
Computer Science and Engineering 2016, 6(2): 33-38
DOI: 10.5923/j.computer.20160602.03

Page Rank Performance Evaluation of Cluster Computing
Frameworks on Cray Urika-GX Supercomputer

Robert W. Techentin1,*, Matthew W. Markland1, Ruth J. Poole1,
David R. Holmes III2, Clifton R. Haider1, Barry K. Gilbert1

1Special Purpose Processor Development Group, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, USA
2Biomedical Analytics and Computational Engineering Group, Department of Physiology and Biomedical Engineering, Mayo Clinic,

Rochester, USA

Abstract Modern “big data” and analytics software platforms offer a variety of algorithms to the analytics practitioner. It
is often possible to choose from several available implementations to solve a given set of problems, even on the same set of
hardware, within the same software ecosystem, or leveraging completely different software environments. Choices of
techniques should be informed by the relative performance and scalability of the implementations, whether or not they run on
the same hardware platform. This paper presents a relative performance comparison of three implementations of the popular
PageRank graph analytic algorithm running on the Cray Urika-GX high performance analytics appliance. Relative
performance and scaling presented here, along with additional information about the problem set and resources available to
the analyst, could be used to make an informed decision about which PageRank implementation to choose.

Keywords Graph theory, Computational efficiency, Parallel Algorithms, Analytical Models

1. Introduction
Graph analytics is becoming an increasingly popular

approach to realizing value from “big data,” particularly
when the datasets are naturally sparse and irregular. Clinical
data is a classic example of “big data,” with the “four V”
characteristics of volume, variety, velocity and veracity.
Veracity is particularly problematic, since medical records
and even clinical study data are often incomplete or recorded
in incompatible dialects of different medical subspecialties.
Even before the inception of integrated fully-electronic
medical records in the last century, there have been
significant efforts to glean insights from aggregations of
patient data [1, 2], but the sparsity and veracity of the data
challenged the best statistical analysis and (later) data mining
techniques [3, 4].

Tera Computer began developing a new kind of computer
system in the early 1990s specifically intended to address
sparse problems. The Multithreaded Architecture (or MTA)
was based on custom processors with thousands of execution
cores and gigantic shared memory. This new kind of
machine excelled at processing data with complex and sparse
relationships. Cray Inc. brought the massively multithreaded
technology to market in their Cray XMT computer system in

* Corresponding author:
techentin.robert@mayo.edu (Robert W. Techentin)
Published online at http://journal.sapub.org/computer
Copyright © 2016 Scientific & Academic Publishing. All Rights Reserved

the mid-2000s, and developed a follow-on XMT2 system
that became available in 2011. The custom Threadstorm
processors (each processor is a single custom-designed
integrated circuit) had uniform access to memory via the
SeaStar supercomputer network. An XMT2 with 8,196 cores
and 2 TB of memory (Serial Number 2) was installed at
Mayo Clinic in 2011, and has been used for a number of
studies, including government sponsored research, health
care, and computer network defense [5-7]. Graph analytics,
statistical computation, and machine learning have all been
applied using this specialized hardware.

However, specialized hardware, although very capable in
its domain, cannot take advantage of the surge of new data
analytics algorithms and software generated within academia
and industry, which is generally developed for networks of
commodity computers. Foundational open source software
packages such as Hadoop and Spark have grown into
software ecosystems, enabling a huge number of software
developers to contribute and improve implementations of
analytics algorithms. With these open source frameworks,
analytics practitioners can choose among algorithms,
different implementations of the same algorithm, or even
implementations in disparate software ecosystems. The
practitioner’s choices should, however, be informed by an
understanding of the relative performance and scalability of
analytics techniques available in these environments.

