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Abstract  As computer networks become increasingly complex; the network security sector faces evolving cyber threats, 

highlighting the critical role of Intrusion Detection Systems (IDS) in identifying attacks. Currently, Deep Learning (DL) is 

gaining momentum as a preferred technique due to its ability to generalize in classification tasks. This study evaluates DL 

techniques for IDS and Malware Detection Systems (MDS) by comparing their performance under identical conditions. The 

choice of DL methods challenges conventional notions about designing effective neural architectures and input data types, 

including tabular data. Hence, we assess a basic ANN, more suitable for our case, alongside Recurrent Neural Network (RNN) 

and Convolutional Neural Network (CNN) model combined with Long Short-Term Memory (LSTM) tailored for sequential 

or temporal data. DL networks undergo testing on the NLS-KDD and Malware datasets, achieving an accuracy of 99.99% for 

IDS and 99.97% for MDS, with RNN-LSTM emerging as the top performer in both cases. 
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1. Motivation and Related Works 

Nowadays, computer networks are faced with a 

significant influx of data from sources such as the Internet 

of Things (IoT), cybersecurity, mobile devices, businesses, 

social networks, healthcare, etc. To effectively protect these 

networks, intelligent analysis and automated solutions are 

essential. Artificial intelligence (AI), particularly machine 

learning and deep learning techniques, offer a powerful 

solution [1]. By leveraging the capabilities of AI, we can 

develop intelligent applications capable of analyzing large 

volumes of data, detecting threats in real-time, and automating 

security responses [2]. 

The DL introduction into cybersecurity has brought 

significant advancements in cyber-attacks detection and 

prevention [3]. Deep learning has significantly evolved 

within the cybersecurity industry, demonstrating its crucial 

role in enhancing threat detection and bolstering system 

resilience. Companies such as Darktrace utilize artificial 

intelligence to detect suspicious behaviors across networks. 

Cylance employs sophisticated deep learning algorithms to 

proactively identify and mitigate malware attacks by analyzing 

intricate behavioral patterns within files. Vectra Networks 

utilizes advanced deep learning techniques to monitor and 

promptly detect internal threats, offering automated threat  
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responses. PatternEx enhances accuracy by reducing false 

positives through machine learning, while Sophos AI effectively 

identifies ransomware and targeted attacks using robust deep 

learning methodologies. These advancements underscore 

how deep learning plays a pivotal role in safeguarding 

systems against cyber threats, swiftly identifying malicious 

activities and bolstering overall network and computer 

security. In this section, we showcase a selection of research 

studies employing DL for IDS. 

In Alom et al. [4], they employ a Deep Belief Network 

(DBN). A DBN is a deep generative model comprised of a 

visible layer and multiple hidden layers of latent variables. 

While connections exist between the layers, there are no 

connections between units within each layer [5]. The proposed 

system is capable of detecting attacks, and the accuracy of 

network activity is also identified and classified into five 

groups based on factors such as limited, incomplete, and 

nonlinear data sources. Compared to the existing system, 

the detection accuracy reaches 97.5% after 50 iterations. 

However, the DBN requires initial unsupervised pre-training 

and careful adjustment of hyperparameters to achieve good 

performance, which can involve numerous trials and errors. 

Next, Tang et al. [6] implemented a Deep Neural 

Network (DNN) for IDS in a Software Defined Network 

(SDN) controller to monitor all flows of OpenFlow 

switches. They trained the model on the NSL-KDD dataset 

for binary classification (normal/anomaly) using only 6 

basic features out of the 41 available. The model was 

optimized by varying the learning rate from 0.1 to 0.0001. 

Their model achieved an accuracy of 75.75%. Other works, 

such as those by [7], [8], [9], [10], pursued similar approaches. 
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DL algorithms, especially Convolutional Neural Networks 

(CNNs), have demonstrated remarkable capabilities in 

automatically extracting intricate patterns and features from 

complex data, such as network traffic [11]. For instance, in 

the work of [12], a CNN was implemented to model network 

traffic events as time-series of TCP/IP packets within 

predefined time periods. Drawing inspiration from natural 

language processing techniques, the authors utilized a 1D 

Convolution layer [13]. This approach enabled modeling 

network traffic events as chronological data series, where 

instead of using 2D image data as input, the CNN processed 

a series of data in 1D format organized over time intervals. 

