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Abstract  In this paper, quadratic stability of adaptive dynamic surface control for a class of nonlinear systems in 
strict-feedback form is analyzed in the framework of linear matrix inequality. While the existence of controller gains and 
filter time constants for semi-global stability was theoretically proved in the literature, it is not sufficient to describe how a 
set-point value and parameter update laws affect stability and parameter convergence. Thus, it is necessary to provide a 
systematic analysis method to guarantee both stability and parameter convergence. By deriving the augmented closed-loop 
error dynamics in linear differential inclusion form, a sufficient condition of the controller gains for stability and parameter 
convergence is derived in the form of linear matrix inequality. Finally, the quadratic Lyapunov function for its quadratic 
stability is computed numerically via convex optimization. 
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1. Introduction 
The dynamic surface control (DSC) is a dynamic exten-

sion of multiple sliding surface (MSS) control to overcome 
the drawback of "explosion of complexity" in backstepping 
as well as MSS control[1]. The use of a series of dynamic 
filters enables the controller to be designed sequentially and 
simple. Furthermore, the existence of controller gains for 
semi-global stability was theoretically proved in[1]. Re-
cently, an analysis and design method in the framework of 
convex optimization has been introduced to allow us to find 
a quadratic Lyapunov function numerically for a class of 
nonlinear systems called strict-feedback form[2].  

This control approach was extended to a class of nonlin-
ear systems where the uncertainty is linearly parameterized, 
e.g., 1af  in (1) where a is an unknown constant and f1 is a 
known nonlinear function. The adaptive backstepping 
method has been developed[3] and extended to a class of 
time-delay nonlinear systems[4, 5]. As introduced above, 
the adaptive DSC to solve the problem of "explosion of 
complexity" has been developed for a class of nonlinear 
systems and time-delay systems[6, 7]. Furthermore, DSC 
has been combined with adaptive neural network control 
scheme in the literature[8, 9]. However, the useful tools 
such as linear matrix inequalities (LMIs) are hard to apply 
to nonlinear system with linearly parameterized uncertain-
ties. There is little work in the literature for LMIs to be used 
for stability analysis of adaptive nonlinear control problems. 
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The following example illustrates the design procedure of 
adaptive dynamic surface control in[6]: 
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where a is unknown but bounded by a known positive con-
stant c such that [ ]ca ,0∈  and 2

11 xf −=  is a known 
nonlinear function and locally Lipschitz on 

{ }0,|2 ><ℜ∈= rrxxD , i.e., 
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∂ :22 1
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where γ is a Lipschitz constant. The control objective is 
1 1( ) dx t x→  where x1d is a constant with 1 1 0d dx x= =  , which 

is called a set-point control problem. 
First, define the first error surface as 1 1 1dS x x= − . After 

taking its derivative along the trajectories of (1) 

121 afxS += , 
the synthetic input, which is to drive 1 0S → , is 

2 1 1ˆx af KS= − −                (2) 
where K is a controller gain and â  is the estimate of the 
unknown parameter a following the update law as propose 
in[6]: 

1 1â S fρ=                 (3) 
where ρ is a positive constant. 

Then, define the second sliding surface as 2 2 2dS x x= −  
where x2d equals 2dx  passed through a first-order filter, 
i.e., 

2 2 2d dx x xτ + = , 2 2(0) (0)dx x=         (4) 
where τ  is a filter time constant. Similarly, the derivative of 
S2 along the trajectories of (1) is 
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2 2 2 2 2d dS x x u x x= − = − −

   , 
and the control input is derive as 

2 2 2du x x KS= + −               (5) 
where 2dx is calculated from (4) such that 

2 2
2

d
d

x x
x

τ
−

= . 

It is interesting to remark that the calculation of 2dx  be-
comes simpler due to the inclusion of the first-order filter 
while it results in "explosion of complexity" in backstep-
ping. 

A next question is how to design a set of controller gains 
to guarantee stability, e.g., K, τ  and ρ in the example. It 
was proven in[6] that there exist a set of controller gains (K 
and τ ) to guarantee the stability for stabilization and 
set-point control problems. However, the performance of 
the adaptive DSC depends on ρ critically[10]. If a small 
magnitude of ρ is chosen, the adaption of a in (3) will be 
slow and the transient error will be large. On the other hand, 
too large magnitude of ρ will lead to oscillatory estimation 
of the parameter, thus resulting in the oscillatory error. 

