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Abstract  Modern “big data” and analytics software platforms offer a variety of algorithms to the analytics practitioner. It 
is often possible to choose from several available implementations to solve a given set of problems, even on the same set of 
hardware, within the same software ecosystem, or leveraging completely different software environments. Choices of 
techniques should be informed by the relative performance and scalability of the implementations, whether or not they run on 
the same hardware platform. This paper presents a relative performance comparison of three implementations of the popular 
PageRank graph analytic algorithm running on the Cray Urika-GX high performance analytics appliance. Relative 
performance and scaling presented here, along with additional information about the problem set and resources available to 
the analyst, could be used to make an informed decision about which PageRank implementation to choose. 
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1. Introduction 
Graph analytics is becoming an increasingly popular 

approach to realizing value from “big data,” particularly 
when the datasets are naturally sparse and irregular. Clinical 
data is a classic example of “big data,” with the “four V” 
characteristics of volume, variety, velocity and veracity. 
Veracity is particularly problematic, since medical records 
and even clinical study data are often incomplete or recorded 
in incompatible dialects of different medical subspecialties. 
Even before the inception of integrated fully-electronic 
medical records in the last century, there have been 
significant efforts to glean insights from aggregations of 
patient data [1, 2], but the sparsity and veracity of the data 
challenged the best statistical analysis and (later) data mining 
techniques [3, 4].  

Tera Computer began developing a new kind of computer 
system in the early 1990s specifically intended to address 
sparse problems. The Multithreaded Architecture (or MTA) 
was based on custom processors with thousands of execution 
cores and gigantic shared memory. This new kind of 
machine excelled at processing data with complex and sparse 
relationships. Cray Inc. brought the massively multithreaded 
technology to market in their Cray XMT computer system in  
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the mid-2000s, and developed a follow-on XMT2 system 
that became available in 2011. The custom Threadstorm 
processors (each processor is a single custom-designed 
integrated circuit) had uniform access to memory via the 
SeaStar supercomputer network. An XMT2 with 8,196 cores 
and 2 TB of memory (Serial Number 2) was installed at 
Mayo Clinic in 2011, and has been used for a number of 
studies, including government sponsored research, health 
care, and computer network defense [5-7]. Graph analytics, 
statistical computation, and machine learning have all been 
applied using this specialized hardware. 

However, specialized hardware, although very capable in 
its domain, cannot take advantage of the surge of new data 
analytics algorithms and software generated within academia 
and industry, which is generally developed for networks of 
commodity computers. Foundational open source software 
packages such as Hadoop and Spark have grown into 
software ecosystems, enabling a huge number of software 
developers to contribute and improve implementations of 
analytics algorithms. With these open source frameworks, 
analytics practitioners can choose among algorithms, 
different implementations of the same algorithm, or even 
implementations in disparate software ecosystems. The 
practitioner’s choices should, however, be informed by an 
understanding of the relative performance and scalability of 
analytics techniques available in these environments. 

In this paper we present an evaluation of the performance 
of the PageRank algorithm, a classic graph analytic, as 
implemented in three software ecosystems while running on 
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the same high-performance cluster computing platform. We 
measured computation time for large graphs of more than a 
billion edges, and we report strong scaling, where the graph 
size is held constant and the number of compute nodes varies. 
This algorithm evaluation approach is similar to algorithm 
performance comparisons presented in [4] and database 
comparisons in [8], which explored algorithm optimization 
in different environments. However, instead of hand-tuning 
algorithms for each environment, we simply chose 
implementations available in the various software 
ecosystems in the same manner as analytics practitioners 
would do. Analytics workflows are seldom composed of a 
single algorithm, and thus time spent tuning the raw 
performance of any given implementation must be balanced 
against other efforts, including other algorithms, processing, 
and even data curation. 

In the following sections, we describe the hardware and 
software platforms and the nature of the graph datasets and 
algorithms. We compare computation times and scaling for 
each of the ecosystems, and suggest guidelines for choosing 
one implementation over another. 