Different architectures were proposed, each containing an 

input layer, hidden layers with one or more CNN layers, 

and output layers such as FFN or RNN/LSTM/GRU to 

determine the optimal architecture. All experiments were 

conducted over 1000 epochs, and the CNN-LSTM achieved 

a high accuracy of 99% on the KDDCup 99 dataset. 

Wu et al. [14] proposed an IDS model using Convolutional 

Neural Networks (CNNs) to automatically select traffic 

features from raw datasets, improving class accuracy and 

reducing the false alarm rate (FAR). Similarly, Xiao et al. 

[15] proposed an efficient IDS based on CNN, initially 

performing feature extraction using techniques like principal 

component analysis (PCA) and autoencoder (AE). They 

transformed the one-dimensional vector (feature set) into a 

two-dimensional matrix before inputting it into the convolutional 

neural network. Experimental results on the KDD Cup'99 

dataset demonstrated efficiency in terms of learning and 

testing phase times, though with lower detection rates for 

U2R and R2L classes compared to other attack classes. 

Studies by [16], [17] recommend analysing network traffic 

using DL models, following a similar approach. However, 

CNNs may face challenges in capturing temporal dependencies 

within data sequences critical for detecting specific intrusion 

patterns, and their limited interpretability complicates 

understanding detected attack patterns. 

In reference [18], IDS based on RNN using GRU as the 

main memory with a multilayer perceptron and softmax 

classifier was proposed. Testing on the KDD Cup'99 and 

NSL-KDD datasets showed good detection rates compared 

to other methodologies, with lower detection rates observed 

for minority attack classes like U2R and R2L. 

Although our work focuses on deep learning, other machine 

learning studies have also achieved equally remarkable 

performances. In the work by Ferrag et al. [41], decision 

tree-based algorithms were utilized to assess performance 

on the CICIDS and BOT-IoT datasets, achieving respective 

accuracies of 96.665% and 96.995%. Similarly, Kunhare  

et al. [42] employed a random forest algorithm to select 

relevant features for reducing irrelevant attributes in 

intrusion detection. They conducted a comparative study 

using various classifiers including k-nearest neighbors 

(k-NN), support vector machine (SVM), logistic regression 

(LR), decision tree (DT), and naive Bayes (NB) to evaluate 

different metrics of intrusion detection systems (IDS). The 

particle swarm optimization (PSO) algorithm was applied to 

optimize the selected features on the NSL-KDD dataset, 

resulting in an accuracy of approximately 99.26%. 

In conclusion, these examples underscore that the 

utilization of deep learning in Intrusion Detection Systems 

(IDS) and Malware Detection Systems (MDS) remains a 

pertinent research topic. DL enables exploration of various 

ANN approaches, continuously improving system performance 

[19]. Factors such as structure, data flow, neuron density, 

layer number, and deep activation filters contribute to 

expanding the perspectives of these approaches. However, 

variations in training and testing conditions, datasets used, 

and output classes considered may lead to comparative 

survey challenges in objectivity and effectiveness. Our work 

offers a concise comparative analysis aiming to improve 

IDS and MDS performances by presenting referenced DL 

methods. Based on related works, RNN and CNN approaches 

show efficiency in major performances. Additionally, the 

characteristics of input data play a crucial role in designing 

artificial neural network models. Different types of data, 

such as time series, sequential inputs, spatial data, or tabular 

datasets, often demand specific architectures tailored to 

handle their respective input data propagation. As a result, 

our study investigates three approaches (ANN, RNN-LSTM, 

and CNN) to observe and evaluate IDS and MDS performances 

based on input data nature. Following experimentation,   

we integrated LSTM into CNN architecture for further 

improvement. 

2. Theoretical Background 

The utilization of deep learning techniques offers 

numerous advantages, particularly in its capacity to extract 

intricate patterns and generalize to novel data. Our study 

aims to assess the performance of existing models. Among 

the various architectures examined, we have selected the 

most commonly used static and dynamic models, along  

with hybrid versions: Artificial Neural Networks (ANNs), 

Recurrent Neural Networks (RNNs), and Convolutional 

Neural Networks (CNNs) paired with Long Short-Term 

Memory (LSTM). In this section, we briefly outline the 

theoretical background of these approaches. 

2.1. ANN Approach 

A simple Artificial Neural Network (ANN) consists of 

multiple layers of neurons: an input layer, one or more 

hidden layers, and an output layer, as illustrated in Figure 1. 

