
Computer Science and Engineering 2015, 5(3): 59-65

DOI: 10.5923/j.computer.20150503.02

Weighted Pre-Emptive Modified Highest

Response Ratio Next

G. A. Shidali
*
, S. B. Junaidu, S. E. Abdullahi

Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria

Abstract Preemptive Modified Highest Response Ratio Next (PMHRRN) scheduling algorithm is a preemptive discipline

in which the hybrid priority of each process determines which job is executed next. The hybrid priority of a job is obtained by

giving equal weight to both its external and internal priority. The internal priority of a job is dependent on its response ratio

and the amount of time it has spent waiting while the external priority is assigned by the system using any given algorithm.

PMHRRN also prevents indefinite postponements but uses equal weights for both priorities. In this research, PMHRRN has

been modified in such a way that the weights of the internal and external priority of jobs are staggered to favour either of the

priorities. Hence, a weighted preemptive modified HRRN (WPMHRRN) algorithm has been developed.

Keywords Starvation, Priority, Preemption, CPU scheduling

1. Introduction

Process scheduling is a fundamental function of an

operating system [1]. The main concept is to share

computer resources among a number of processes. Almost

each computer resource is scheduled before use [2]. The

Central Processing Unit (CPU) is a primary computer

resource. Process scheduling is important because it plays

an important role in effective resource utilization and the

overall performance of the system. CPU scheduling

decisions may take place when a process:

1. Switches from running state to waiting state (for

example as the result of an I/O request or an

invocation of wait for the termination of one of the

child processes).

2. Switches from running to ready state (for example

when an interrupt occurs).

3. Switches from waiting state to ready state (for

example at completion of an I/O).

4. Terminates [1]

Figure 1 shows the different process states. Scheduling

under 1 and 4 is non-preemptive. All other scheduling is

preemptive [3]. In other words, a scheduling discipline is

preemptive if, once a process has been given the CPU; the

CPU can be taken away. The strategy of allowing processes

that are logically run-able to be temporarily suspended is

called preemptive scheduling and it is contrast to the "run

to completion" method. On the other hand, a scheduling

* Corresponding author:

gloriashidali@gmail.com (G. A. Shidali)

Published online at http://journal.sapub.org/computer

Copyright © 2015 Scientific & Academic Publishing. All Rights Reserved

discipline is non-preemptive if, once a process has been

given the CPU; the CPU cannot be taken away from that

process. In general preemptive scheduling algorithms are

preferred due to their abilities to switch the CPU to another

process even when the current running process is not

completed [4].

The aim of process scheduling is to assign processes to

be executed by the processor in order to meet system

objectives such as response time, throughput and processor

efficiency [5].

1.1. CPU Utilization

This is the percentage of time that the processor is busy [5].

The CPU should be as busy as possible [1].

1.2. Waiting Time

This is considered to be the sum of the periods a process

spends waiting in the ready queue [1]. The goal is to

minimize the waiting time [6].

1.3. Response Time

This is the time it takes for a process to start responding

[1]. In an interactive system, the response time should be

minimized and users maximized [5].

1.4. Throughput

This is the number of processes that are completed per unit

time [6]. The number of jobs processed per unit time should

be maximized [7].

1.5. Turnaround Time

This is the interval between the time of submission of a

60 G. A. Shidali et al.: Weighted Pre-Emptive Modified Highest Response Ratio Next

process and the time of completion of that process [5]. The

turnaround time should be minimized.

In this research, a framework to evaluate the effect of

staggering the weights of the internal and external priorities

on the performance of a hybrid scheduling algorithm,

Preemptive Modified Highest Response Ratio Next

(PMHRRN) in terms of waiting time, turnaround time and

response time of processes is proposed.

Figure 1. Process state diagram [1]

2. Related Work

2.1. First-Come-First-Served (FCFS)

FCFS is the simplest scheduling policy. With this policy,

the process at the head of the ready queue, which has waited

there for the longest time, is selected for execution [8].

2.2. Priority Scheduling

Each process is assigned a priority, and the process with

the highest priority is allowed to run first [9]. Priority

scheduling can be either preemptive or non-preemptive [1].

There are three possible ways of assigning priorities to

processes. They are as follows;

1. Statically or externally: Priority is assigned by some

external system manager before process is scheduled.

2. Dynamically or internally: Priority is assigned

according to an algorithm.

3. Hybrid: Priority is assigned by some combination of

external and internal schemes [4].

2.3. Highest Response Ratio Next

The response ratio of each process in the process pool, R is

computed as:

R = (w + s)/s (1)

Where w is the waiting time of a process and s is the

expected service time.

