
Computer Science and Engineering 2024, 14(3): 56-66

DOI: 10.5923/j.computer.20241403.02

Leveraging Deep Learning Techniques for Enhanced

Intrusion and Malware Detection Performance

Asmaa Ourdighi
*
, Sarah Yamina Messaoudi, Ikram Belabed

Department of Computer Science, University of Sciences and Technology of Oran –Mohamed Boudiaf, El M'Naouer Oran, Algeria

Abstract As computer networks become increasingly complex; the network security sector faces evolving cyber threats,

highlighting the critical role of Intrusion Detection Systems (IDS) in identifying attacks. Currently, Deep Learning (DL) is

gaining momentum as a preferred technique due to its ability to generalize in classification tasks. This study evaluates DL

techniques for IDS and Malware Detection Systems (MDS) by comparing their performance under identical conditions. The

choice of DL methods challenges conventional notions about designing effective neural architectures and input data types,

including tabular data. Hence, we assess a basic ANN, more suitable for our case, alongside Recurrent Neural Network (RNN)

and Convolutional Neural Network (CNN) model combined with Long Short-Term Memory (LSTM) tailored for sequential

or temporal data. DL networks undergo testing on the NLS-KDD and Malware datasets, achieving an accuracy of 99.99% for

IDS and 99.97% for MDS, with RNN-LSTM emerging as the top performer in both cases.

Keywords Artificial Intelligence, Deep learning, Intrusion Detection Systems, Malware Detection Systems

1. Motivation and Related Works

Nowadays, computer networks are faced with a

significant influx of data from sources such as the Internet

of Things (IoT), cybersecurity, mobile devices, businesses,

social networks, healthcare, etc. To effectively protect these

networks, intelligent analysis and automated solutions are

essential. Artificial intelligence (AI), particularly machine

learning and deep learning techniques, offer a powerful

solution [1]. By leveraging the capabilities of AI, we can

develop intelligent applications capable of analyzing large

volumes of data, detecting threats in real-time, and automating

security responses [2].

The DL introduction into cybersecurity has brought

significant advancements in cyber-attacks detection and

prevention [3]. Deep learning has significantly evolved

within the cybersecurity industry, demonstrating its crucial

role in enhancing threat detection and bolstering system

resilience. Companies such as Darktrace utilize artificial

intelligence to detect suspicious behaviors across networks.

Cylance employs sophisticated deep learning algorithms to

proactively identify and mitigate malware attacks by analyzing

intricate behavioral patterns within files. Vectra Networks

utilizes advanced deep learning techniques to monitor and

promptly detect internal threats, offering automated threat

* Corresponding author:

ouras2003@hotmail.com (Asmaa Ourdighi)

Received: Jun. 6, 2024; Accepted: Jun. 24, 2024; Published: Jul. 6, 2024

Published online at http://journal.sapub.org/computer

responses. PatternEx enhances accuracy by reducing false

positives through machine learning, while Sophos AI effectively

identifies ransomware and targeted attacks using robust deep

learning methodologies. These advancements underscore

how deep learning plays a pivotal role in safeguarding

systems against cyber threats, swiftly identifying malicious

activities and bolstering overall network and computer

security. In this section, we showcase a selection of research

studies employing DL for IDS.

In Alom et al. [4], they employ a Deep Belief Network

(DBN). A DBN is a deep generative model comprised of a

visible layer and multiple hidden layers of latent variables.

While connections exist between the layers, there are no

connections between units within each layer [5]. The proposed

system is capable of detecting attacks, and the accuracy of

network activity is also identified and classified into five

groups based on factors such as limited, incomplete, and

nonlinear data sources. Compared to the existing system,

the detection accuracy reaches 97.5% after 50 iterations.

However, the DBN requires initial unsupervised pre-training

and careful adjustment of hyperparameters to achieve good

performance, which can involve numerous trials and errors.

Next, Tang et al. [6] implemented a Deep Neural

Network (DNN) for IDS in a Software Defined Network

(SDN) controller to monitor all flows of OpenFlow

switches. They trained the model on the NSL-KDD dataset

for binary classification (normal/anomaly) using only 6

basic features out of the 41 available. The model was

optimized by varying the learning rate from 0.1 to 0.0001.

Their model achieved an accuracy of 75.75%. Other works,

such as those by [7], [8], [9], [10], pursued similar approaches.

 Computer Science and Engineering 2024, 14(3): 56-66 57

DL algorithms, especially Convolutional Neural Networks

(CNNs), have demonstrated remarkable capabilities in

automatically extracting intricate patterns and features from

complex data, such as network traffic [11]. For instance, in

the work of [12], a CNN was implemented to model network

traffic events as time-series of TCP/IP packets within

predefined time periods. Drawing inspiration from natural

language processing techniques, the authors utilized a 1D

Convolution layer [13]. This approach enabled modeling

network traffic events as chronological data series, where

instead of using 2D image data as input, the CNN processed

a series of data in 1D format organized over time intervals.

Different architectures were proposed, each containing an

input layer, hidden layers with one or more CNN layers,

and output layers such as FFN or RNN/LSTM/GRU to

determine the optimal architecture. All experiments were

conducted over 1000 epochs, and the CNN-LSTM achieved

a high accuracy of 99% on the KDDCup 99 dataset.