Suppose a = 1 in (1), K = 2.5 in (2) and (5), and τ = 0.05 
in (4). When ρ  is assigned as 1 and 10 respectively, the 
time responses of x1 and â  are shown is Fig. 1. As ex-
plained above, the larger magnitude of ρ results in faster 
convergence of estimation error of â  and tracking error. 
However, when ρ = 70, the oscillatory estimation of the 
parameter is shown in Fig. 1. Thus, the tracking error does 
not converge to zero. Furthermore, if x1d is changed to a 
different constant, although it will be discussed later in Sec-
tion 4, the different time response (e.g., oscillatory estima-
tion) of â  may be shown for the same set of K, τ, and ρ.  

 
Figure 1.  Time response of x1 and estimate of a with respect to ρ 

Motivated by this example, it is unclear what values of ρ 
and x1d guarantee stability and convergence of the parame-
ter estimation error for the given set of a controller gain (K) 
and a time constant (τ). The main contribution of this paper 
is to derive the augmented closed-loop error dynamics in-
cluding parameter estimation errors and filter errors in lin-
ear differential inclusion form, and to derive the sufficient 
condition for stability and parameter convergence. Fur-

thermore, the sufficient condition allows us to check stabil-
ity of the closed-loop system and convergence of estimated 
parameters by solving the LMI numerically. 

Through this paper, we will use the following notation: 
0 n

n ∈ ℜ is a zero vector and 0 m n×∈ ℜ  is a zero matrix with 
appropriate dimensions. n n

nI ×∈ ℜ  is a square identity ma-
trix and m n

m nI ×
× ∈ ℜ  is an identity matrix in the sense that 

all diagonal elements are one whatever the dimension of the 
matrix is. If n

nx ∈ ℜ is a vector, diag(x) is a diagonal matrix 
with the vector x forming the diagonal and diag(x,i) (or 
diag(x,-i)) is a square matrix of size (n+i) with the vector x
forming the i th super-diagonal (or sub-diagonal) stands for 
a positive definite (or semidefinite) matrix, Tr(X) is the sum 
of all diagonal entries in X. 

2. Problem Statement 
Consider the class of nonlinear system as follows: 

1 1

1

( ,..., ), 1,..., 1

( ,..., )

i i i i i

n n n n

x x a f x x i n

x u a f x x

+= + = −


= +

 



     (6) 

where ai is an unknown parameter but bounded by a known 
positive constant ci such that [0 ]i ia c∈ , fi and ]/[ xfi ∂∂  
are continuous on nD ∈ ℜ and :i if D → ℜ  on iD D⊂  is a 
known nonlinear function in strict-feedback form in the 
sense that the fi depend only on 1,..., ix x . It is implied that  
fi is locally Lipschitz and [ ( ) / ]if x x∂ ∂  is bounded on Di[11]. 
Therefore, there exists a constant 0iγ >  such that 

1
...i i i

i
i

f f f
x x x

γ
 ∂ ∂ ∂

= ≤ ∂ ∂ ∂ 
             (7) 

for all x on Di. 

3. Adaptive Dynamic Surface Control 
3.1. Design Procedure 

An outline of the standard design procedure for the adap-
tive DSC described in[6, 12] is as follows: Define the i th 
error surface as :i i idS x x= − for 1,...,i n=  where x1d is the 
constant value. After taking the time derivative of Si along 
the trajectories of (6), 

1:i i i iS a f x += +  
The surface error Si will converge to zero if 0i iS S < , 

however there is no direct control over the surface dynam-
ics. If xi+1 is considered as the forcing term for the error 
surface dynamics, then the sliding condition outside some 
boundary layer is satisfied if 1 1i ix x+ +=  where 

1 ˆi id i i i ix x a f K S+ = − −              (8) 
and the update law for the parameter estimate is as follows: 

ˆi i i ia S fρ= .                 (9) 
where Ki is a controller gain and ρi is a positive gain. 
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The next step is to force 1 1i ix x+ +→ , so define 1 1 ( 1):i i i dS x x+ + += −  
where ( 1)i dx +  equals 1ix +  passed through a first-order filter, 

1 ( 1) ( 1) 1i i d i d ix x xτ + + + ++ = , ( 1) 1(0) : (0)i d ix x+ +=
    

(10) 

After continuing this procedure for 1 1i n≤ ≤ − , define 
:n n ndS x x= − . After taking its derivative, the control input is  

1ˆ ( ,..., )nd n n n n nu x a f x x K S= − −          (11) 
where ndx  is calculated from (10) and the update law of 
ˆna  is following 

ˆ,n nd
nd n n n n

n

x x
x a S fρ

τ
−

= =

 . 