The process with the greatest response ratio is executed

next [8].

2.4. Highest Response Round Ratio Next (HRRRN)

Jobs with the highest response ratios which have not been

executed completely are executed next. They are executed in

RR manner. The quantum is determined by dividing the

average burst time of processes by 1.5 [2].

2.5. Round Robin Highest Response Ratio Next

(RRHRRN)

Processes with the highest response ratios are executed in

RR manner. The time quantum is calculated by taking the

mean of remaining burst time, RBT, of processes in the ready

queue. After each round the process is repeated until the

ready queue is empty [10].

2.6. Modified Highest Response Ratio Next (MHRRN)

The response ratio, R is considered as the internal priority

of a process while the length of the service time of that

process is considered as the external priority, E. The hybrid

priority of each process is obtained by giving equal weight to

both its external and internal priority. The hybrid priority, Hp,

of each process is computed as follows:

Hp= 0.5 * R + 0.5 * E (2)

Where R is the internal priority of each process and E is

the external priority.

Processes with highest Hp are executed first [4].

2.7. Preemptive Modified Highest Response Ratio Next

(PMHRRN)

Response ratio, R and hybrid priority, Hp are computed

using equations (1) and (2) respectively. Processes with

highest hybrid priority, Hp, are executed next. After the

execution of a burst time, a running process may be

preempted if there is another process with a higher hybrid

priority [11].

3. Research Method

3.1. Design of Weighted Preemptive Modified Highest

Response Ratio Next (PMHRRN)

For a given process with service time and arrival time, the

length of service time of a process is considered as its

external priority while its internal priority shall be

determined by the response ratio of each process in the ready

queue. The hybrid priority, Hp is computed using equation

(3).

Hp = xR + yE (3)

Where x and y can take on any value less than 1provided

that the following condition takes place;

 x + y = 1 (4)

The process with highest hybrid priority, Hp, is executed

next. After the execution of a burst time, a running process

may be preempted if there is another process with a higher

hybrid priority. If multiple processes have the highest hybrid

priority, the process with the earliest arrival time among

those processes is executed next which then preempts the

current running process. However, if the current running

process is the process with the highest hybrid priority, it

 Computer Science and Engineering 2015, 5(3): 59-65 61

continues to run.

3.2. WPMHRRN Algorithm

1. Start

2. Processes arrive at the ready queue, RQ.

3. Processes in RQ are sorted and assigned internal and

external priorities

4. Compute, Hp = xR + yE: x + y = 1

5. Pi = process with the highest value of Hp

6. Pi executes a burst time

7. While (RBT [Pi] = 0), process Pi leaves RQ. Calculate

the WT, RT, and TAT of Pi

8. Is RQ = null? If yes, calculate AWT, ART, ATAT of all

executed processes; go to step 9 else go to step 3.

9. Stop

3.3. Results and Discussion

Assumptions of the model are;

1. All experiments are performed in a uniprocessor

environment.

2. All processes are independent of each other.

3. Attributes such as burst times and arrival times are

known prior to submission of process.

4. All processes are CPU bound.

Table 1. Data set of five processes

Process Arrival Time Burst Time Priority (E)

P1 0 9 1

P2 2 6 3

P3 4 5 4

P4 5 3 5

P5 8 7 2

Using the data in Table 1, the Average Turnaround Time

(ATAT), Average Waiting Time (AWT) and Average

Response Time (ART) are computed for a set of five

processes. The range of burst time used is between 0-10.

3.3.1. PMHRRN

Using the information in Table 1, the PMHRRN algorithm

is demonstrated.

At time t = 0, only process P1 is available and runs for 2

time units. Note that process P1 runs for 2 time units because

it is the only process available for that time period.

At time, t = 2, processes P1 and P2 are available. Their

priorities are determined as shown in Table 2 and their

hybrid priority, Hp, is computed. Note that the longer the

burst time of the process, the lower the value of the priority

of the process. The burst time of each process is also updated

(as shown in Table 2) to indicate the remaining burst time of

the process which is used in computing the response ratio

(internal priority) of the process.

Table 2. Process state at t=2

Process Burst Time Priority (E)

P1 7 1

P2 6 2

P1: R = (0+7) /7 = 1; Hp = 0.5(1) + 0.5(1) = 1

P2: R = (0+6)/6 = 1; Hp = 0.5(1) + 0.5(2) = 1.5

Process P2 has the highest hybrid priority, Hp. P1 is

therefore pre-empted and P2 runs for 2 time units. Note that

process P2 runs for 2 time units because after the execution

of a burst time, when the hybrid priority is recomputed, it

turns out to be the process with the highest value.