Wu et al. [14] proposed an IDS model using Convolutional

Neural Networks (CNNs) to automatically select traffic

features from raw datasets, improving class accuracy and

reducing the false alarm rate (FAR). Similarly, Xiao et al.

[15] proposed an efficient IDS based on CNN, initially

performing feature extraction using techniques like principal

component analysis (PCA) and autoencoder (AE). They

transformed the one-dimensional vector (feature set) into a

two-dimensional matrix before inputting it into the convolutional

neural network. Experimental results on the KDD Cup'99

dataset demonstrated efficiency in terms of learning and

testing phase times, though with lower detection rates for

U2R and R2L classes compared to other attack classes.

Studies by [16], [17] recommend analysing network traffic

using DL models, following a similar approach. However,

CNNs may face challenges in capturing temporal dependencies

within data sequences critical for detecting specific intrusion

patterns, and their limited interpretability complicates

understanding detected attack patterns.

In reference [18], IDS based on RNN using GRU as the

main memory with a multilayer perceptron and softmax

classifier was proposed. Testing on the KDD Cup'99 and

NSL-KDD datasets showed good detection rates compared

to other methodologies, with lower detection rates observed

for minority attack classes like U2R and R2L.

Although our work focuses on deep learning, other machine

learning studies have also achieved equally remarkable

performances. In the work by Ferrag et al. [41], decision

tree-based algorithms were utilized to assess performance

on the CICIDS and BOT-IoT datasets, achieving respective

accuracies of 96.665% and 96.995%. Similarly, Kunhare

et al. [42] employed a random forest algorithm to select

relevant features for reducing irrelevant attributes in

intrusion detection. They conducted a comparative study

using various classifiers including k-nearest neighbors

(k-NN), support vector machine (SVM), logistic regression

(LR), decision tree (DT), and naive Bayes (NB) to evaluate

different metrics of intrusion detection systems (IDS). The

particle swarm optimization (PSO) algorithm was applied to

optimize the selected features on the NSL-KDD dataset,

resulting in an accuracy of approximately 99.26%.

In conclusion, these examples underscore that the

utilization of deep learning in Intrusion Detection Systems

(IDS) and Malware Detection Systems (MDS) remains a

pertinent research topic. DL enables exploration of various

ANN approaches, continuously improving system performance

[19]. Factors such as structure, data flow, neuron density,

layer number, and deep activation filters contribute to

expanding the perspectives of these approaches. However,

variations in training and testing conditions, datasets used,

and output classes considered may lead to comparative

survey challenges in objectivity and effectiveness. Our work

offers a concise comparative analysis aiming to improve

IDS and MDS performances by presenting referenced DL

methods. Based on related works, RNN and CNN approaches

show efficiency in major performances. Additionally, the

characteristics of input data play a crucial role in designing

artificial neural network models. Different types of data,

such as time series, sequential inputs, spatial data, or tabular

datasets, often demand specific architectures tailored to

handle their respective input data propagation. As a result,

our study investigates three approaches (ANN, RNN-LSTM,

and CNN) to observe and evaluate IDS and MDS performances

based on input data nature. Following experimentation,

we integrated LSTM into CNN architecture for further

improvement.

2. Theoretical Background

The utilization of deep learning techniques offers

numerous advantages, particularly in its capacity to extract

intricate patterns and generalize to novel data. Our study

aims to assess the performance of existing models. Among

the various architectures examined, we have selected the

most commonly used static and dynamic models, along

with hybrid versions: Artificial Neural Networks (ANNs),

Recurrent Neural Networks (RNNs), and Convolutional

Neural Networks (CNNs) paired with Long Short-Term

Memory (LSTM). In this section, we briefly outline the

theoretical background of these approaches.

2.1. ANN Approach

A simple Artificial Neural Network (ANN) consists of

multiple layers of neurons: an input layer, one or more

hidden layers, and an output layer, as illustrated in Figure 1.

Each neuron in a layer receives weighted inputs, sums them,

and passes them through an activation function before

transmitting them to the next layer. This process is repeated

until the data reaches the output layer, where the final output

is generated.

Learning in a simple ANN typically occurs through gradient

descent. During the training phase, the network iteratively

adjusts the weights and biases of the connections between

neurons to minimize a loss function, often employing

optimization techniques.

58 Asmaa Ourdighi et al.: Leveraging Deep Learning Techniques

for Enhanced Intrusion and Malware Detection Performance

Figure 1. ANN topology

Figure 2. RNN topology

Figure 3. CNN topology

While simple ANNs are effective for many tasks, they may

encounter overfitting issues with large datasets and deep

architectures. Additionally, they may not always effectively

capture temporal or spatial dependencies in the data.

2.2. RNN Approach

The main characteristic of an RNN is its utilization of

recurrent loops, enabling the network to transfer information

across different time steps. At each step of the sequence,

the RNN takes into account the current input along with the

internal state, or memory, computed from preceding steps.

It then generates an output and updates its internal state for

use in the subsequent step [20]. This recurrent mechanism

empowers the RNN to capture long-term dependencies

within the sequence.