3.2. Augmented Error Dynamics 
The augmented closed loop error dynamics is derived for 

analysis of stability and parameter convergence. After sub-
tracting and adding 1ix +  and ( 1)i dx + , and using u in (11), 
the closed-loop dynamics in (6) can be written as 

1 ( 1) ( 1) 1 1[ ] [ ]
ˆ

i i i d i d i i i i

n nd n n n n n

x x x x x x a f

x x a f K S af
+ + + + += − + − + +

= − − +



 

 

for 1,..., 1i n= − . Using (8) and the definition of error sur-
faces, the above equations can be described as a function of 
errors as follows: 

1 1i i i i i i

n n n n

S S K S h

S K S h

ξ+ += + − +

= − +





          (12) 

where 1 ( 1) 1i i d ix xξ + + += −  is the filter error and 
ˆ( )i i i i i ih a a f a f= − =   

is the parameter estimation error multiplied by fi. 
In addition, we need to consider the augmented error dy-

namics due to inclusion of a set of the first order low pass 
filters and the update law for the estimate. After taking a 
derivative of 1iξ +  for 1 1i n≤ ≤ − , the filter error dynamics 
is 

1 ( 1) 1 1 1 1/i i d i i i ix x xξ ξ τ+ + + + + += − = − −
 

       (13) 

where the last equality comes from (10). By taking a de-
rivative of (8), we can write 1ix +

 as 

2 1 1 1 1ˆ( )dx a f K S
dt

= − − 
  

1 ˆ ˆ( ) / ( )i id i i i i i i i i i i
d dx x a f K S a f K S
dt dt

ξ τ+ = − − = − − −  


  (14) 

for 2,..., 1i n= − . Since the derivative of hi is written as 

ˆ ˆ{( ) } ( ) ,i i i i i i i i
d dh a a f a f a f
dt dt

= − − = − + 

    
 (15) 

(14) is rewritten as 
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1
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ξ
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= − + − −
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
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

         (16) 

the filter error dynamics in (13) is 
2

2 1 1 1 1
2

iK S h a fξ
ξ

τ
− + = − +               (17) 
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ξ ξ
ξ

τ τ
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+
+

− − + = − +

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Equation (15) with the update law in (9) is written as 
2ˆi i i i i i i i i ih a f a f f S a fρ= − + = − +

  

            (18) 
Finally, the overall error dynamics in (12), (17), and (18) 

can be summarized as 
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(19) 

where i = 1,…, n-1, j = 1,…, n, and k = 2,…, n-1. Further-
more, the above error dynamics can be written in matrix 
form as follows: 

11 ( 1)

21

0 ( 1)

1

0 0
0 0 0 0

0 0

0 0
0

0

n n nn

n

n n

n

n
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where the vectors are defined as 

1[ ] ,T n
nS S S= ∈ℜ

1
2[ ] ,T n

nξ ξ ξ −= ∈ℜ

1[ ] ,T n
nh h h= ∈ℜ 1 1[ ] ,T n

n naf a f a f= ∈ℜ  

  


1
1 1 1 1[ ] ,T n
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  
and the submatrices are 

1

2
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1 0
0

([1, ,1],1) ,
1

0 0

n n

n

K
K

A K diag

K

×

− 
 − = = − + ∈ℜ
 
 

− 



 



  



 

2 2
21 1 1( , , )n nA diag f fρ ρ= − 
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n
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τ τ
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−
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Since the first block matrix in (20) is invertible such that 
1

1 1 1
0 ( 1) 0
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n n

n n
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I I
I I
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−
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 
 
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after multiplying the inverse matrix to both sides in (20), 
the augmented closed-loop error dynamics are written as 

wclz A z B ω= +                (21) 
where the error state 3 1[ ] : nT T T T n zz S h ξ −= ∈ℜ = ℜ , 

