
Computer Science and Engineering 2025, 15(4): 102-106

DOI: 10.5923/j.computer.20251504.03

Automating SAP Document Processing from Emailed

PDFs: Leveraging AI for Touchless Order Processing

Ajay Verma

MCA – SAP Technical Architect and AI Specialist, Dayton, Ohio, United States of America

Abstract Digital transformation in enterprise resource planning requires robust, automated handling of documents,

including scanned PDFs that traditionally demanded extensive manual intervention. This paper presents an approach where

SAP’s inbound processing capabilities are seamlessly integrated with Python-based AI agents. The process involves

extracting scanned PDF attachments from emails using SAP’s class CL_EPM_ADS_INBOUND_LIST method

PROCESS_INBOUND, converting the internal xstring representation to binary, binary is then transmitted to a Python AI

agent, which utilizes advanced optical character recognition (OCR) and natural language processing (NLP) techniques to

convert the binary data into human-readable text. Once processed, the resultant text is re-imported into SAP to automatically

generate documents such as sales orders. This integration not only minimizes manual data entry but also improves processing

speed and accuracy. This process doesn’t require ADS (Adobe Document Services) configuration. Additionally, to maintain

auditability and enable document retrieval, processed documents are stored on a content server using the SAP function

module ARCHIVOBJECT_CREATE_FILE, ensuring that original attachments remain accessible for future reference.

While the methodology is applicable to a wide range of document types (including purchase orders and financial documents),

this paper illustrates the approach by focusing on the automated creation of sales orders from inbound email PDF

attachments.

Keywords SAP, Python, AI Agent, Scanned PDFs, Inbound Email Processing, Sales Order Automation, OCR, NLP

1. Introduction

In today’s fast-paced business environment, enterprises

are continually seeking ways to reduce manual work and

enhance process efficiencies. One challenge is handling

scanned documents. Even within robust systems like SAP,

many processes involve scanning physical documents, such

as invoices, contracts, or purchase orders, then ingesting

them manually. Labor-intensive workflows lead to delays,

errors, and inflated costs.

This paper explores a practical integration between SAP

and a Python-based AI agent that transforms scanned PDF

documents into actionable data. By leveraging SAP’s inbound

email attachment processing capabilities and coupling them

with AI-driven text extraction, companies can accelerate

document processing workflows to drive efficiency in operations

like sales order creation. The proposed system creates a pipeline

that extracts the scanned PDF attachment from inbound

email, converts it for AI consumption, interprets its contents,

and reintegrates the recognizable text into SAP, to reduce

manual intervention.

* Corresponding author:

ajaverma@yahoo.com (Ajay Verma)

Received: May 30, 2025; Accepted: Jun. 22, 2025; Published: Jul. 4, 2025

Published online at http://journal.sapub.org/computer

The real innovation here lies in bridging the gap

between legacy process steps and modern AI capabilities.

The following sections detail our research into the system

design, implementation, and operational benefits of this

integration.

2. Background

2.1. Process Challenges

Many organizations face persistent issues with manual

document posting for example manual order creation in SAP,

particularly when dealing with variable-quality PDFs:

 Manual Data Entry: This introduces avoidable human

errors and takes valuable staff time.

 Inconsistent Document Quality: Scanned documents

are often noisy or skewed, complicating automated

extraction.

 Delays and Inefficiencies: Processing bottlenecks can

affect revenue recognition and customer service.

2.2. Value Proposition of Automation

By automating this process, businesses stand to gain:

 Computer Science and Engineering 2025, 15(4): 102-106 103

 Accuracy: Automated extraction ensures consistency,

reducing the risk of costly mistakes.

 Speed: SAP orders are processed and fulfilled more

quickly.

 Standardization: End-to-end processing becomes

uniform, supporting operational scalability.

 Structured Error Handling: Entries with missing or

ambiguous data are flagged for manual attention,

ensuring nothing slips through the cracks.

Our solution brings together SAP’s enterprise-strength

email handling with a modern Python extraction service,

supporting a streamlined order-to-cash cycle.