The Figure 2 illustrates how the hidden state of an RNN at

time step t is determined based on the hidden state at the

previous time step, the input at time step t, and the associated

weights and biases. The RNN consists of input layer x,

hidden layer h, and output layer o. When unfolding the loop,

 Computer Science and Engineering 2024, 14(3): 56-66 59

the standard RNN repeats this structure multiple times, with

the state h of each iteration serving as input to the next.

Denoting the input, hidden, and output layers at time t as x(t),

h(t), and o(t) respectively, the output o(t) is calculated as

follows:

a(t) = b1 + W h(t-1) + U x(t)

h(t) = σ (a(t)) (1)

o(t) = b2 + V h(t)

In (1), b1 and b2 are bias vectors, U, V, and W are

the weighting matrices of the input-to-hidden connection,

hidden-to-output connection, and hidden-to-hidden connection,

respectively, and σ is an activation function, for example,

sigmoid, tanh, ReLU.

Traditional RNNs may face challenges in capturing

long-term dependencies or processing very long sequences

due to a problem known as vanishing or exploding gradients.

2.3. CNN Approach

Proposed in the work of LeCun et al. [21], CNNs

are feed-forward artificial neural networks capable of

recognizing simple objects with high shape variability

[22]. CNNs are a specific type of artificial neural network

designed for supervised learning, particularly for processing

data with a grid-like structure such as images or temporal

sequences [13].

CNNs are typically structured as a sequence of layers,

alternating between convolutional layers, activation layers

(such as ReLU), and pooling layers. Additionally, fully

connected layers may be appended at the end of the network

for classification purposes, as described in Figure 3.

First, the input layer progressively extracts increasingly

abstract features from the input data, enabling the model to

better understand and make decisions about the data.

The convolutional layers apply filters to the input to

extract important features. Each filter is a weight matrix that

is learned during the network training, as shown in (2).

 Output [i,j]=∑(W∗ Input [i:i+K, j:j+K])++B (2)

Where Output[i, j] represents the output value, W is the

weight matrix, Input [i:i+K, j:j+K] is the input region

covered by the filter, K is the filter size. B is the bias term.

Following each convolution operation, an activation

function is applied to introduce non-linearity into the model.

The ReLU function is commonly utilized for this purpose.

Pooling layers decrease the spatial dimensions of the

extracted features by retaining the most significant values.

Max pooling stands out as the prevalent pooling technique,

where the feature map is partitioned into non-overlapping

regions and the maximum value within each region is

selected.

Finally, fully connected layers are utilized for the final

classification or prediction task. In these layers, every neuron

is connected to all neurons in the preceding layer. Each

neuron within a fully connected layer calculates a weighted

sum of the outputs from the previous layer, subsequently

applying an activation function. Equation (3) illustrates the

computation of the fully connected layer.

 Output = f (∑ (W * Input) + B) (3)

Where Output is the neuron's output, W is the weight

associated with each connection, Input is the output of the

previous layer, B is the neuron's bias, and f is the activation

function applied to the weighted sum.

However, CNNs are less effective at capturing sequential

dependencies in data, making them less suitable for tasks

involving temporal or textual sequences.

In the context of cybersecurity, CNNs are indispensable

for intrusion detection due to their ability to process

structured data such as images and videos. CNNs excel in

extracting hierarchical features from visual data, enabling

precise identification of anomalies such as unauthorized

objects or suspicious behaviors in security systems. Their

capability to reduce false positives and integrate seamlessly

into automated surveillance systems enhances real-time threat

detection and response, significantly bolstering the security

of networks and infrastructures against malicious attacks.

2.4. LSTM Approach

No Introduced by Hochreiter and Schmidhuber [23], the

Long Short-Term Memory (LSTM) networks represent a

refined iteration of Recurrent Neural Networks (RNNs),

adept at overcoming the challenge of vanishing or exploding

gradients through the integration of a complex structure

and long-term memory mechanisms. Their primary function

lies in capturing prolonged dependencies within sequential

data. LSTMs utilize specialized LSTM units, specifically

engineered to manage sequences while accounting for

temporal dependencies [24].

The Long Short-Term Memory (LSTM) layer, a fundamental

component of recurrent neural networks, is intricately

structured with multiple gates and a memory cell. These

elements work collaboratively to meticulously regulate the

flow of information within the network. Below, we present

several gates, including the forget gate, the input gate, and

the output gate, which regulate the flow of information

through the memory cell. The forget gate, in (4), controls the

amount of past information to forget or retain in long-term

memory. The input gate determines which new information

should be stored in long-term memory, as shown in (5).

Lastly in (6), the output gate controls the amount of information

to be transmitted to the output based on the current state of

the memory cell.

 ft=σ (Wf⋅[ht−1,xt]+ bf) (4)

 it=σ (Wi⋅[ht−1,xt]+ bi) (5)

 ot=σ (Wo⋅[ht−1,xt
]+ bo) (6)

In addition, Equation (7) and Equation (8) describes

Update Gate and Update Cell. Equation (9) illustrates Output

of LSTM.