At time t = 4, processes P1, P2 and P3 are available. Their

priorities are determined as shown in Table 3 and their

hybrid priority, Hp, is computed. The burst time of each

process is also updated to indicate the remaining burst time

of the process which is used in computing the response ratio

(internal priority) of the process.

Table 3. Process state at t=4

Process Burst Time Priority (E)

P1 7 1

P2 4 3

P3 5 2

P1: R= (2+7)/7 = 1.285; Hp= 0.5(1.285) + 0.5(1) = 1.143

P2: R= (0+4)/4 = 1; Hp= 0.5(1) + 0.5(3) = 2

P3: R= (0+5)/5 = 1; Hp= 0.5(1) + 0.5(2) = 1.5

Process P2 has the highest hybrid priority, Hp and so runs

for 1 time unit.

At time, t = 5, processes P1, P2, P3 and P4 are available.

Their priorities are determined as shown in Table 4 and their

hybrid priority, Hp, is computed.

P1: R = (3+7)/7 = 1.43; Hp= 0.5(1.43) + 0.5(1) = 1.2

P2: R = (0+3)/3 = 1; Hp= 0.5(1) + 0.5(3) = 2

P3: R = (1+5)/5 = 1.2; Hp= 0.5(1.2) + 0.5(2) = 1.6

P4: R = (0+3)/3 = 1; Hp= 0.5(1) + 0.5(3) = 2

Table 4. Process state at t=5

Process Burst Time Priority (E)

P1 7 1

P2 3 3

P3 5 2

P4 3 3

Processes P2 and P4 have the highest hybrid priority, Hp,
but process P2 runs for 3 time units because it arrived earlier

than P4. It then leaves the queue. Note that process P2 runs

for 3 more time units because after the execution of a burst

time, when the hybrid priority is recomputed, it turns out to

be the process with the highest value.

At time, t = 8, processes P1, P3, P4 and P5 are available.

62 G. A. Shidali et al.: Weighted Pre-Emptive Modified Highest Response Ratio Next

Their priorities are determined as shown in Table 5 and their

hybrid priority, Hp, is computed.

Table 5. Process state at t=8

Process Burst Time Priority (E)

P1 7 1

P3 5 2

P4 3 3

P5 7 1

P1: R = (6+7)/7 = 1.86; Hp= 0.5(1.86) + 0.5(1) = 1.423

P3: R = (4+5)/5 = 1.8; Hp= 0.5(1.8) + 0.5(2) = 1.9

P4: R = (1+3)/3 = 1.333; Hp= 0.5(1.333) + 0.5(3) = 2.167

P5: R = (0+7)/7 = 1; Hp= 0.5(1) + 0.5(1) = 1

Process P4 has the highest hybrid priority, Hp, and runs for

3 time units and leaves the queue. Note that process P4 runs

for 3 time units because after the execution of a burst time,

when the hybrid priority is recomputed, it turns out to be the

process with the highest value.

At time, t = 11, processes P1, P3 and P5 are available.

Their priorities are determined as shown in Table 6 and their

hybrid priority, Hp, is computed.

P1: R = (9+7)/7 = 2.29; Hp = 0.5(2.29) + 0.5(1) = 1.643

P3: R = (7+5)/5 = 2.4; Hp = 0.5(2.4) + 0.5(2) = 2.2

P5: R = (3+7)/7 = 1.429; Hp = 0.5(1.429) + 0.5(1) = 1.214

Table 6. Process state at t=11

Process Burst Time Priority (E)

P1 7 1

P3 5 2

P5 7 1

Process P3 has the highest hybrid priority, Hp, runs for 5

time units and leaves the queue.

At time, t = 16, processes P1 and P5 are available. Their

priorities are determined as shown in Table 7 and their

hybrid priority, Hp, is computed.

Table 7. Process state at t=16

Process Burst Time Priority (E)

P1 7 1

P5 7 1

P1: R = (14+7)/7 = 3; Hp= 0.5(3) + 0.5(1) = 2

P5: R = (8+7)/7 = 2.143; Hp= 0.5(2.143) + 0.5(1) = 1.57

Process P1 has the highest hybrid priority, Hp, runs for 7

time units and leaves the queue.

At time t=23, only process P5 is available. P5 runs for 7

time units and leaves the queue. Table 8 summarizes the

result.

3.3.2. Weighted Pmhrrn

The proposed algorithm, WPMHRRN, is demonstrated

below.

The same data in Table 1 is employed. For the purpose of

this demonstration, the hybrid priority, Hp is computed with

the weight of the internal priority, x and external priority, y

given as 0.9 and 0.1 respectively. Note that x + y = 1.