Each neuron in a layer receives weighted inputs, sums them, 

and passes them through an activation function before 

transmitting them to the next layer. This process is repeated 

until the data reaches the output layer, where the final output 

is generated. 

Learning in a simple ANN typically occurs through gradient 

descent. During the training phase, the network iteratively 

adjusts the weights and biases of the connections between 

neurons to minimize a loss function, often employing 

optimization techniques. 
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Figure 1.  ANN topology 

 

Figure 2.  RNN topology 

 

Figure 3.  CNN topology 

 

While simple ANNs are effective for many tasks, they may 

encounter overfitting issues with large datasets and deep 

architectures. Additionally, they may not always effectively 

capture temporal or spatial dependencies in the data. 

2.2. RNN Approach 

The main characteristic of an RNN is its utilization of 

recurrent loops, enabling the network to transfer information 

across different time steps. At each step of the sequence,  

the RNN takes into account the current input along with the 

internal state, or memory, computed from preceding steps. 

It then generates an output and updates its internal state for 

use in the subsequent step [20]. This recurrent mechanism 

empowers the RNN to capture long-term dependencies 

within the sequence. 

The Figure 2 illustrates how the hidden state of an RNN at 

time step t is determined based on the hidden state at the 

previous time step, the input at time step t, and the associated 

weights and biases. The RNN consists of input layer x, 

hidden layer h, and output layer o. When unfolding the loop, 
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the standard RNN repeats this structure multiple times, with 

the state h of each iteration serving as input to the next. 

Denoting the input, hidden, and output layers at time t as x(t), 

h(t), and o(t) respectively, the output o(t) is calculated as 

follows: 

a(t) = b1 + W h(t-1) + U x(t) 

h(t) = σ (a(t))                        (1) 

o(t) = b2 + V h(t) 

In (1), b1 and b2 are bias vectors, U, V, and W are    

the weighting matrices of the input-to-hidden connection, 

hidden-to-output connection, and hidden-to-hidden connection, 

respectively, and σ is an activation function, for example, 

sigmoid, tanh, ReLU.  

Traditional RNNs may face challenges in capturing 

long-term dependencies or processing very long sequences 

due to a problem known as vanishing or exploding gradients. 

2.3. CNN Approach 

Proposed in the work of LeCun et al. [21], CNNs      

are feed-forward artificial neural networks capable of 

recognizing simple objects with high shape variability   

[22]. CNNs are a specific type of artificial neural network 

designed for supervised learning, particularly for processing 

data with a grid-like structure such as images or temporal 

sequences [13]. 

CNNs are typically structured as a sequence of layers, 

alternating between convolutional layers, activation layers 

(such as ReLU), and pooling layers. Additionally, fully 

connected layers may be appended at the end of the network 

for classification purposes, as described in Figure 3. 

First, the input layer progressively extracts increasingly 

abstract features from the input data, enabling the model to 

better understand and make decisions about the data. 

The convolutional layers apply filters to the input to 

extract important features. Each filter is a weight matrix that 

is learned during the network training, as shown in (2).  

 Output [i,j]=∑(W∗ Input [ i:i+K, j:j+K])++B (2) 

Where Output[i, j] represents the output value, W is the 

weight matrix, Input [i:i+K, j:j+K] is the input region 

covered by the filter, K is the filter size. B is the bias term. 

Following each convolution operation, an activation 

function is applied to introduce non-linearity into the model. 

The ReLU function is commonly utilized for this purpose.  

Pooling layers decrease the spatial dimensions of the 

extracted features by retaining the most significant values. 

Max pooling stands out as the prevalent pooling technique, 

where the feature map is partitioned into non-overlapping 

regions and the maximum value within each region is 

selected.  

Finally, fully connected layers are utilized for the final 

classification or prediction task. In these layers, every neuron 

is connected to all neurons in the preceding layer. Each 

neuron within a fully connected layer calculates a weighted 

sum of the outputs from the previous layer, subsequently 

applying an activation function. Equation (3) illustrates the 

computation of the fully connected layer. 

 Output = f (∑ (W * Input) + B) (3) 

Where Output is the neuron's output, W is the weight 

associated with each connection, Input is the output of the 

previous layer, B is the neuron's bias, and f is the activation 

function applied to the weighted sum. 

However, CNNs are less effective at capturing sequential 

dependencies in data, making them less suitable for tasks 

involving temporal or textual sequences.  