 Ct=tanh (Wc ⋅[ht−1,xt
]+ bc) (7)

 Ct=.ft⋅ Ct-1+ it⋅ Ct (8)

60 Asmaa Ourdighi et al.: Leveraging Deep Learning Techniques

for Enhanced Intrusion and Malware Detection Performance

 ht = ot⋅tanh(Ct) (9)

Where xt is the input at time t, ht-1 is the output from the

previous time step, ft, it and ot are the values of the forget,

input, and output gates respectively at time step t, Wf, Wi, Wc

and Wo are the weights associated with each gate, bf, bi, bc

and bo are the biases associated with each gate and σ is the

sigmoid function.

These equations describe how information is filtered,

updated, and propagated through the LSTM cell at each time

step in a recurrent network.

After selecting methods, the subsequent step in designing

the network topology is to define the input and output layers.

This decision is influenced by the specific features of the

dataset used. In the following section, we delineate our

choices for each IDS and MDS framework.

In summary, while LSTM offers substantial advantages

in hybrid models, it's crucial to acknowledge and address

their limitations during both design and implementation

phases. Thoughtful compromises are necessary to maximize

LSTM's benefits while mitigating its drawbacks within

hybrid architectures. LSTM plays a crucial role in intrusion

detection by effectively processing temporal data sequences,

such as network activity logs. By identifying anomalies

based on suspicious activity patterns over extended periods,

LSTM enhances security systems' ability to promptly

detect and respond to potential threats. This contribution

is indispensable for fortifying the security of networks and

computer systems against malicious attacks.

3. Datasets Used

For this study, we utilized two datasets commonly used:

the NSL-KDD dataset for IDS and the Malware dataset for

MDS. The NSL-KDD dataset is a commonly referenced

dataset for intrusion detection in computer networks. It was

developed to improve upon the original KDD Cup 1999

dataset by addressing certain limitations and rendering

it more realistic [25] [26]. The NSL-KDD dataset contains

four categories of network attacks: "DoS" (Denial of Service)

attacks, "Probe" attacks, "R2L" (Unauthorized Remote

Access) attacks, and "U2R" (Privilege Escalation) attacks.

Each entry in the NSL-KDD dataset is tagged with an attack

class, signaling whether it represents an attack or a

non-malicious activity. In this dataset, there are 125,973

instances with 41 attributes or features. The features are

divided into three main type as follows: features extracted

from the TCP/IP connection, features to access TCP packet

payload and time-based traffic features and host-based traffic

features [27].

For malware case, based on the characteristics of the

observations, the Malware dataset was created in a Unix/

Linux-based virtual machine for classification purposes,

containing benign and malware software for Android devices.

The dataset comprises 100,000 observation data points and

35 features.

4. Methodology

For this study, each employed approach exhibits distinct

characteristics, all of which play a vital role in effectively

detecting intrusions and malware. The detection methodology

hinges on binary classification, as illustrated in Figure 4. All

approaches adhere to the same block diagram design. In this

section, we will provide comprehensive descriptions of the

design steps.

Figure 4. Block diagram of the proposed architectures for IDS and MDS

4.1. ANN Model

As Artificial Neural Networks (ANNs) can be utilized for

intrusion or malware detection by analyzing network flow

behavior. Prior to input into the ANN, collected information

requires preprocessing, which could entail normalization,

discretization, or feature transformation to suit the ANN

input. Consequently, the remainder of the ANN architecture,

including the number of hidden layers, neurons per dense

layer, activation functions, etc., remains to be defined

randomly [28].

Then, the simple ANN is trained using a labeled dataset.

These labeled data are typically divided into two categories:

normal or intrusion data for IDS, and benign or malware

data for MDS. The ANN learns to recognize characteristic

patterns of intrusions from these training data. Once the ANN

is trained, it is evaluated on an independent test dataset.

For the IDS, the ANN was constructed using the

TensorFlow library. The model comprises five dense layers

with 64 neurons each and utilizes Rectified Linear Unit

(ReLU) activation functions. The output layer is configured

with a single unit and uses a sigmoid activation function.

 Computer Science and Engineering 2024, 14(3): 56-66 61

For the MDS, a sequential architecture in Keras was

employed. The model starts with an input layer with 27

neurons, corresponding to the number of attributes in a data

instance. Subsequently, 50 hidden layers were added with

ReLU activation functions. The output layer consists of two

neurons representing the classification classes, utilizing a

softmax activation function which generates probabilities

for each output class.

4.2. RNN-LSTM Model

To detect intrusions using an LSTM, the network is trained

on a pre-processed dataset transformed into sequences of

vectors, where each vector represents a measurement or

feature at a given time. During training, the LSTM learns to

predict the class of each input sequence, i.e., whether it is an

intrusion or not. It also learns to update its internal state (cell

state) based on the input sequence, allowing it to consider

long-term contextual information. Once the LSTM is trained,

it can be used to detect intrusions by providing input data

sequences and observing the predictions made by the model.

If the LSTM predicts a high probability of intrusion for a

given sequence, this may indicate the presence of malicious

activity.

Meanwhile, the MDS model is sequentially constructed.

Initially, the input dimensions determine the size of the third

dimension, and the output size is set to two neurons.

Subsequently, the model consists of two LSTM layers, each

employing the ReLU activation function. Additionally, two

dense layers are included, with the final layer outputting a

single value with 2 features, totalling 258 trainable parameters.