3. System Architecture and Workflow

The architecture integrates SAP’s email processing and a

Python-based document analysis service using secure REST

APIs. The end-to-end process comprises:

1. Email Reception & Attachment Extraction:

SAP monitors a designated inbox and extracts PDF

attachments using standard interfaces.

2. Transmission to Python Service:

PDF data is securely posted to an external Python

service.

3. Document Analysis:

The Python service decodes, applies OCR/NLP, and

returns extracted DATA in readable format.

4. Validation & Order Creation:

SAP validates the returned data, either creating the

order or logging an error for follow-up.

5. No Use of ADS:

The process is fully SAP native, and Python based

avoiding additional middleware dependencies.

3.1. High-Level Business Process Flow

Figure 1. Business Process Flow

4. Implementation Details

Note: Below code is for reference purpose – it is not

complete code.

4.1. SAP Implementation [1] [2]

Setup SMTP inbound message, inbound processing using

T-Code SCOT

Copy class CL_EPM_ADS_INBOUND_LIST to ZZ_

EPM_ADS_INBOUND_LIST and assign to communication

type “Internet Mail” and document class “PDF”

4.1.1. Email Monitoring and Extraction and Middleware Integration

Implement Method CREATE_INSTANCE

 DATA: cl_ref type ref to zz_emp_ads_inbound_list.

 create object cl_ref.

 ro_ref = cl_ref.

Implement method PROCESS_INBOUND to read email and extract attached PDF data:

METHOD if_inbound_exist~process_inbound.

 extract_pdf_attachement(

 EXPORTING

 io_sreq = io_sreq

 IMPORTING

 ev_success = lv_success

 ev_pdf = lv_pdf

 ev_filename = lv_filename).

104 Ajay Verma: Automating SAP Document Processing from Emailed PDFs: Leveraging AI for Touchless Order Processing

 CALL FUNCTION ‘SCMS_XSTRING_TO_BINARY’

 EXPORTING

 buffer = lv_pdf

 IMPORTING

 binary_tab = pdf_binary

 gv_url = ‘http://python-server-ip-port/process_pdf_data’.

 CALL_METHOD cl_http_client=>create_by_url(

 EXPORTING

 url = gv_url

 IMPORTING

 client = lv_http_client).

 lv_http_client->request->set_header_field (

 name = ‘content-type’ value ‘applicatio\pdf’).

 lv_http_client->request->set_cdata(lv_pdf).

 lv_http_client->send().

 Wait up to 5 seconds.

 DATA(lv_json) = lv_http_client->response->get_data().

 Perform create_sales_order using lv_json.

ENDMETHOD.

4.1.2. Sales Order Creation and Error Handling

After receiving the JSON response, use the data to create sales order:

FORM create_sales_order using lv_json.

Fill Header DATA structure

Fill Item DATA internal table

Fill Partner DATA internal table

Fill Schedule line DATA internal table

CALL FUNCTION 'BAPI_SALESORDER_CREATEFROMDAT2'

 EXPORTING

 ORDER_HEADER_IN = header

 ORDER_HEADER_INX = headerx

 IMPORTING

 SALESDOCUMENT = sales_order

 TABLES

 return = return

 ORDER_ITEMS_IN = item

 order_items_inx = itemx

 order_schedules_in = schedules

 order_schedules_inx = schedulesx

 order_partners = partner.

ENDFORM.

 Computer Science and Engineering 2025, 15(4): 102-106 105

4.2. Python Service [2] [3]

A lightweight Python web service (Flask or FastAPI) is used for PDF processing:

from flask import Flask, request, jsonify

import binascii

import pytesseract

from PIL import Image

import io

app = Flask(__name__)

