evolves from chaotic state to periodic orb it 
and from periodic orbit to chaotic, then hyperchaotic state. 

We can conclude that for some values of d, this method of 
control stabilizes the in itial chaotic system. However, if this 
parameter continues to increase, a hyperchaotic behaviour 
appears. 

Fig 3. to Fig. 5. show the behaviour in the phase plane, of 
the controlled Lü system for different values of d. 

In Fig. 5 we can notice that the obtained hyperchaotic at-
tractor has a similar fo rm that the original Lü system with the 
appearance of additional branches which characterizes the 
hyperchaotic dynamic 

 
Figure 2.  Bifurcation diagram of the controlled Lü system 

 
Figure 3.  Chaotic attractor of the modified Lü system for d=-5 
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Figure 4.  Periodic orbit of the controlled Lü system for d=-1.5 

 
Figure 5.  Hyperchaotic attractor of the controlled Lü system for d=1.8 

3. Synchronization of Hyperchaotic and 
Chaotic Systems 

Many effective methods have been presented to synchro-
nize chaotic systems. Synchronization  is always done be-
tween a system designed as master and another as slave. The 
principle of synchronization is to apply on the slave a control 
function, such as the error between the two  systems tends to 
zero. The problem can then be expressed as a problem of 
control that consists of minimizing the error between the 
master and the slave by applying the control law. In our case 
we use an active control algorithm. 

In the following, we consider the synchronization of the 
hyperchaotic Lü  system with a chaotic system, by applying 
an algorithm based on the active control theory. The hyper-
chaotic system is considered as master and the chaotic sys-
tem as slave. 

3.1. Synchronization of the Hyperchaotic LÜ System and 
the 4D Chaotic LÜ S ystem 

The master system is given by: 
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And the slave by: 
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Where: S=[s1, s2, s3, s4]T represents the active control 
function to be designed.  

The control function is composed of two  parts: one non 
linear for eliminating non linear term and a linear part to 
ensure the stability of the obtained system.  

The error between the master and the slave is given by: 
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And its dynamic by: 
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For the synchronization of the two systems, we must have:  
In order to eliminate the nonlin-

ear terms, we choose: 
1 1

2 2 2 1 1 2

3 2 2 1 1 3

4 2 2 1 1 2 1 1 2 4

s v
s x z x z v
s x y x y v
s y z y z d u d u v

=
 = − +
 = − + +
 = − − + +

          (9) 

So, the system to be controlled is a linear system with a 
control input v1, v2, v3, and v4 
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These equations converge to zero, if we choose a control 
law, which ensures that all the eigenvalues will be in the left 
part of the complex p lan. So, we assume that: 

vi=Aei                           (11) 
Several choices are possible, in part icular: 
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In this case, all the eigenvalues are equals to -1 and the 
error 0e →  when t →+∞ . 

For the simulation, we choose the master system as the 
new hyperchaotic Lü system with d1=1.8. The same system 
with d2=-5 is considered as the chaotic slave system 

For the others parameters, we assume that: 
a1 =a2=a=36, b1 =b2=b=3, c1 =c2=c=20. 

Fig.(6-a) to Fig.(6-d) represent the results of the synchro-
nizat ion when the control is actived at t=2s and initial con-
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ditions for the master and the slave, as follows: 
x1(0)=0.1, y1(0)=1, z1(0)=0.2, u1(0)=0.1 
x2(0)=-20, y2(0)=30, z2(0)=-8, u2(0)=5 

We notice that the trajectories converge rapidly and be-
come identical in a short time  
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Figure 6.  Synchronization of different state variables 

3.2. Synchronization of the Hyperchaotic LÜ System and 
the 3D Chaotic LÜ S ystem 
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Figure 7.  Synchronization of different state variables 

The master system is the same as for the previous case and 
the slave system is given by: 
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Where 1 2 3[ , , ]TS s s s=  represents the active control func-
tion to design. 

The error between the master and the slave is given by: 

2 1

2 1

2 1

x

y

z

e x x
e y y
e z z

= −
 = −
 = −

                  (14) 

And its dynamic, by:  
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The control law consists of two  parts: A  part to  eliminate 
the nonlinear terms and another to stabilize the resulting 
linear system 
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So, the controlled system is as follows: 
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With: 
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In Fig. 7(a-c), the trajectories of the two systems are in i-
tially completely  different due to the sensitivity to the init ial 
conditions. Once activated the control at t=2s, the two sys-
tems take a short time to be perfectively synchronized. The 
trajectory of the chaotic slave system become the same as 
that of the master hyperchaotic system 

3.3. Synchronization of the Hyperchaotic Lü System and 
the Qi  Chaotic System 

In this example, the master system is the hyperchaotic Lü  
system, and the slave system is the Qi chaotic system. This 
implies that when the two systems are synchronized, the Qi 
chaotic system will fo llow the same trajectories as those of 
the hyperchaotic Lü system.  

The Qi system is defined by: 
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Figure 8.  Chaotic Attractor of the Qi system 

For a2=30, b2=10, c2=1 and d2=10 the system has a cha-
otic behaviour.  

Fig. 8. shows the chaotic attractor obtained from the fo l-
lowing initial conditions: x2(0) = 0.15, y2(0) = 1.1, z2(0) = 
0.25, u2(0)=0.15.  

As for the previous example, we define the master system: 
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And the slave system 
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The active control function applied on the slave is:  
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Fig.(9-a) to (9-d) represent the simulation results for this 
case. The chaotic slave system becomes hyperchaotic al-
though it is different from the master system. These results 
demonstrate the effectiveness of the described algorithm 
even when the two systems are d ifferent and the slave system 
is strongly nonlinear. The controller drives the chaotic sys-
tem to hyperchaotic trajectories  
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Figure 9.  Synchronization of different state variables 

4. Conclusions 
In this paper, we introduced the generation of new hy-

perchaotic Lü system. Dynamical behaviours of the system 
are exp lored by calcu lating the Lyapunov exponents and the 
phase diagram. The synchronization of the obtained hyper-
chaotic system with a chaotic system is possible using an 
active control algorithm. In addition to its efficiency, this 
method is easy to implement and achieves the synchroniza-
tion of two systems completely d ifferent, in  a reduced time. 
The stability is guaranteed since the control law ensures that 
the eigenvalues of the system are always in the left  part of the 
complex p lan. 
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