4.3. CNN-LSTM

In this final part, we developed a CNN and Long Short-Term

Memory (LSTM) model for our IDS. The model begins with

a 1D Convolution Layer consisting of 32 filters, a kernel size

of 9, padding to ensure the output size matches the input size,

and a ReLU activation function. It outputs a one-dimensional

array of 41 points with 32 channels, totaling 320 trainable

parameters. The second layer is a MaxPooling1D Layer with

a pooling window size of 2. The third layer is an LSTM

Layer with 16 units and a dropout of 0.2. Finally, the last

layer is a Dense Layer with a single output unit.

For malware detection, the CNN-LSTM model includes

multiple layers. It starts with an Embedding Layer that

converts inputs into dense vectors of size 8. Following this, a

Batch Normalization Layer is applied to normalize activations

from the previous layer, aiding in training stability. The

model also incorporates a 1D Convolution Layer with 32

filters of size 9. Subsequently, a MaxPooling1D Layer reduces

spatial dimensions by extracting maximum values within

windows of size 2. An LSTM Layer with 512 units follows to

capture sequential dependencies in the data. Lastly, a Dense

Layer with a single unit and sigmoid activation produces the

final output of the model, representing a probability between

0 and 1.

5. Resultats and Discussions

We implemented three Deep Learning models: ANN, CNN,

and RNN, each incorporating LSTM. These models were

trained and tested on two subsets of data: the NSL-KDD

dataset for intrusion detection and the Malware dataset

for malware detection, as shown in Table 1 and Table 2,

respectively.

Table 1. Distribution of binary classification data in the NSL-KDD dataset

Subsets Total Normal Attack

KDDTrain 125973 67343 58630

KDDTest 22544 12833 9711

Table 2. Distribution of binary classification data in the NSL-KDD dataset

Subsets Total Normal Malware

MalwareTrain 80000 40000 40000

MalwareTest 20000 10000 10000

Several tests were conducted to obtain the best

hyperparameters for each model. These parameters, although

they cannot be adjusted during the learning phase, have

a significant impact on the models' performance during

training. They include variables that determine the network

structure (number of neurons, number of layers, activation

function, etc.), batch size, and the number of iterations. The

objective was to achieve a high-performing model with

minimal error rate and maximum accuracy.

(b)

Figure 5. Evolution of training and validation accuracy (a) and loss (b) of

the ANN model over epochs for intrusion detection in the NSL-KDD dataset

(a)

62 Asmaa Ourdighi et al.: Leveraging Deep Learning Techniques

for Enhanced Intrusion and Malware Detection Performance

(b)

Figure 6. Evolution of training and validation accuracy (a) and loss (b) of

the RNN-LSTM model over epochs for intrusion detection in the NSL-KDD

dataset

(b)

Figure 7. Evolution of training and validation accuracy (a) and loss (b) of

the CNN-LSTM model over epochs for intrusion detection in the NSL-KDD

dataset

For the IDS, the models were trained for approximately 5

to 50 epochs. Figures 5(a), 6(a), and 7(a) show that both training

and validation accuracy consistently increased from the

beginning to the end, reaching maximum values approaching

1 for all approaches. Additionally, it was noted that the loss

value decreased significantly during training, as depicted

in Figures 5(b), 6(b), and 7(b). This indicates that the ANN,

RNN-LSTM, and CNN-LSTM models learned better and

made improved predictions after each optimization epoch.

During the testing phase, we achieved remarkably similar

accuracy rates between the ANN and RNN-LSTM models,

reaching 99.98% and 99.99%, respectively, while the CNN-

LSTM model achieved 97.72%, as shown in Figure 8.

Figure 8. Optimal accuracy results for the proposed DL methods for

intrusion detection

Additional metrics such as precision, recall, and F1-score

are detailed in Table 3, highlighting the performance of these

methods and showcasing the shortcomings of RNN-LSTM

in our scenario.

Table 3. Results of precision, recall, and F1-score for the proposed DL
methods for intrusion detection

Model precision recall f1-score

ANN 0.99 0.99 0.99

RNN-LSTM 0.99 1 0.99

CNN-LSTM 0.97 0.99 0.98

Figure 9. ROC Curve of RNN-LSTM for intrusion detection

In summary, the RNN-LSTM model exhibits the best

observed results, demonstrating discrimination performance

as depicted in the ROC curve illustrated in Figure 9. For the

RNN-LSTM model, the AUC (Area Under the Curve) is 0.99,

(a)

(a)

 Computer Science and Engineering 2024, 14(3): 56-66 63

indicating very high performance. This means the model has

nearly perfect ability to correctly classify positive and negative

samples. It effectively discriminates between the two classes,

showing high precision and reliability in prediction.

(a)

(b)

Figure 10. Evolution of training and validation accuracy (a) and loss (b) of

the ANN model over epochs for intrusion detection in the Malware dataset

(a)

(b)

Figure 11. Evolution of training and validation accuracy (a) and loss

(b) of the RNN-LSTM model over epochs for intrusion detection in the

Malware dataset

(a)

(b)

Figure 12. Evolution of training and validation accuracy (a) and loss (b) of

the CNN-LSTM model over epochs for intrusion detection in the Malware

datase

For the MDS, all approaches were trained for 10 to 50

epochs. Figures 10(a), 11(a), and 12(a) illustrate the evolution

of accuracy achieved by all methods, demonstrating stability

and consistency in performance. Notably, the models converged

to minimal loss values, with training and validation losses

approaching parity as shown in Figures 10(b), 11(b), and 12(b).