2 1[ ] : ,nT T T naf af ωω −= ∈ℜ = ℜ 

  and the matrices are 

11 ( 1)

21
1 1 1

0

11 ( 1)

21

31 32 33

1 1
( 1)

0 0
0 0 0 0

0 0

0 0 ,

0 0
0

n n n n
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n n n

n
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ω
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 
 =  
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 − 

 

where the submatrices are 
1

31 0 11( ),nA T K A Iξ
−= −  1

32 0 ,A T Kξ
−=  

1 1
33 0 ( 1) 1:( 1)( ) ( ),n n nA T K I T Kξ ξ

− −
× − −= − Γ = − Γ  

1:( 1) 1 1( ,..., ).n nK diag K K− −=  
It is noted that the third row of wB ω is 

1 1
( 1) ˆ( ) .n nT I a a f T afξ ξ

− −
− ×− + = 


 

By defining [ ]T T Taf afω =  

  , (21) is rewritten as follows: 
clz A z Bωω= +              (22) 

where  
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0 0
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0
w nB I

Tξ
−
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 

=  
 
  

 

Next, we need to determine the upper bound of ω in (22). 
Using the assumption in (7), the upper bound of iω for 

1,..., 1i n= −  is 

1
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1

[ ]

[ ]
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j
j T
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T
i i i

f
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+
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for j = 1,…,n-1. Using (12), ix  is written in a function of z 
as follows: 

1 1 1 2 2 1

1 1 1 /
/

i i i i i i i i

n n n n n

x K S S h
x K S S h
x K S

ξ
ξ ξ τ

ξ τ
+ + +

= − + + +
= − + + + −

= − −







 for 2,..., 1i n= −  

Therefore, there exists a matrix ziC  such that 
.i ziC zω ≤                (23) 

Finally, the augmented error dynamics, (19) with the up-
per bound of ω in (21), can be written in diagonal 
norm-bounded linear differential inclusion (LDI) form as 

follows[13]: 

, , 1, ,
cl

i zi i i

z A z B
t C z t i n

ω

ω

ω

ω

= +

= ≤ =





        (24) 

3.3. Quadratic Stability 

Since Acl in (24) is not time invariant due to A21 is (21), 
both A21 and A31 can be decomposed into a steady-state term 
and a time varying term under the assumption that 0z →  
as t → ∞  for the given set of controller gains. That is, 

2 2
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2 2 2 2 2 2
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21 21
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( , , ) ( , , )

{ ( ), , ( )}
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1 121
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and [0 ]i ia c∈  is a nominal constant, e.g., / 2i ia c= or a rough 
estimate of ai. Therefore, Acl can be written as 

[ ]
11 ( 1)

21 21

31 32 33 31

0

0 0 0 0
n n n

pn
cl

n p

n p

A I I

A A A I
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Using (25), (24) can be considered as a nominal 
closed-loop error dynamics subject to a vanishing 
perturbation term as follows: 
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
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Since p is a function of S and is bounded on D, there exists 
a matrix Czi such that i izp C z≤  for i = 2,…,n-1. 

Finally, the augmented error dynamics in (24) can be 
written as 

, , 1, ,
n e e

i zi ei i e

z A z B
t C z t i n

ω

ω
= +

= ≤ =





       (27) 

Since the augmented error dynamics in (27) is written in 
diagonal normbounded LDI, its quadratic stability can be 
applied as follows[13]: 

Definition 1. Suppose An in (27) is Hurwitz for the given 
set of controller gains, 1 2{ , , , , , }n nK K τ τ 

, and update law 
gains, 1{ , , }nρ ρ . The augmented error dynamics in (27) is 

quadratically stable if there exists a positive definite matrix 
P such that 

( ) ( )

( ) ( ) 0.

T

T T
n e e n e e

d dV z z Pz
dt dt

A z B Pz z P A z Bω ω

= =

     + + + <

 (28) 

If the error dynamics is quadratically stable, z = 0 is an 
exponentially stable equilibrium point on D. The sufficient 
condition above for quadratic stability can be expressed in 
terms of linear matrix inequality (LMI) as described in the 
following theorem. 