In this paper we present an evaluation of the performance
of the PageRank algorithm, a classic graph analytic, as
implemented in three software ecosystems while running on

34 Robert W. Techentin et al.: Page Rank Performance Evaluation of Cluster
Computing Frameworks on Cray Urika-GX Supercomputer

the same high-performance cluster computing platform. We
measured computation time for large graphs of more than a
billion edges, and we report strong scaling, where the graph
size is held constant and the number of compute nodes varies.
This algorithm evaluation approach is similar to algorithm
performance comparisons presented in [4] and database
comparisons in [8], which explored algorithm optimization
in different environments. However, instead of hand-tuning
algorithms for each environment, we simply chose
implementations available in the various software
ecosystems in the same manner as analytics practitioners
would do. Analytics workflows are seldom composed of a
single algorithm, and thus time spent tuning the raw
performance of any given implementation must be balanced
against other efforts, including other algorithms, processing,
and even data curation.

In the following sections, we describe the hardware and
software platforms and the nature of the graph datasets and
algorithms. We compare computation times and scaling for
each of the ecosystems, and suggest guidelines for choosing
one implementation over another.

2. Computing Platform
The Cray® Urika®-GX Agile Analytics Platform,

announced in May 2016, is positioned as a fusion of
supercomputing technology and enterprise-class open source
data analytics frameworks. The hardware platform inherits
high performance computing (HPC) features from Cray’s
computational cluster supercomputers, with modifications
suitable for “big data” enterprise analytics. This is the third
generation Cray data analytics platforms, combining graph
analysis and “big data” mining technologies from the
Urika-GD “Graph Discovery” appliance and the Urika-XA
“Extreme Analytics” platform. This new machine supports
several different open source and proprietary software
ecosystems, with cluster resource management features that
allow them to be run in any combination on independent
dynamically allocated partitions.

Individual cluster nodes provide substantial computational
resources, with up to 32 cores of Intel® Xeon® processors
and 256 GB of DRAM. A single rack contains up to 48
compute nodes which are clustered by the Cray Aries™
supercomputing network, providing a bisection bandwidth of
378 GB/s. The computational cluster is augmented by disk
storage on every compute node, with both solid state and
spinning disk drives providing over 200 TB of local storage
distributed throughout the rack.

The Urika-GX provides three software ecosystems for
data analytics: Hortonworks Data Platform (HDP™)
Hadoop®; the Spark™ Ecosystem; and the proprietary Cray
Graph Engine. Hadoop and Spark are open source and
widely used in the data analytics community. The Cray
Graph Engine is a direct descendent of the Urika-GD “graph
discovery” appliance software, providing a semantic graph
database using Resource Description Framework (RDF) [9]

triples to represent data, and the SPARQL query language
[10] and built-in graph algorithms to support discovery and
analysis. The ecosystems can share the Hadoop Distributed
File system (HDFS) or an attached Lustre® file system.
Application productivity tools (e.g., Jupyter Notebooks) are
layered on top of analytics programming environments,
including Java, Scala, R, and Python.

In addition to three data analytics ecosystems, the system
offers computational supercomputer software development
environments, including compilers and libraries for
multithreaded (e.g., OpenMP), multiprocessor (e.g., MPI)
and shared memory (e.g., Partitioned Global Address Space,
or PGAS) parallel processing. While these resources can be
valuable for data analytics workflows, they were not
addressed in this study.

3. Graph Data Generation
Recursive MATrix (R-Mat) graphs [11] have a power law

distribution of edges (i.e., a small number of highly
connected vertices) and have structure similar to social
networks and other real-world datasets. With a small number
of parameters, graphs can be synthesized with specific
characteristics, matching models such as Erdős-Rényi or
Pennock, and of arbitrarily size. The datasets for this
evaluation were synthesized with the graph generator from
the Graph500 benchmark suite [12] using the default
parameters A=0.57, B=0.19, C=0.19, D=0.05 and an edge
factor of 16. The generated graphs were undirected and
contained duplicate edges. The Graph500 benchmark defines
problem size in terms of the “scale” of the graph, where there
are 2scale vertices and 16 times as many edges as vertices. A
“toy” problem is defined as scale 26 and having
approximately one billion edges. A “small” graph, at scale
29, could be stored in as little as 128 GB of memory when
edges are represented as pairs of 64-bit integer vertices.
Table 1 summarizes the dataset sizes for this study. The scale
24 graphs were used as software test cases, while scale 26
and 29 were employed in the study.