Subsequently, Figure 13 indicates the test accuracy for

each approach. These models were tested on the test subset,

yielding good accuracies: 99.95% for ANN, 99.97% for

LSTM-based RNN, and 99.14% for CNN-LSTM.

Figure 13. Optimal accuracy results for the proposed DL methods for

Malware detection.

Table 4. Results of precision, recall, and F1-score for the proposed DL
methods for Malware detection

Model precision recall f1-score

ANN 0.99 0.99 0.99

RNN-LSTM 0.99 0.99 1

CNN-LSTM 0.91 0.75 0.82

64 Asmaa Ourdighi et al.: Leveraging Deep Learning Techniques

for Enhanced Intrusion and Malware Detection Performance

Table 5. Related works in IDS

Authors & Years [ref] Model Dataset Performance

Tavallaee et al, 2009 [29] Random Forest NSL-KDD ACC=82.02%

Bhupendra Ingre et al, 2015 [30] ANN NSL-KDD ACC=81.2%

Vinayakumar, et al, 2017 [12] CNN KDD’99 ACC =99.99%

Hsu et al, 2021 [22]

RNN;

LSTM

CNN-LSTTM

NSL-KDD

ACC=83.28%;

ACC=89.23%;

ACC=94.12%

Sandee et al, 2018 [31] Deep auto-encoder NSL-KDD ACC =99.99%

Chia-Ming Hsu et al, 2019 [32] CNN-LSTM NSL-KDD ACC=94.12%

Pramita Sree Muhuri et al, 2020 [33] RNN-LSTM NSL-KDD ACC=99.83%

Table 6. Related works in MDS

Authors & Years [ref] Model Dataset Performance

Hwang et al, 2020 [34] DNN malware Dataset ACC = 94%

Yazdinejad et al, 2020 [35] LSTM malware Dataset ACC = 98%

Dang et al, 2021 [36] CNN Malware dataset ACC=94.3%

Satheesh kumar Sasidharan et al, 2021 [37] LSTM Malware dataset ACC=99.23%

Ban et al, 2022 [38] CNN malware dataset ACC = 98%

Akhtar et al, 2022 [39] CNN-LSTM Malware dataset Acc = 99%

Gyamfi et al, 2022 [40] CNN Malware dataset ACC=96%

Figure 14. ROC Curve of RNN-LSTM for Malware detection

Figure 15. ROC Curve of a simple RNN for Malware detection

In Table 4, we documented the performance of all approaches,

recording parameters such as precision, f1-score, and recall.

Our study emphasizes the success of the RNN-LSTM model,

achieving a high AUC (Area Under the Curve) score of 0.99.

This indicates strong performance in binary classification

tasks, supported by Figure 14, which demonstrates the

model's effectiveness in accurately classifying positive and

negative samples. These results underscore the RNN-LSTM

model's excellent discriminatory ability and precision in

classification, reaffirming its effectiveness in providing accurate

predictions.

However, the focus of this study was to improve the

performance of MDS. Despite the high performance achieved

by RNN-LSTM, we further explored by attempting to train

RNN without LSTM. As illustrated in Figure 15, the highest

accuracy reached was 99.99% using a basic RNN, with

precision scoring 1, recall and F1-score both scoring 0.99,

and achieving an AUC of 1. These results reflect ideal

discriminatory ability and maximum precision in classification.

Table 5 and Table 6 showcase various findings from studies

conducted within the same framework. We have successfully

achieved our objective, as our models have outperformed the

performance metrics of the comparative models.

6. Conclusions

In our study aimed at enhancing intrusion detection and

preventing cyber-attacks, we integrated deep learning into

various methodologies. Inspired by prior research, we

implemented different models: Artificial Neural Networks

(ANNs), Recurrent Neural Networks with Long Short-Term

Memory (RNN-LSTM), and hybrid Convolutional Neural

Networks with LSTM (CNN-LSTM). Using the NSL-KDD

and Malware Dataset, our objective was to achieve accurate

detection and promptly uncover attacks using a DL-based

system. Remarkably, we found that the RNN-LSTM system

exhibited superior performance, achieving an accuracy of

99.99% for IDS. For malware detection, all DL approaches

surpassed 99% accuracy, with ANN showing particularly

notable improvement.

 Computer Science and Engineering 2024, 14(3): 56-66 65

REFERENCES

[1] H.S. Iqbal, Machine Learning: Algorithms, Real-World
Applications and Research. SN Computer Science, Vol. 2, No.
60, pp. 1-2, 2021.

[2] S. Mahdavifar and A. Ghorban, Application of deep learning
to cybersecurity: A survey, Neurocomputing, pp. 149-176, 2019.

[3] D. Sumeet and D. Xian, Data mining and machine learning in
cybersecurity. Auerbach Publications, 2016.