In the context of cybersecurity, CNNs are indispensable 

for intrusion detection due to their ability to process 

structured data such as images and videos. CNNs excel in 

extracting hierarchical features from visual data, enabling 

precise identification of anomalies such as unauthorized 

objects or suspicious behaviors in security systems. Their 

capability to reduce false positives and integrate seamlessly 

into automated surveillance systems enhances real-time threat 

detection and response, significantly bolstering the security 

of networks and infrastructures against malicious attacks. 

2.4. LSTM Approach 

No Introduced by Hochreiter and Schmidhuber [23], the 

Long Short-Term Memory (LSTM) networks represent a 

refined iteration of Recurrent Neural Networks (RNNs), 

adept at overcoming the challenge of vanishing or exploding 

gradients through the integration of a complex structure  

and long-term memory mechanisms. Their primary function 

lies in capturing prolonged dependencies within sequential 

data. LSTMs utilize specialized LSTM units, specifically 

engineered to manage sequences while accounting for 

temporal dependencies [24].  

The Long Short-Term Memory (LSTM) layer, a fundamental 

component of recurrent neural networks, is intricately 

structured with multiple gates and a memory cell. These 

elements work collaboratively to meticulously regulate the 

flow of information within the network. Below, we present 

several gates, including the forget gate, the input gate, and 

the output gate, which regulate the flow of information 

through the memory cell. The forget gate, in (4), controls the 

amount of past information to forget or retain in long-term 

memory. The input gate determines which new information 

should be stored in long-term memory, as shown in (5). 

Lastly in (6), the output gate controls the amount of information 

to be transmitted to the output based on the current state of 

the memory cell. 

 ft=σ (Wf⋅[ht−1,xt]+ bf ) (4) 

 it=σ (Wi⋅[ht−1,xt]+ bi ) (5) 

 ot=σ (Wo⋅[ht−1,xt
 ]+ bo) (6) 

In addition, Equation (7) and Equation (8) describes 

Update Gate and Update Cell. Equation (9) illustrates Output 

of LSTM. 

 Ct=tanh (Wc ⋅[ ht−1,xt
 ]+ bc) (7) 

 Ct=.ft⋅ Ct-1+ it⋅ Ct  (8) 
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 ht = ot⋅tanh(Ct) (9) 

Where xt is the input at time t, ht-1 is the output from the 

previous time step, ft, it and ot are the values of the forget, 

input, and output gates respectively at time step t, Wf, Wi, Wc 

and Wo are the weights associated with each gate, bf, bi, bc 

and bo are the biases associated with each gate and σ is the 

sigmoid function. 

These equations describe how information is filtered, 

updated, and propagated through the LSTM cell at each time 

step in a recurrent network. 

After selecting methods, the subsequent step in designing 

the network topology is to define the input and output layers. 

This decision is influenced by the specific features of the 

dataset used. In the following section, we delineate our 

choices for each IDS and MDS framework. 

In summary, while LSTM offers substantial advantages  

in hybrid models, it's crucial to acknowledge and address 

their limitations during both design and implementation 

phases. Thoughtful compromises are necessary to maximize 

LSTM's benefits while mitigating its drawbacks within 

hybrid architectures. LSTM plays a crucial role in intrusion 

detection by effectively processing temporal data sequences, 

such as network activity logs. By identifying anomalies 

based on suspicious activity patterns over extended periods, 

LSTM enhances security systems' ability to promptly  

detect and respond to potential threats. This contribution   

is indispensable for fortifying the security of networks and 

computer systems against malicious attacks. 

3. Datasets Used 

For this study, we utilized two datasets commonly used: 

the NSL-KDD dataset for IDS and the Malware dataset for 

MDS. The NSL-KDD dataset is a commonly referenced 

dataset for intrusion detection in computer networks. It was 

developed to improve upon the original KDD Cup 1999 

dataset by addressing certain limitations and rendering     

it more realistic [25] [26]. The NSL-KDD dataset contains 

four categories of network attacks: "DoS" (Denial of Service) 

attacks, "Probe" attacks, "R2L" (Unauthorized Remote 

Access) attacks, and "U2R" (Privilege Escalation) attacks. 

Each entry in the NSL-KDD dataset is tagged with an attack 

class, signaling whether it represents an attack or a 

non-malicious activity. In this dataset, there are 125,973 

instances with 41 attributes or features. The features are 

divided into three main type as follows: features extracted 

from the TCP/IP connection, features to access TCP packet 

payload and time-based traffic features and host-based traffic 

features [27]. 