Table 1. Graph Sizes for Page Rank Comparison

Scale Vertices Edges

24 16,777,216 268,435,456

26 67,108,864 1,073,741,824

29 536,870,912 8,589,934,592

The binary graph data structures were translated into
formats suitable for the three software ecosystems. For
Hadoop and Spark, the graph was represented in a text file,
one line of text per edge, with tab-separated decimal
numbers for the source and destination vertices. The Cray
Graph Engine required the RDF “N-triples” format, naming
the edges between vertices, so vertices and a single edge
name were encoded into compact identifiers, of the form
“<urn:37136534> <urn:e> <urn:48299673>.” When
compared to the 128 GB scale 29 binary file, the translated

 Computer Science and Engineering 2016, 6(2): 33-38 35

files were surprisingly compact, at 154 GB and 339 GB for
text and triples files, respectively.

4. Algorithm Selection
Many different graph algorithms have proven useful in

data analytics, but there is no general consensus on an
essential subset of “the most important” algorithms.
Analytics software packages and libraries usually provide
several algorithms, often optimized for their particular
environments. Instead of choosing a specific algorithm and
then implementing, debugging and tuning code to match
each of the software ecosystems, we simply selected
algorithms from the provided packages. The lists of available
graph algorithms for the three ecosystems, presented in
Table 2, had surprisingly little overlap, with only two
algorithms available in all three frameworks. Because it is
well known and widely implemented, we chose the
PageRank algorithm [13] to compare the three software
ecosystems. It should be noted, however, that although
PageRank has been widely implemented, efficient execution
using parallel processing or acceleration remains an active
research area [14-16].

Table 2. Graph Algorithms Available In Three Software Ecosystems
(Highlighted Algorithms Are Available In More Than One Framework)

Hadoop Flink Spark GraphX Cray Graph Engine

Adamic-Adar

BadRank

Clustering Coefficient

Betweenness
Centrality

Community Detection

Connected
Components

Connected
Components

Jaccard Index

Label Propagation

Label Propagation

PageRank PageRank PageRank

Single Source Shortest
Paths

S-T Connectivity

Triangle Counting Triangle Counting Triangle Counting

The Hadoop ecosystem does not support graph analytics
by default, so we installed the Flink package for distributed
streaming and batch processing [17], which includes a graph
API called “Gelly.” This library provides a graph
representation, data structures and several graph algorithms.
Flink runs on the Hadoop YARN resource manager and
works with the Hadoop Distributed File System (HDFS) and
other open source data processing ecosystems. However,
Flink provides its own processing model and memory
management, and does not utilize the MapReduce
computation approach typically associated with Hadoop data
processing. Instead, PageRank is implemented as
scatter/gather operations in Flink, with vertices alternately
sending update messages to their neighbors through their
outgoing edges and collecting updates from their neighbors
via their incoming edges.

For the Spark ecosystem, we selected the PageRank
algorithm implemented in the GraphX library [18], which
was already available on the system. Spark generally claims
to run programs 100X faster than Hadoop MapReduce in
memory. However, since neither Flink nor GraphX rely upon
MapReduce, it was not clear what sort of a performance
difference we should expect from these libraries.

The Cray Graph Engine includes several built-in graph
algorithms, including PageRank. CGE is proprietary
software, written using co-array C++ and the Partitioned
Global Address Space (PGAS) programming model [19].
CGE can query or run graph algorithms on in-memory
semantic graphs, taking full advantage of the processors,
memory, and Aries supercomputer backplane of the
Urika-GX machine.

5. Run Time Results
PageRank was run on each size graph, using 4, 8, 16, and

32 compute nodes to evaluate strong scaling of each software
ecosystem. Only minimal performance tuning was
conducted, using command line options: the algorithm
implementations themselves were not modified. Tuning
parameters depend on the ecosystem features. The Hadoop
Flink PageRank was run with 32 cores per compute node,
while CGE was launched with 16 images per node, which is
roughly equivalent to cores. Spark GraphX parameters, on
the other hand, were oriented towards the problem space and
memory, specifying 256 edge list partitions and 192 GB
memory per executor.