[4] M.Z. Alom, V. Bontupalli and T.M Taha, Intrusion detection
using deep belief networks, National Aerospace and Electronics
Conference (NAECON), pp.339–344, 2015.

[5] M. Macas and C. Wu, Review: Deep Learning Methods
for Cybersecurity and Intrusion Detection Systems, IEEE
LATINCOM, 2020.

[6] T. A Tang, L. Mhamdi, D. McLernon, A. Zaidi, S., Ghogho
and A. Mounir, 2016, “Deep learning approach for network
intrusion detection in software defined networking”,
International Conference on Wireless Networks and Mobile
Communications (WINCOM), pp. 258–263. IEEE.

[7] K. Grosse., N. Papernot, P. Manoharan, M. Backes and P.
McDaniel, Adversarial examples for malware detection, S.N.
Foley, D. Gollmann, E. Snekkenes (Eds.), Computer Security
– ESORICS 2017, Springer, Springer International Publishing,
Cham, pp. 62-79, 2017.

[8] A.E. Cil, K. Yildiz and A. Buldu, Detection of ddos attacks
with feed forw ard based deep neural network model, Expert
Syst. Appl., Vol.169, pp. 114520, 2021. https://doi.org/10.
1016/j.eswa.2020.114520.

[9] V. Hussain and J. Hnamte, Deep learning based intrusion
detection system: software defined network, 2021 Asian
Conference on Innovation in Technology (ASIANCON),
IEEE, pp. 1-6, 2021.

[10] C.S Wu and S. Chen, A heuristic intrusion detection approach
using deep learning model, International Conference on
Information Networking (ICOIN), pp. 438-442, 2023.

[11] V. Hnamte and J. Hussain, Dependable intrusion detection
system using deep convolutional neural network: A Novel
framework and performance evaluation approach, Telematics
and Informatics Reports, Vol.11, pp.100077, 2023. https://doi.
org/10.1016/j.teler.2023.100077.

[12] R. Vinayakumar, K.P. Soman and P Poornachandran, 2017,
“Applying convolutional neural network for network intrusion
detection”, International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Udupi, India,
13-16 September 2017, DOI: 10.1109/ICACCI.2017.8126009.

[13] Kim Y., 2014, “Convolutional neural networks for sentence
classification”, Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP),
Doha, pp.1746-1751, arXiv: 1408.5882, 2014. https://doi.org/
10.3115/v1/D14-1181.

[14] K. Wu, Z. Chen and A.W .Li, A novel intrusion detection
model for a massive network using convolutional neural
networks”. IEEE Access, Vol. 6, pp.50850 – 50859, 2018.

[15] Y. Xiao, C. Xing, T. Zhang and Z. Zhao, An Intrusion Detection
Model Based on Feature Reduction and Convolutional Neural
Networks, IEEE Access, Vol.7, pp. 42210 – 42219, 2019.
DOI: 10.1109/ACCESS.2019.2904620.

[16] M. Zhu, K. Ye and C.Z. Xu, Network anomaly detection and
identification based on deep learning methods, CLOUD 2018:
11th International Conference, Held as Part of the Services
Conference Federation, pp. 219–234, USA, 2018. https://doi.
org/10.1007/978-3-319-94295-7_15.

[17] M.S. ElSayed, N.A .Le Khac, M.A. Albahar and A. Jurcut, A
novel hybrid model for intrusion detection systems in sdns
based on cnn and a new regularization technique, J. Netw.
Comput. Appl., Vol.191, pp. 103160, 2021.

[18] C. Xu, J. Shen, X. Du and F. Zhang, An Intrusion Detection
System Using a D eep Neural Network With Gated Recurrent
Units. IEEE Access, Vol.6, pp.48697-48707, 2018.

[19] S. Forrquue Ahmed, M. S. Bin Alam, M. Hassan, M.R. Rozbu,
T. Ishtiak, N. Rafa, M. Mofijur, A.B.M Shawkat Ali and
A.H. Gandomi, Deep learning modelling techniques: current
progress, applications, advantages, and challenge, Artificial
Intelligence Review, Vol.56, pages 13521–13617, 2023.

[20] K. Danqing, Y., Lv and C. Yuan-yuan, Short-term traffic flow
prediction with LSTM recurrent neural network, IEEE 20th
International Conference on Intelligent Transportation Systems
(ITSC), pp. 1-6, 2017.

[21] Y. LeCun, P. Haffner, L. Bottou and Y. Bengio, Object
recognition with Gradient-Based learning, Lecture Notes in
Computer Science, (1681), pp 319–345, 1999.

[22] C.M. Hsu, M.Z. Azhari, H.Y. Hsieh, S.W. Prakosa and J.. S.
Leu, Robust Network Intrusion Detection Scheme Using
Long-Short Term Memory Based Convolutional Neural
Networks, Mobile Networks and Applications, (26), pp.
1137–1144, 2021. https://doi.org/10.1007/s11036-020-01623-2.

[23] S, Hochreiter and J. Schmidhuber, Long short-term memory.
Neural Comput., Vol.9, No.8, pp.1735–80, 1997.