For malware case, based on the characteristics of the 

observations, the Malware dataset was created in a Unix/ 

Linux-based virtual machine for classification purposes, 

containing benign and malware software for Android devices. 

The dataset comprises 100,000 observation data points and 

35 features. 

4. Methodology 

For this study, each employed approach exhibits distinct 

characteristics, all of which play a vital role in effectively 

detecting intrusions and malware. The detection methodology 

hinges on binary classification, as illustrated in Figure 4. All 

approaches adhere to the same block diagram design. In this 

section, we will provide comprehensive descriptions of the 

design steps. 

 

Figure 4.  Block diagram of the proposed architectures for IDS and MDS 

4.1. ANN Model 

As Artificial Neural Networks (ANNs) can be utilized for 

intrusion or malware detection by analyzing network flow 

behavior. Prior to input into the ANN, collected information 

requires preprocessing, which could entail normalization, 

discretization, or feature transformation to suit the ANN 

input. Consequently, the remainder of the ANN architecture, 

including the number of hidden layers, neurons per dense 

layer, activation functions, etc., remains to be defined 

randomly [28]. 

Then, the simple ANN is trained using a labeled dataset. 

These labeled data are typically divided into two categories: 

normal or intrusion data for IDS, and benign or malware 

data for MDS. The ANN learns to recognize characteristic 

patterns of intrusions from these training data. Once the ANN 

is trained, it is evaluated on an independent test dataset. 

For the IDS, the ANN was constructed using the 

TensorFlow library. The model comprises five dense layers 

with 64 neurons each and utilizes Rectified Linear Unit 

(ReLU) activation functions. The output layer is configured 

with a single unit and uses a sigmoid activation function. 
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For the MDS, a sequential architecture in Keras was 

employed. The model starts with an input layer with 27 

neurons, corresponding to the number of attributes in a data 

instance. Subsequently, 50 hidden layers were added with 

ReLU activation functions. The output layer consists of two 

neurons representing the classification classes, utilizing a 

softmax activation function which generates probabilities 

for each output class.  

4.2. RNN-LSTM Model 

To detect intrusions using an LSTM, the network is trained 

on a pre-processed dataset transformed into sequences of 

vectors, where each vector represents a measurement or 

feature at a given time. During training, the LSTM learns to 

predict the class of each input sequence, i.e., whether it is an 

intrusion or not. It also learns to update its internal state (cell 

state) based on the input sequence, allowing it to consider 

long-term contextual information. Once the LSTM is trained, 

it can be used to detect intrusions by providing input data 

sequences and observing the predictions made by the model. 

If the LSTM predicts a high probability of intrusion for a 

given sequence, this may indicate the presence of malicious 

activity. 

Meanwhile, the MDS model is sequentially constructed. 

Initially, the input dimensions determine the size of the third 

dimension, and the output size is set to two neurons. 

Subsequently, the model consists of two LSTM layers, each 

employing the ReLU activation function. Additionally, two 

dense layers are included, with the final layer outputting a 

single value with 2 features, totalling 258 trainable parameters. 

4.3. CNN-LSTM 

In this final part, we developed a CNN and Long Short-Term 

Memory (LSTM) model for our IDS. The model begins with 

a 1D Convolution Layer consisting of 32 filters, a kernel size 

of 9, padding to ensure the output size matches the input size, 

and a ReLU activation function. It outputs a one-dimensional 

array of 41 points with 32 channels, totaling 320 trainable 

parameters. The second layer is a MaxPooling1D Layer with 

a pooling window size of 2. The third layer is an LSTM 

Layer with 16 units and a dropout of 0.2. Finally, the last 

layer is a Dense Layer with a single output unit. 

For malware detection, the CNN-LSTM model includes 

multiple layers. It starts with an Embedding Layer that 

converts inputs into dense vectors of size 8. Following this, a 

Batch Normalization Layer is applied to normalize activations 

from the previous layer, aiding in training stability. The 

model also incorporates a 1D Convolution Layer with 32 

filters of size 9. Subsequently, a MaxPooling1D Layer reduces 

spatial dimensions by extracting maximum values within 

windows of size 2. An LSTM Layer with 512 units follows to 

capture sequential dependencies in the data. Lastly, a Dense 

Layer with a single unit and sigmoid activation produces the 

final output of the model, representing a probability between 

0 and 1.  