Theorem 1. Suppose that the diagonal norm-bounded 
error dynamics in (27) is given for given set of controller 
gains and An is Hurwitz. The error dynamics in (27) is 
quadratically stable on D if there exist P > 0 and 

1 2( , , , ) 0nediag σ σ σΣ = ≥

such that 

0
T T
n n z B z e

T
e

A PA C C PB

B P

 + + Σ
< 

−Σ  
      (29) 

where 

1[ , , ] ,
e

T T T
z z znC C C=   1 2( , , , )

eB ndiag I I Iσ σ σΣ =   
is the diagonal block matrix.  
The equivalence between (28) and (29) can be referred 
to[13]. 

Remark 1. If there exists the solution for (29), z = 0 is 
exponentially stable. That is, x1→x1d and 0i ia f → as t→∞. 
Moreover, if fi satisfies the so called “persistent 
excitation”[6], i.e., there exist strictly positive constants ai and T such that for any t > 0, 

 

0ia →  as t→∞. Otherwise, it is not guaranteed for the 
estimated parameter to converge to the correct value 
although x1→x1d as t→∞. 

4. Illustrative Example 
Consider (1) again with the unknown parameter a = 1 and 

the control objective is x1→x1d
 
= 1. Suppose the domain 

2{ , 2}D x x r r= ∈ ℜ ≤ = and ˆ [0 ]a c∈  where c = 2. Then, 

1
1

1
ˆ2 2 , , .

f x r a c a c
x

γ
∂

= − ≤ = ≤ ≤
∂

  

If the controller derived in Section 1 is applied, the 
closed-loop error dynamics is following as in (19): 

1 1 2

2 2
2

1 1 1

1 1.

S KS S h
S KS

h f S af

KS h af

ξ

ρ
ξξ
τ

 = − + + +


= −
 = − +

 − + = − +





 



  

        (30) 

where 2 2dx xξ = − and 1h af=  . Equation (30) can be 
written in matrix form as follows: 

1
2

11

1 1 11 0 0 0 0 0
0 0 00 1 0 0 0 0

0 0 1 0 1 00 0 0
0 1 1 0 10 0 0 1/

K
K af

z z
aff

K
ρ

τ

−    
    −      = +      −      

− −     









 (31) 

where 4
1 2[ ]Tz S S h ξ= ∈ ℜ . As derived in (22), (31) can 

be writtens as 

1
2

1 1
2 2

1

1 1 1 0 0
0 0 0 0 0

0 0 0 1 0 ˆ
0 11/

.cl

K
K af

z z
f af

K f K K K
A z Bω

ρ

ρ τ
ω

−   
   −     = +     −     
 − + −   

= +









 

where 2
1 1ˆ[ ]Taf afω = ∈ ℜ 


 and the upper bound of ω  is 

determined as follows: 
1 1 1 1 1 1 2

1 1

2 1 1 1 2

2 2

ˆ ˆ 2
z z

z

af a x x a x KS S h

c c z C z

af a x x C z

ω ξ

γ

ω

= = ⋅ − = ⋅ − ⋅ − + + +

≤ =

= = ⋅ − ≤



   





 

where [ ]1 1 1 1zc K= −  and 1 2 1.z z zC C c cγ= =  
Therefore, the augmented error dynamics can be written 

in LDI form as 

, , 1, 2
cl

i zi i i

z A z B
t C z t i

ωω

ω

= +

= ≤ =



         (32)  

For stability analysis, (32) is considered as a perturbed 
system as follows: 

, , 1, 2
cl p

i zi i i

z A z B B p

t C z t i
ωω

ω

= + +

= ≤ =



           (33)  

where the matrices are 

2
1 1

2 2
1 1

1 1 1 0
0 0 0 0

, ,
( ) 0 0 0

( ) 1/

n p
d

d

K
K

A B
f x

K f x K K K

ρ ρ
ρρ τ

−   
   −   = =   − −
   
 − + −   

 

2 2
1 1 1 1 1( ) ( )dp f x f x S = −   is a vanishing perturbation and 

its upper bound is 
1 1 1 1 1 1 1 1 1 1 2 3( ) ( ) ( ) ( ) 2d d z zp f x f x f x f x S M S c z C zγ≤ + ⋅ − ⋅ ≤ ⋅ ⋅ ≤  

where M is a maximum of f1 on D, i.e., 2M r= , 

[ ]2 1 0 0 0zc =  and 3 24z zC rMcγ= .  