2. Computing Platform 
The Cray® Urika®-GX Agile Analytics Platform, 

announced in May 2016, is positioned as a fusion of 
supercomputing technology and enterprise-class open source 
data analytics frameworks. The hardware platform inherits 
high performance computing (HPC) features from Cray’s 
computational cluster supercomputers, with modifications 
suitable for “big data” enterprise analytics. This is the third 
generation Cray data analytics platforms, combining graph 
analysis and “big data” mining technologies from the 
Urika-GD “Graph Discovery” appliance and the Urika-XA 
“Extreme Analytics” platform. This new machine supports 
several different open source and proprietary software 
ecosystems, with cluster resource management features that 
allow them to be run in any combination on independent 
dynamically allocated partitions. 

Individual cluster nodes provide substantial computational 
resources, with up to 32 cores of Intel® Xeon® processors 
and 256 GB of DRAM. A single rack contains up to 48 
compute nodes which are clustered by the Cray Aries™ 
supercomputing network, providing a bisection bandwidth of 
378 GB/s. The computational cluster is augmented by disk 
storage on every compute node, with both solid state and 
spinning disk drives providing over 200 TB of local storage 
distributed throughout the rack. 

The Urika-GX provides three software ecosystems for 
data analytics: Hortonworks Data Platform (HDP™) 
Hadoop®; the Spark™ Ecosystem; and the proprietary Cray 
Graph Engine. Hadoop and Spark are open source and 
widely used in the data analytics community. The Cray 
Graph Engine is a direct descendent of the Urika-GD “graph 
discovery” appliance software, providing a semantic graph 
database using Resource Description Framework (RDF) [9] 

triples to represent data, and the SPARQL query language 
[10] and built-in graph algorithms to support discovery and 
analysis. The ecosystems can share the Hadoop Distributed 
File system (HDFS) or an attached Lustre® file system. 
Application productivity tools (e.g., Jupyter Notebooks) are 
layered on top of analytics programming environments, 
including Java, Scala, R, and Python. 

In addition to three data analytics ecosystems, the system 
offers computational supercomputer software development 
environments, including compilers and libraries for 
multithreaded (e.g., OpenMP), multiprocessor (e.g., MPI) 
and shared memory (e.g., Partitioned Global Address Space, 
or PGAS) parallel processing. While these resources can be 
valuable for data analytics workflows, they were not 
addressed in this study. 

3. Graph Data Generation 
Recursive MATrix (R-Mat) graphs [11] have a power law 

distribution of edges (i.e., a small number of highly 
connected vertices) and have structure similar to social 
networks and other real-world datasets. With a small number 
of parameters, graphs can be synthesized with specific 
characteristics, matching models such as Erdős-Rényi or 
Pennock, and of arbitrarily size. The datasets for this 
evaluation were synthesized with the graph generator from 
the Graph500 benchmark suite [12] using the default 
parameters A=0.57, B=0.19, C=0.19, D=0.05 and an edge 
factor of 16. The generated graphs were undirected and 
contained duplicate edges. The Graph500 benchmark defines 
problem size in terms of the “scale” of the graph, where there 
are 2scale vertices and 16 times as many edges as vertices. A 
“toy” problem is defined as scale 26 and having 
approximately one billion edges. A “small” graph, at scale 
29, could be stored in as little as 128 GB of memory when 
edges are represented as pairs of 64-bit integer vertices. 
Table 1 summarizes the dataset sizes for this study. The scale 
24 graphs were used as software test cases, while scale 26 
and 29 were employed in the study. 

Table 1.  Graph Sizes for Page Rank Comparison 

Scale Vertices Edges 

24 16,777,216 268,435,456 

26 67,108,864 1,073,741,824 

29 536,870,912 8,589,934,592 

The binary graph data structures were translated into 
formats suitable for the three software ecosystems. For 
Hadoop and Spark, the graph was represented in a text file, 
one line of text per edge, with tab-separated decimal 
numbers for the source and destination vertices. The Cray 
Graph Engine required the RDF “N-triples” format, naming 
the edges between vertices, so vertices and a single edge 
name were encoded into compact identifiers, of the form 
“<urn:37136534> <urn:e> <urn:48299673>.” When 
compared to the 128 GB scale 29 binary file, the translated 
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files were surprisingly compact, at 154 GB and 339 GB for 
text and triples files, respectively. 