5. Resultats and Discussions  

We implemented three Deep Learning models: ANN, CNN, 

and RNN, each incorporating LSTM. These models were 

trained and tested on two subsets of data: the NSL-KDD 

dataset for intrusion detection and the Malware dataset    

for malware detection, as shown in Table 1 and Table 2, 

respectively. 

Table 1.  Distribution of binary classification data in the NSL-KDD dataset 

Subsets Total Normal Attack 

KDDTrain 125973 67343 58630 

KDDTest 22544 12833 9711 

Table 2.  Distribution of binary classification data in the NSL-KDD dataset 

Subsets Total Normal Malware 

MalwareTrain 80000 40000 40000 

MalwareTest 20000 10000 10000 

Several tests were conducted to obtain the best 

hyperparameters for each model. These parameters, although 

they cannot be adjusted during the learning phase, have     

a significant impact on the models' performance during 

training. They include variables that determine the network 

structure (number of neurons, number of layers, activation 

function, etc.), batch size, and the number of iterations. The 

objective was to achieve a high-performing model with 

minimal error rate and maximum accuracy. 

 

 

(b) 

Figure 5.  Evolution of training and validation accuracy (a) and loss (b) of 

the ANN model over epochs for intrusion detection in the NSL-KDD dataset 

(a) 
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(b) 

Figure 6.  Evolution of training and validation accuracy (a) and loss (b) of 

the RNN-LSTM model over epochs for intrusion detection in the NSL-KDD 

dataset 

 

(b) 

Figure 7.  Evolution of training and validation accuracy (a) and loss (b) of 

the CNN-LSTM model over epochs for intrusion detection in the NSL-KDD 

dataset 

For the IDS, the models were trained for approximately 5 

to 50 epochs. Figures 5(a), 6(a), and 7(a) show that both training 

and validation accuracy consistently increased from the 

beginning to the end, reaching maximum values approaching 

1 for all approaches. Additionally, it was noted that the loss 

value decreased significantly during training, as depicted  

in Figures 5(b), 6(b), and 7(b). This indicates that the ANN, 

RNN-LSTM, and CNN-LSTM models learned better and 

made improved predictions after each optimization epoch. 

During the testing phase, we achieved remarkably similar 

accuracy rates between the ANN and RNN-LSTM models, 

reaching 99.98% and 99.99%, respectively, while the CNN- 

LSTM model achieved 97.72%, as shown in Figure 8. 

 

Figure 8.  Optimal accuracy results for the proposed DL methods for 

intrusion detection 

Additional metrics such as precision, recall, and F1-score 

are detailed in Table 3, highlighting the performance of these 

methods and showcasing the shortcomings of RNN-LSTM 

in our scenario. 

Table 3.  Results of precision, recall, and F1-score for the proposed DL 
methods for intrusion detection 

Model precision recall f1-score 

ANN 0.99 0.99 0.99 

RNN-LSTM 0.99 1 0.99 

CNN-LSTM 0.97 0.99 0.98 

 

Figure 9.  ROC Curve of RNN-LSTM for intrusion detection 

In summary, the RNN-LSTM model exhibits the best 

observed results, demonstrating discrimination performance 

as depicted in the ROC curve illustrated in Figure 9. For the 

RNN-LSTM model, the AUC (Area Under the Curve) is 0.99, 

(a) 

(a) 
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indicating very high performance. This means the model has 

nearly perfect ability to correctly classify positive and negative 

samples. It effectively discriminates between the two classes, 

showing high precision and reliability in prediction. 

 

(a) 

 

(b) 

Figure 10.  Evolution of training and validation accuracy (a) and loss (b) of 

the ANN model over epochs for intrusion detection in the Malware dataset 

 

(a) 

 

(b) 

Figure 11.  Evolution of training and validation accuracy (a) and loss    

(b) of the RNN-LSTM model over epochs for intrusion detection in the 

Malware dataset 

 

(a) 

 

(b) 

Figure 12.  Evolution of training and validation accuracy (a) and loss (b) of 

the CNN-LSTM model over epochs for intrusion detection in the Malware 

datase 

For the MDS, all approaches were trained for 10 to 50 

epochs. Figures 10(a), 11(a), and 12(a) illustrate the evolution 

of accuracy achieved by all methods, demonstrating stability 

and consistency in performance. Notably, the models converged 

to minimal loss values, with training and validation losses 

approaching parity as shown in Figures 10(b), 11(b), and 12(b). 