Flink does not have tuning parameters itself, but relies on
characteristics set by the YARN resource manager. The
YARN configuration on the Urika-GX limited the number of
tasks per task manager to 8, so in order to take advantage of
32 cores per compute node, it was necessary to use 4 task
managers per node with 8 tasks per manager. For larger
graphs, running multiple task managers failed with
insufficient memory, so it was necessary to reduce the
number of task managers to one per node.

Spark GraphX tuning parameters are extensive and
complex. For this study, we focused on balancing data
partition counts and memory allocation across executors.
GraphX launches one executor on each compute node. We
initially allocated 192 GB of memory for each executor,
leaving some for operating system functions. Empirical tests
with the scale 29 graph data and 32 compute nodes indicated
that 29 data partitions per compute node provided optimal
performance. Each data partition is processed by one
executor thread, so this configuration utilized 29 cores for
data processing and left 3 cores for operating system
functions. However, the overhead of running 29 data
partitions required reducing memory allocation to 128 GB.

CGE has only two tuning parameters available to the
command line database launcher: the number of compute
nodes and the number of images per node. Images are
roughly equivalent to cores. The shared memory

36 Robert W. Techentin et al.: Page Rank Performance Evaluation of Cluster
Computing Frameworks on Cray Urika-GX Supercomputer

programming model of co-array C++ allows many processes
in a compute cluster to share a partitioned global address
space. Each process is aware of its local memory partition,
and remotely accesses the global partitions when necessary.
Remote memory accesses take advantage of the Cray Aries
interconnect features such as fine granularity and atomic
operations. Varying the number of images per node changes
the balance between the local and global memory partitions,
and can affect performance. For this study we fixed the
number of images at 16 as recommended by Cray as a
starting point for reasonable performance.

Run times for the scale 26 graph are presented in Figure 1.
With four compute nodes, CGE was only slightly faster than
Spark, and Hadoop was 10X slower than both of them. For
larger numbers of compute nodes, Hadoop performance
improved substantially, while Spark performance actually
deteriorated. CGE was consistently 5X faster than the others.

Figure 1. PageRank Run Time Comparison for Scale 26 Graph on
Urika-GX shows strong scaling (varying number of compute nodes) for 100
Iterations of Hadoop Flink, convergence of Spark GraphX, and convergence
of Cray Graph Engine (45422)

For the scale 29 graph, which is 8X larger than scale 26,
none of the PageRank implementations would run on four
nodes, despite the availability of an aggregated 1 TB of
physical memory. When the algorithms were able to run on
larger numbers of compute nodes, PageRank took 10X
longer to complete than for scale 26, with the same
performance trends as depicted in Figure 1. Actual run times
in Table 3 show that CGE was more than5-10X faster than
Hadoop Flink and Spark GraphX.

Table 3. PageRank Run Time (in seconds) Comparison for Scale 29 Graph

Implementation 8 Nodes 16 Nodes 32 Nodes

Hadoop (Flink) 8,760 4,769 6,199

Spark (GraphX) 2,640

Cray Graph Engine 1,082 500

6. Discussion
PageRank run time trends were similar to our expectations,

with Hadoop yielding the lowest performance and CGE

providing the fastest solution. The poor scaling for Spark
GraphX was somewhat surprising, since we expected each
implementation to perform better with more processors and
memory. This result may be due to the relative immaturity of
the GraphX software, or it might indicate a need for
additional performance tuning, perhaps related to graph
partitioning. To the best of our knowledge, these software
ecosystems have not been rigorously tested against datasets
this large, and we surmise that good performance may
require both tuning and modifications to the implementation.

Run times for both scale 26 and 29, exemplified by Figure
1, show strong scaling for both Hadoop Flink and the Cray
Graph Engine implementations of PageRank. Spark GraphX
scaled poorly for this example. The clear winner in raw
computation time and scaling is CGE, which can complete
5X faster than the other implementations. As a native C++
application, CGE takes full advantage of the Cray Aries
supercomputer interconnect, which includes low-level
primitives that accommodate the inevitable latencies that
plague clustered computer systems. The Aries network
features and the shared memory model may also account for
the superior scaling of CGE. It must be noted, however, that
only minimal tuning was performed for this study, as would
be typical of business environments where costs and
schedules often constrain the analytics practitioner to simply
achieving an expedient answer. Academics may further tune
open source implementations or develop new algorithms, but
those improvements would not be generally accessible for
some time.