4. Algorithm Selection 
Many different graph algorithms have proven useful in 

data analytics, but there is no general consensus on an 
essential subset of “the most important” algorithms. 
Analytics software packages and libraries usually provide 
several algorithms, often optimized for their particular 
environments. Instead of choosing a specific algorithm and 
then implementing, debugging and tuning code to match 
each of the software ecosystems, we simply selected 
algorithms from the provided packages. The lists of available 
graph algorithms for the three ecosystems, presented in 
Table 2, had surprisingly little overlap, with only two 
algorithms available in all three frameworks. Because it is 
well known and widely implemented, we chose the 
PageRank algorithm [13] to compare the three software 
ecosystems. It should be noted, however, that although 
PageRank has been widely implemented, efficient execution 
using parallel processing or acceleration remains an active 
research area [14-16]. 

Table 2.  Graph Algorithms Available In Three Software Ecosystems 
(Highlighted Algorithms Are Available In More Than One Framework) 

Hadoop Flink Spark GraphX Cray Graph Engine 

Adamic-Adar 
 

BadRank 

Clustering Coefficient 
 

Betweenness 
Centrality 

Community Detection 
  

Connected 
Components 

Connected 
Components  

Jaccard Index 
  

Label Propagation 
 

Label Propagation 

PageRank PageRank PageRank 

Single Source Shortest 
Paths  

S-T Connectivity 

Triangle Counting Triangle Counting Triangle Counting 

The Hadoop ecosystem does not support graph analytics 
by default, so we installed the Flink package for distributed 
streaming and batch processing [17], which includes a graph 
API called “Gelly.” This library provides a graph 
representation, data structures and several graph algorithms. 
Flink runs on the Hadoop YARN resource manager and 
works with the Hadoop Distributed File System (HDFS) and 
other open source data processing ecosystems. However, 
Flink provides its own processing model and memory 
management, and does not utilize the MapReduce 
computation approach typically associated with Hadoop data 
processing. Instead, PageRank is implemented as 
scatter/gather operations in Flink, with vertices alternately 
sending update messages to their neighbors through their 
outgoing edges and collecting updates from their neighbors 
via their incoming edges. 

For the Spark ecosystem, we selected the PageRank 
algorithm implemented in the GraphX library [18], which 
was already available on the system. Spark generally claims 
to run programs 100X faster than Hadoop MapReduce in 
memory. However, since neither Flink nor GraphX rely upon 
MapReduce, it was not clear what sort of a performance 
difference we should expect from these libraries. 

The Cray Graph Engine includes several built-in graph 
algorithms, including PageRank. CGE is proprietary 
software, written using co-array C++ and the Partitioned 
Global Address Space (PGAS) programming model [19]. 
CGE can query or run graph algorithms on in-memory 
semantic graphs, taking full advantage of the processors, 
memory, and Aries supercomputer backplane of the 
Urika-GX machine.  

5. Run Time Results 
PageRank was run on each size graph, using 4, 8, 16, and 

32 compute nodes to evaluate strong scaling of each software 
ecosystem. Only minimal performance tuning was 
conducted, using command line options: the algorithm 
implementations themselves were not modified. Tuning 
parameters depend on the ecosystem features. The Hadoop 
Flink PageRank was run with 32 cores per compute node, 
while CGE was launched with 16 images per node, which is 
roughly equivalent to cores. Spark GraphX parameters, on 
the other hand, were oriented towards the problem space and 
memory, specifying 256 edge list partitions and 192 GB 
memory per executor. 