Subsequently, Figure 13 indicates the test accuracy for 

each approach. These models were tested on the test subset, 

yielding good accuracies: 99.95% for ANN, 99.97% for 

LSTM-based RNN, and 99.14% for CNN-LSTM. 

 

Figure 13.  Optimal accuracy results for the proposed DL methods for 

Malware detection. 

Table 4.  Results of precision, recall, and F1-score for the proposed DL 
methods for Malware detection 

Model precision recall f1-score 

ANN 0.99 0.99 0.99 

RNN-LSTM 0.99 0.99 1 

CNN-LSTM 0.91 0.75 0.82 
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Table 5.  Related works in IDS 

Authors & Years [ref] Model Dataset Performance 

Tavallaee et al, 2009 [29] Random Forest NSL-KDD ACC=82.02% 

Bhupendra Ingre et al, 2015 [30] ANN NSL-KDD ACC=81.2% 

Vinayakumar, et al, 2017 [12] CNN KDD’99 ACC =99.99% 

Hsu et al, 2021 [22] 

RNN; 

LSTM 

CNN-LSTTM 

NSL-KDD 

ACC=83.28%; 

ACC=89.23%; 

ACC=94.12% 

Sandee et al, 2018 [31] Deep auto-encoder NSL-KDD ACC =99.99% 

Chia-Ming Hsu et al, 2019 [32] CNN-LSTM NSL-KDD ACC=94.12% 

Pramita Sree Muhuri et al, 2020 [33] RNN-LSTM NSL-KDD ACC=99.83% 

Table 6.  Related works in MDS 

Authors & Years [ref] Model Dataset Performance 

Hwang et al, 2020 [34] DNN malware Dataset ACC = 94% 

Yazdinejad et al, 2020 [35] LSTM malware Dataset ACC = 98% 

Dang et al, 2021 [36] CNN Malware dataset ACC=94.3% 

Satheesh kumar Sasidharan et al, 2021 [37] LSTM Malware dataset ACC=99.23% 

Ban et al, 2022 [38] CNN malware dataset ACC = 98% 

Akhtar et al, 2022 [39] CNN-LSTM Malware dataset Acc = 99% 

Gyamfi et al, 2022 [40] CNN Malware dataset ACC=96% 

 

 

Figure 14.  ROC Curve of RNN-LSTM for Malware detection 

 

Figure 15.  ROC Curve of a simple RNN for Malware detection 

In Table 4, we documented the performance of all approaches, 

recording parameters such as precision, f1-score, and recall. 

Our study emphasizes the success of the RNN-LSTM model, 

achieving a high AUC (Area Under the Curve) score of 0.99. 

This indicates strong performance in binary classification 

tasks, supported by Figure 14, which demonstrates the 

model's effectiveness in accurately classifying positive and 

negative samples. These results underscore the RNN-LSTM 

model's excellent discriminatory ability and precision in 

classification, reaffirming its effectiveness in providing accurate 

predictions. 

However, the focus of this study was to improve the 

performance of MDS. Despite the high performance achieved 

by RNN-LSTM, we further explored by attempting to train 

RNN without LSTM. As illustrated in Figure 15, the highest 

accuracy reached was 99.99% using a basic RNN, with 

precision scoring 1, recall and F1-score both scoring 0.99, 

and achieving an AUC of 1. These results reflect ideal 

discriminatory ability and maximum precision in classification. 

Table 5 and Table 6 showcase various findings from studies 

conducted within the same framework. We have successfully 

achieved our objective, as our models have outperformed the 

performance metrics of the comparative models. 

6. Conclusions  

In our study aimed at enhancing intrusion detection and 

preventing cyber-attacks, we integrated deep learning into 

various methodologies. Inspired by prior research, we 

implemented different models: Artificial Neural Networks 

(ANNs), Recurrent Neural Networks with Long Short-Term 

Memory (RNN-LSTM), and hybrid Convolutional Neural 

Networks with LSTM (CNN-LSTM). Using the NSL-KDD 

and Malware Dataset, our objective was to achieve accurate 

detection and promptly uncover attacks using a DL-based 

system. Remarkably, we found that the RNN-LSTM system 

exhibited superior performance, achieving an accuracy of 

99.99% for IDS. For malware detection, all DL approaches 

surpassed 99% accuracy, with ANN showing particularly 

notable improvement. 
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