Finally, the augmented error dynamics is written in 
diagonal norm-bouned LDI as 

2t T
i it

f dr a
+

≥∫
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, , 1, 2,3

n w p n e

i zi i i

z A z B B A z B e
p

t C z e t i

ω  = + = +    
= ≤ =



      (34) 

The eigenvalues of An in (34) are caculated as following: 

2
1

2 2
1

1 1 1
0 0 0

det( ) det
0 0

1/

n
d

d

K
K

I A
f

K f K K K

λ
λ

λ
ρ λ

ρ λ τ

 + − − − 
  +  − =   
  
  − − − − +  

 

2
1

2 2
1

1 1

det( )det 0 0

1/
d

d

K

K f

K f K K

λ

λ ρ λ

ρ λ τ

 + − − 
  

= + =  
   − − − +  

 

where 1 1 1( )d df f x= . Then, 
3 2 2

10, 0dK K fλ τλ λ λ ρ+ = + + + =  
It is noted that the decond characteristic equation can be 
derived using Symbolic Math Toolbox of MATLAB. Using 
the Routh stability criterion, the inequality condition for An  
to be Hurwitz is derived to be 

2
10, dK K fτρ> >               (35) 

Suppose K = 2.5 and τ = 0.05. Then, the inequality 
condition in (35) becomes 

2
1 / 50df Kρ τ< =  

If three values of ρ are considered, i.e., ρi={1,10,70}, i = 
1,2,3, three ranges of x1d for An to be Hurwitz are obtained 
as follows: 

2 1/4
1 1 1 1( ) 50 / (50 / )d d i d if x x xρ ρ= < ⇒ < .   (36) 

That is, 1 2.6591dx < for ρ1 = 1, 1 1.4953dx < for ρ2 = 10 and 

1 0.9193dx <  for ρ3 = 70.  
When x1d = 1 and ρi is either 1 or 10, the matrix An in (32) 

is Hurwitz for both cases and LMI (29) can be solved via 
convex optimethod called CVX[14] is used to solve the 
feasibility problem by calculating P and Σ in (29) 
numerically in the framework of MATLAB. As predicted 
through stability analysis, x1→x1d and â a→  as t→∞  as 
shown in Fig. 1. For ρ3 = 70, the eigenvalues of An are 

( ) {0.4134 8.1884, 2.5, 20.8269}.i nA jλ = ± − −  
Since the matrix An is not Hurwitz, this results in the 

oscillatory estimate of a  and thus oscillatory tracking of 
1dx  (refer to Fig 1). 
If x1d is changed to 1.5, the eigenvalues of An with respect 

to ρi are 
( ) { 1.2652 2.0482, 2.5, 17.4697}nA jλ = − ± − −  for 1ρ = , 
( ) {0.0139 7.1102, 2.5, 20.0277}nA jλ = ± − −  for 10ρ = . 

It is shown in Fig. 2 that the time responses of for x1 and â  
are oscillatory for ρ2 while the tracking error and parameter 
estimation error converges to zero for ρ1. If τ becomes 
smaller as 0.01, the inequality condition in (36) is modified 
as 

1/4
1 (250 / ) .d ix ρ<               (37) 

Thus, the matrix An is Hurwitz for all ρi and there exist a 
solution for LMI (29). The corresponding time responses of 

x1 and â  are shown in Fig. 3. It is remarked that a smaller 
gain of τ allows us to enlarge the range of x1d for nA  to be 
Hurwitz. However, it is well known that 1/τ in the 
first-order filter is a cut-off frequency and the noise thus 
may not be attenuated if τ is too small. 

 
Figure 2.  Time response of x1 and â  with respect to ρ for x1d =1.5 

 
Figure 3.  Time response of x1 and â  with respect to ρ for 01.0=τ  

5. Conclusions 
The analysis method for stability and parameter conver-

gence of adaptive dynamic surface control was proposed by 
deriving the augmented closed-loop error dynamics in lin-
ear differential inclusion form. The sufficient condition for 
stability is derived for the given controller gains in the form 
of linear matrix inequality. It allows us to analyze both 
quadratic stability and parameter convergence by comput-
ing a quadratic Lyapunov function numerically via convex 
optimization. 
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