Flink does not have tuning parameters itself, but relies on 
characteristics set by the YARN resource manager. The 
YARN configuration on the Urika-GX limited the number of 
tasks per task manager to 8, so in order to take advantage of 
32 cores per compute node, it was necessary to use 4 task 
managers per node with 8 tasks per manager. For larger 
graphs, running multiple task managers failed with 
insufficient memory, so it was necessary to reduce the 
number of task managers to one per node. 

Spark GraphX tuning parameters are extensive and 
complex. For this study, we focused on balancing data 
partition counts and memory allocation across executors. 
GraphX launches one executor on each compute node. We 
initially allocated 192 GB of memory for each executor, 
leaving some for operating system functions. Empirical tests 
with the scale 29 graph data and 32 compute nodes indicated 
that 29 data partitions per compute node provided optimal 
performance. Each data partition is processed by one 
executor thread, so this configuration utilized 29 cores for 
data processing and left 3 cores for operating system 
functions. However, the overhead of running 29 data 
partitions required reducing memory allocation to 128 GB. 

CGE has only two tuning parameters available to the 
command line database launcher: the number of compute 
nodes and the number of images per node. Images are 
roughly equivalent to cores. The shared memory 
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programming model of co-array C++ allows many processes 
in a compute cluster to share a partitioned global address 
space. Each process is aware of its local memory partition, 
and remotely accesses the global partitions when necessary. 
Remote memory accesses take advantage of the Cray Aries 
interconnect features such as fine granularity and atomic 
operations. Varying the number of images per node changes 
the balance between the local and global memory partitions, 
and can affect performance. For this study we fixed the 
number of images at 16 as recommended by Cray as a 
starting point for reasonable performance. 

Run times for the scale 26 graph are presented in Figure 1. 
With four compute nodes, CGE was only slightly faster than 
Spark, and Hadoop was 10X slower than both of them. For 
larger numbers of compute nodes, Hadoop performance 
improved substantially, while Spark performance actually 
deteriorated. CGE was consistently 5X faster than the others.  

 

Figure 1.  PageRank Run Time Comparison for Scale 26 Graph on 
Urika-GX shows strong scaling (varying number of compute nodes) for 100 
Iterations of Hadoop Flink, convergence of Spark GraphX, and convergence 
of Cray Graph Engine (45422) 

For the scale 29 graph, which is 8X larger than scale 26, 
none of the PageRank implementations would run on four 
nodes, despite the availability of an aggregated 1 TB of 
physical memory. When the algorithms were able to run on 
larger numbers of compute nodes, PageRank took 10X 
longer to complete than for scale 26, with the same 
performance trends as depicted in Figure 1. Actual run times 
in Table 3 show that CGE was more than5-10X faster than 
Hadoop Flink and Spark GraphX. 

Table 3.  PageRank Run Time (in seconds) Comparison for Scale 29 Graph 

Implementation 8 Nodes 16 Nodes 32 Nodes 

Hadoop (Flink) 8,760 4,769 6,199 

Spark (GraphX)   2,640 

Cray Graph Engine  1,082 500 

6. Discussion 
PageRank run time trends were similar to our expectations, 

with Hadoop yielding the lowest performance and CGE 

providing the fastest solution. The poor scaling for Spark 
GraphX was somewhat surprising, since we expected each 
implementation to perform better with more processors and 
memory. This result may be due to the relative immaturity of 
the GraphX software, or it might indicate a need for 
additional performance tuning, perhaps related to graph 
partitioning. To the best of our knowledge, these software 
ecosystems have not been rigorously tested against datasets 
this large, and we surmise that good performance may 
require both tuning and modifications to the implementation. 

Run times for both scale 26 and 29, exemplified by Figure 
1, show strong scaling for both Hadoop Flink and the Cray 
Graph Engine implementations of PageRank. Spark GraphX 
scaled poorly for this example. The clear winner in raw 
computation time and scaling is CGE, which can complete 
5X faster than the other implementations. As a native C++ 
application, CGE takes full advantage of the Cray Aries 
supercomputer interconnect, which includes low-level 
primitives that accommodate the inevitable latencies that 
plague clustered computer systems. The Aries network 
features and the shared memory model may also account for 
the superior scaling of CGE. It must be noted, however, that 
only minimal tuning was performed for this study, as would 
be typical of business environments where costs and 
schedules often constrain the analytics practitioner to simply 
achieving an expedient answer. Academics may further tune 
open source implementations or develop new algorithms, but 
those improvements would not be generally accessible for 
some time.  