Run times, however, do not tell the entire story. PageRank
is an iterative algorithm. Both Spark and CGE run the
computation iteratively until a convergence criterion is
achieved. Hadoop, on the other hand, runs for a specified
number of iterations regardless of convergence. We were
able to compare Spark and Hadoop running 100 iterations
each, and observed that Hadoop’s Flink implementation was
actually 3X-5X faster than Spark’s GraphX for the same
number of iterations. An in-depth analysis would be required
to determine convergence, since an equal number of
iterations might not produce equivalent results from the two
implementations.

Raw computation time of the PageRank algorithm would
very likely not be the only issue driving the practitioner’s
choice of implementation. Run time for PageRank (or any
algorithm) may be only one small part of a complex
analytical workflow that includes data curation, format
translations, statistical analysis of algorithm output, data
exploration, and presentation of results. For this specific use
case, running PageRank on a scale 29 graph, the run time
difference of 10 versus 100 minutes may be sufficient
motivation to integrate CGE’s PageRank into an established
Hadoop workflow that includes data curation,
post-PageRank statistics and graphical presentation of
results.

There are drawbacks to each of these PageRank
implementations which must be considered by analytics
practitioners. The Spark execution environment offers a

 Computer Science and Engineering 2016, 6(2): 33-38 37

large number of tuning parameters, and individual
algorithms may have additional controls. The wide variety of
tuning parameters can enable performance improvements,
but the complexity of tuning and the interrelationship
between parameters can make optimal performance elusive.

Another performance consideration for both Hadoop and
Spark is that they rely upon Java Virtual Machines, which
can introduce their own complexities into optimization. For
example, changing memory allocations or data partitions to
optimize one set of parameters may change the amount of
data shuffling and even influence garbage collection
behavior of the underlying JVM. Changing the problem size
or hardware allocation may invalidate optimizations found
for the previous run.

In addition to performance considerations, there are
practical issues of using the different environments. On the
Cray Urika-GX, Hadoop job resources are managed by
YARN and require the user to allocate and de-allocate
resources manually. Spark and CGE will dynamically
allocate resources and release them when the job completes.
Data file formats can also be an issue that affects the analysis
effort. Both Hadoop Flink and Spark GraphX use a simple
integer edge list to describe a directed graph. CGE, however,
requires data in RDF format, and even when the analysis
requires only a simple directed graph, it is necessary to
translate the data with the correct grammar.

7. Conclusions
The Cray Urika-GX system provides several useful

software ecosystems for performing analytics on large and
complex datasets, including Hadoop, Spark, and the Cray
Graph Engine. A particular algorithm may be uniquely
implemented take advantage of characteristics of the
software ecosystem, offering substantially different
performance characteristics, even when running on the same
hardware. If there is a choice of ecosystems, or if the various
ecosystems can be integrated into a hybrid application,
comparison and validation of the implementations is
appropriate.

We evaluated the performance of the PageRank algorithm
implemented in the Hadoop Flink package, the Spark
GraphX library, and the Cray Graph Engine using synthetic
datasets from the Graph500 benchmark. We presented strong
scaling results for run times on graphs of up to 8 billion
edges, and showed that performance could vary by more than
10X between the implementations.

From these results, we concluded that analytics
practitioners may choose implementations of various
algorithms from different software ecosystems, evaluate
their performance on relevant problem sets, and determine if
performance differences warrant integration of the specific
implementations into their analytics workflows. While graph
algorithm research and optimization is still an active area of
research, practitioners should take advantage of readily
available implementations to improve their workflows.

ACKNOWLEDGEMENTS
The authors thank T. Funk and S. Neumann for artwork

and manuscript preparation. This work was funded by
DARPA’s Microsystems Technology Office.