@app.route('/process_pdf', methods=['POST'])

def process_pdf():

 data = request.get_json()

 hex_data = data.get('hexData')

 if not hex_data:

 return jsonify({"error": "No hex data provided"}), 400

 try:

 binary_data = binascii.unhexlify(hex_data)

 image = Image.open(io.BytesIO(binary_data))

 processed_image = image.convert("L")

 extracted_text = pytesseract.image_to_string(processed_image)

 structured_data = parse_extracted_text(extracted_text)

 return jsonify(structured_data)

 except Exception as e:

 return jsonify({"error": str(e)}), 400

def parse_extracted_text(text):

 data = {}

 data['CustomerName'] = extract_field(text, 'Customer')

 data['PurchaseOrderNumber'] = extract_field(text, 'PO')

 data['ProductCode'] = extract_field(text, 'Product')

 data['Quantity'] = extract_field(text, 'Quantity')

 data['DeliveryDate'] = extract_field(text, 'Delivery Date')

 return data

def extract_field(text, keyword):

 # Placeholder logic: should be replaced by more robust parsing

 if keyword in text:

 return "Extracted_" + keyword

 return ""

if __name__ == '__main__':

 app.run(ssl_context='adhoc', port=5000)

Note: Actual field extraction would be more sophisticated in a production environment.

4.3. Design without ADS

This solution is intentionally designed without requiring

SAP ADS, keeping the architecture lightweight and reducing

operational overhead. SAP’s built-in email and HTTP

capabilities, paired with a dedicated external extraction service,

ensure robust and maintainable integration.

5. Security, Testing, and Performance

5.1. Security

 Encryption: All data exchanges use HTTPS.

 Access Controls: Endpoints are protected via

authentication tokens and SAP’s standard authorization

checks.

106 Ajay Verma: Automating SAP Document Processing from Emailed PDFs: Leveraging AI for Touchless Order Processing

 Logging: Both SAP and Python services keep detailed

logs for traceability.

 Data Integrity: Careful error handling and validation

at each step protect against data corruption.

5.2. Testing

 Unit Testing: Individual functions are tested separately

in both ABAP and Python.

 Integration Testing: The end-to-end flow is validated

using sample documents.

 Load and Fault Tolerance: The solution is tested

under high volume and with intentionally malformed

data to ensure resilience.

5.3. Performance

 Scalability: Both SAP and the Python service can be

scaled horizontally.

 Caching: The architecture supports concurrent requests

and temporary caching if needed.

6. Challenges and Opportunities for
Improvement

6.1. Existing Limitations

 Document Quality: Poor scan quality still presents

challenges for OCR.

 Flexible Field Extraction: Ongoing enhancement is

required for robust parsing of non-standard document

layouts.

 Processing Time: Complex OCR/NLP steps may

introduce some latency under heavy loads.

6.2. Future Directions

 Advanced ML Models: Introducing deep learning

could boost accuracy for both OCR and field extraction.

 Real-Time Processing: Moving to event-driven

processing for lower latency.

 Wider Document Types: Supporting handwritten or

mobile-generated POs.

 Proactive Correction: Leveraging order history to

suggest corrections for incomplete fields.

7. Conclusions

This paper outlines a practical and robust method for

automating SAP sales order creation from emailed PDF

documents, leveraging only standard SAP and Python

integration techniques. The architecture is designed for

real-world enterprise environments—delivering accuracy,

speed, and operational efficiency without increasing system

complexity. The proposed solution reduces manual workload,

increases reliability, and lays a scalable foundation for future

enhancements in order automation.

REFERENCES

[1] SAP Integration Best Practices.
https://learning.sap.com/learning-journeys/getting-started-wi
th-sap-integration-solution-advisory-methodology/defining-i
ntegration-best-practices_b3bc1a05-9dee-400d-9937-51acc9
5fee76,
https://community.sap.com/t5/enterprise-resource-planning-
blog-posts-by-members/save-process-incoming-e-mail-and-a
ttachments-in-sap/ba-p/13556119.

[2] Practical Python for Business Data Processing.
https://learnpython.com/blog/python-for-business/,
https://stackoverflow.com/questions/45480280/convert-scan
ned-pdf-to-text-python.

[3] Automation with OCR & NLP – Journal of Intelligent
Enterprise Systems.
https://ijirt.org/publishedpaper/IJIRT175285_PAPER.pdf,
https://stackoverflow.com/questions/45480280/convert-scan
ned-pdf-to-text-python.

Copyright © 2025 The Author(s). Published by Scientific & Academic Publishing

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