[24] F. Weijiang and G. Naiyang, 2017, “Audio visual speech
recognition with multimodal recurrent neural networks”.
International Joint Conference on Neural Networks (IJCNN),
Changsha, Hunan, P.R. China, pp. 4-8.

[25] S. Revathi and A. Malathi, A Detailed Analysis on NSL-KDD
Dataset Using Various Machine Learning Techniques for
Intrusion Detection International. Journal of Engineering
Research & Technology (IJERT), Vol.2, No.12, pp. 1848-1852,
2013.

[26] R. Bala and R. Nagpal, A review on KDD CUP99 AND
NSL-KDD dataset , International Journal of Advanced Research
in Computer Science, Udaipur, Vol.10, No.2, pp. 64-67, 2019.
DOI:10.26483/ijarcs.v10i2.6395.

[27] R.A.R. Mahmood, A.,H. Abdi and M. Hussin, Performance
Evaluation of Intrusion Detection System using Selected
Features and Machine Learning Classifiers, Baghdad Science
Journal, Vol.18, No.2, P-ISSN: 2078-8665, 2021. DOI:
http://dx.doi.org/10.21123/bsj.2021.18.2(Suppl.).0884.

[28] A Javaid, Q., Niyaz, W. Sun and M. Alam, A deep learning
approach for network intrusion detection system. In
Proceedings of the 9th EAI International Conference on
Bio-inspired Information and Communications Technologies
(formerly BIONETICS), pp. 21-26, 2016.

66 Asmaa Ourdighi et al.: Leveraging Deep Learning Techniques

for Enhanced Intrusion and Malware Detection Performance

[29] M. Tavallaee, E. Bagheri, W. Lu and A.A. Ghorbani, 2009,
A “Detailed Analysis of the KDD CUP 99 DataSet”.
Proceedings of the Second IEEE Symposium on Computational
Intelligence for Security and Defence Applications 2009, pp.
1-6, Ottawa, 8-10 July.

[30] I. Bhupendra and A. Yadav, Performance analysis of
NSL-KDD dataset using ANN, Communication. Engneering.
System IEEE pp. 92–96, 2015.

[31] G. Sandeep, K. G. Mirnal and S. Aroj., Deep learning
approach onnetwork intrusion detection system using nsl-kdd
dataset, International Journal of Computer Network and
Information Security (IJCNIS), Vol.11, No.3, pp. 8–14, 2018.

[32] C.M. Hsu, Y. Hsieh and S.W. Parakosa, Using Long-Short-
Term Memory Based Convolutional Neural Networks for
Network Intrusion Detection: 11th EAI International Conference,
WiCON 2018, Taipei, Taiwan, 2019.

[33] P.S. Muhuri, P. Chatterjee, X. Yuan, K. Roy and A. Esterline,
Using a Long Short-Term Memory Recurrent Neural Network
(LSTM-RNN) to Classify Network Attacks, Information,
Vol.11, No.5, pp. 243, 2020.

[34] C. Hwang, J.. Hwang, J. Kwak and T. Lee, Platform-
independent malware analysis applicable to Windows and
Linux environments. Electronics 9, 5, 793, 2020.

[35] A. Yazdinejad, H. Haddad Pajouh, A. Dehghantanha, R.M
Parizi, G. Srivastava and M.Y Chen., Cryptocurrency malware
hunting: A deep Recurrent Neural Network approach, Applied
Soft Computing, 96, 2020.

[36] D. Dang, F. Di Troia and M. Stamp, 2021, “Malware classification
using long short-term memory models”, ICISSP 2021 -
Proceedings of the 7th International Conference on Information
Systems Security and Privacy, pp.743-752.

[37] K.S. Satheesh and T. Ciza, 2021, “MemDroid - LSTM Based
Malware Detection Framework for Android Devices”, 2021
IEEE Pune Section International Conference (PuneCon),
Pune, India, 2021.

[38] Y. Ban, S. Lee, D. Song, H. Cho and .L.H. Yi, “FAM: Featuring
Android Malware for Deep Learning-Based Familial Analysis”,
IEEE Access, 10, pp. 20008- 20018, 2022.

[39] M.S. Akhtar and T. Feng, Detection of Malware by Deep
Learning as CNN-LSTM Machine Learning Techniques in
Real Time, Symmetry, Vol.14, No.11, pp. 2308, 2022.

[40] N.K. Gyamfi, N. Goranin, D. Ceponis and H.A. Cenys.,
Malware Detection Using Convolutional Neural Network,
A Deep Learning Framework: Comparative Analysis, Journal
of internet services and information security.. Innovative
Information Science & Technology Research Group (ISYOU),
Vol.12, No.4, pp. 102-115, 2022.

[41] M. A. Ferrag, L. Maglaras, A. Ahmim, M. Derdour, H.
Janicke, RDTIDS: Rules and Decision Tree-Based Intrusion
Detection System for Internet-of-Things Networks, Future
Internet, Vol. 12, No. 44, pp. 1- 14, 2020.

[42] N. Kunhare, R. Tiwari and J. Dhar, Particle swarm
optimization and feature selection for intrusion detection
system, Sadhana, Vol. 45, No. 109, pp. 1-14, 2020.

Copyright © 2024 The Author(s). Published by Scientific & Academic Publishing

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