REFERENCES
[1] P. C. Carpenter, "The electronic medical record: perspective

from Mayo Clinic," International journal of bio-medical
computing, vol. 34, pp. 159-171, 1994.

[2] C. G. Chute, D. Crowson, and J. Buntrock, "Medical
information retrieval and WWW browsers at Mayo," in
Proceedings of the Annual Symposium on Computer
Application in Medical Care, 1995, p. 903.

[3] T. Botsis, G. Hartvigsen, F. Chen, and C. Weng, "Secondary
use of EHR: data quality issues and informatics
opportunities," AMIA Summits Transl Sci Proc, vol. 2010, pp.
1-5, 2010.

[4] W. Raghupathi and V. Raghupathi, "Big data analytics in
healthcare: promise and potential," Health Information
Science and Systems, vol. 2, p. 1, 2014.

[5] R. Techentin, D. Foti, S. Al-Saffar, P. Li, E. Daniel, B. Gilbert,
and D. Holmes, "Development of a Semi-Synthetic Dataset as
a Testbed for Big-Data Semantic Analytics," presented at the
IEEE International Conference on Semantic Computing,
Newport Beach, CA, 2014.

[6] D. Ediger, K. Jiang, J. Riedy, D. A. Bader, and C. Corley,
"Massive social network analysis: Mining twitter for social
good," in 2010 39th International Conference on Parallel
Processing, 2010, pp. 583-593.

[7] R. Techentin, J. S. Sauver, J. Huddleston, B. Gilbert, and D.
Holmes, "Lessons learned from the semantic translation of
healthcare data," in e-Health Networking, Applications and
Services (Healthcom), 2014 IEEE 16th International
Conference on, 2014, pp. 513-518.

[8] R. C. McColl, D. Ediger, J. Poovey, D. Campbell, and D. A.
Bader, "A performance evaluation of open source graph
databases," in Proceedings of the first workshop on Parallel
programming for analytics applications, 2014, pp. 11-18.

[9] Resource Description Framework (RDF), ed.
https://www.w3.org/RDF/.

[10] SPARQL 1.1 Query Language, ed.
https://www.w3.org/TR/sparql11-query/.

[11] D. Chakrabarti, Y. Zhan, and C. Faloutsos, "R-MAT: A
Recursive Model for Graph Mining," in SDM, 2004, pp.
442-446.

[12] The Graph 500 List, ed. http://graph500.org/.

[13] L. Page, S. Brin, R. Motwani, and T. Winograd, "The
PageRank citation ranking: bringing order to the web," 1999.

[14] A. Cevahir, C. Aykanat, A. Turk, B. B. Cambazoglu, A.
Nukada, and S. Matsuoka, "Efficient PageRank on GPU
clusters," IPSJ SIG Notes, pp. 1-6, 2010.

[15] S. Sangamuang, P. Boonma, and L. L. W. Kyii, "An

38 Robert W. Techentin et al.: Page Rank Performance Evaluation of Cluster
Computing Frameworks on Cray Urika-GX Supercomputer

algorithm to improve MPI-PageRank performance by
reducing synchronization time," in 2015 International
Computer Science and Engineering Conference (ICSEC),
2015, pp. 1-4.

[16] Y.-J. Xie and C.-F. Ma, "A relaxed two-step splitting iteration
method for computing PageRank," Computational and
Applied Mathematics, pp. 1-13, 2016.

[17] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl,
and K. Tzoumas, "Apache flink: Stream and batch processing
in a single engine," Data Engineering, p. 28, 2015.

[18] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica, "Graphx: Graph processing in a
distributed dataflow framework," in 11th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 14), 2014, pp. 599-613.

[19] K. Maschhoff, R. Vesse, and J. Maltby, "Porting the
Urika-GD graph analytic database to the XC30/40 platform,"
in Cray User Group Conference (CUG’15), Chicago, IL,
2015.

	1. Introduction
	2. Computing Platform
	3. Graph Data Generation
	4. Algorithm Selection
	5. Run Time Results
	6. Discussion
	7. Conclusions
	ACKNOWLEDGEMENTS