Run times, however, do not tell the entire story. PageRank 
is an iterative algorithm. Both Spark and CGE run the 
computation iteratively until a convergence criterion is 
achieved. Hadoop, on the other hand, runs for a specified 
number of iterations regardless of convergence. We were 
able to compare Spark and Hadoop running 100 iterations 
each, and observed that Hadoop’s Flink implementation was 
actually 3X-5X faster than Spark’s GraphX for the same 
number of iterations. An in-depth analysis would be required 
to determine convergence, since an equal number of 
iterations might not produce equivalent results from the two 
implementations. 

Raw computation time of the PageRank algorithm would 
very likely not be the only issue driving the practitioner’s 
choice of implementation. Run time for PageRank (or any 
algorithm) may be only one small part of a complex 
analytical workflow that includes data curation, format 
translations, statistical analysis of algorithm output, data 
exploration, and presentation of results. For this specific use 
case, running PageRank on a scale 29 graph, the run time 
difference of 10 versus 100 minutes may be sufficient 
motivation to integrate CGE’s PageRank into an established 
Hadoop workflow that includes data curation, 
post-PageRank statistics and graphical presentation of 
results. 

There are drawbacks to each of these PageRank 
implementations which must be considered by analytics 
practitioners. The Spark execution environment offers a 
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large number of tuning parameters, and individual 
algorithms may have additional controls. The wide variety of 
tuning parameters can enable performance improvements, 
but the complexity of tuning and the interrelationship 
between parameters can make optimal performance elusive.  

Another performance consideration for both Hadoop and 
Spark is that they rely upon Java Virtual Machines, which 
can introduce their own complexities into optimization. For 
example, changing memory allocations or data partitions to 
optimize one set of parameters may change the amount of 
data shuffling and even influence garbage collection 
behavior of the underlying JVM. Changing the problem size 
or hardware allocation may invalidate optimizations found 
for the previous run. 

In addition to performance considerations, there are 
practical issues of using the different environments. On the 
Cray Urika-GX, Hadoop job resources are managed by 
YARN and require the user to allocate and de-allocate 
resources manually. Spark and CGE will dynamically 
allocate resources and release them when the job completes. 
Data file formats can also be an issue that affects the analysis 
effort. Both Hadoop Flink and Spark GraphX use a simple 
integer edge list to describe a directed graph. CGE, however, 
requires data in RDF format, and even when the analysis 
requires only a simple directed graph, it is necessary to 
translate the data with the correct grammar. 

7. Conclusions 
The Cray Urika-GX system provides several useful 

software ecosystems for performing analytics on large and 
complex datasets, including Hadoop, Spark, and the Cray 
Graph Engine. A particular algorithm may be uniquely 
implemented take advantage of characteristics of the 
software ecosystem, offering substantially different 
performance characteristics, even when running on the same 
hardware. If there is a choice of ecosystems, or if the various 
ecosystems can be integrated into a hybrid application, 
comparison and validation of the implementations is 
appropriate.  

We evaluated the performance of the PageRank algorithm 
implemented in the Hadoop Flink package, the Spark 
GraphX library, and the Cray Graph Engine using synthetic 
datasets from the Graph500 benchmark. We presented strong 
scaling results for run times on graphs of up to 8 billion 
edges, and showed that performance could vary by more than 
10X between the implementations.  

From these results, we concluded that analytics 
practitioners may choose implementations of various 
algorithms from different software ecosystems, evaluate 
their performance on relevant problem sets, and determine if 
performance differences warrant integration of the specific 
implementations into their analytics workflows. While graph 
algorithm research and optimization is still an active area of 
research, practitioners should take advantage of readily 
available implementations to improve their workflows. 
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