At time t=0, only process P1is available. P1 runs for 1 time

unit. At time t=1. Only process P1 is available still so process

P1 runs for another 1 time unit.

At time t=2, processes P1 and P2 are available.

P1: R = (0+7)/7 = 1; Hp = 0.9(1) + 0.1(1) = 1

P2: R = (0+6)/6 = 1; Hp = 0.9(1) + 0.1(2) = 1.1

Process P2 has the highest hybrid priority, Hp. P1 is

therefore pre-empted and P2 runs for 1 time unit.

At time t=3, P1 and P2 are available.

P1: R = (1+7)/7 = 1.143; Hp = 0.9(1.143) + 0.1(1) = 1.129

P2: R = (0+5)/5 = 1; Hp = 0.9(1) + 0.1(2) = 1.1

Process P1 has the highest hybrid priority, Hp. P2 is

therefore pre-empted and P1 runs for 1 time unit.

At time t=4, P1, P2 and P3 are available.

P1: R = (1+6)/6 = 1.167; Hp = 0.9(1.167) + 0.1(1) = 1.15

P2: R = (1+5)/5 = 1.2; Hp = 0.9(1.2) + 0.1(2) = 1.28

P3: R = (0+5)/5 = 1; Hp = 0.9(1) + 0.1(2) = 1.1

Process P2 has the highest hybrid priority, Hp. P1 is

therefore pre-empted and P2 runs for 1 time unit.

At time t=5, P1, P2, P3 and P4 are available.

P1: R = (2+6)/6 = 1.33; Hp = 0.9(1.33) + 0.1(1) = 1.3

P2: R = (1+4)/4 = 1.25; Hp = 0.9(1.25) + 0.1(3) = 1.425

P3: R = (1+5)/5 = 1.2; Hp = 0.9(1.2) + 0.1(2) = 1.28

P4: R = (0+3)/3 = 1; Hp = 0.9(1) + 0.1(4) = 1.3

Process P2 has the highest hybrid priority, Hp. continues to

runs for another 1 time unit.

Table 8. Summary of PMHRRN result

Process Arrival Time Burst Time Priority (E) Start Time Finish Time TAT WT RT

P1 0 9 1 0, 16 2, 23 23 14 2.56

P2 2 6 3 2 8 6 0 1

P3 4 5 4 11 16 12 7 2.4

P4 5 3 5 8 11 6 3 2

P5 8 7 2 23 30 22 15 3.14

Average 13.8 7.8 2.2

 Computer Science and Engineering 2015, 5(3): 59-65 63

At time t=6, P1, P2, P3 and P4 are available.

P1: R = (3+6)/6 = 1.5; Hp= 0.9(1.5) + 0.1(1) = 1.45

P2: R = (1+3)/3 = 1.33; Hp= 0.9(1.33) + 0.1(3) = 1.5

P3: R = (2+5)/5 = 1.4; Hp= 0.9(1.4) + 0.1(2) = 1.46

P4: R = (1+3)/3 = 1.33; Hp= 0.9(1.33) + 0.1(3) = 1.5

Processes P2 and P4 have the highest hybrid priority, Hp,
but process P2 is selected to run because it arrived earlier

than P4. P2 therefore runs for 1 time unit.

At time t=7, P1, P2, P3 and P4 are available.

P1: R = (4+6)/6 = 1.67; Hp= 0.9(1.67) + 0.1(1) = 1.6

P2: R = (1+2)/2 = 1.5; Hp= 0.9(1.5) + 0.1(4) = 1.75

P3: R = (3+5)/5 = 1.6; Hp= 0.9(1.6) + 0.1(2) = 1.64

P4: R = (2+3)/3 = 1.67; Hp= 0.9(1.67) + 0.1(3) = 1.8

Process P4 has the highest hybrid priority, Hp. P2 is

therefore pre-empted and P4 runs for 1 time unit.

At t=8, P1, P2, P3, P4 and P5 are available.

P1: R = (5+6)/6 = 1.83; Hp= 0.9(1.83) + 0.1(2) = 1.85

P2: R = (2+2)/2 = 2; Hp= 0.9(2) + 0.1(4) = 2.2

P3: R = (4+5)/5 = 1.8; Hp= 0.9(1.8) + 0.1(3) = 1.92

P4: R = (2+2)/2 = 2; Hp= 0.9(2) + 0.1(4) = 2.2

P5: R = (0+7)/7 = 1; Hp= 0.9(1) + 0.1(1) = 1

Processes P2 and P4 have the highest hybrid priority, Hp,
but process P2 is selected to run because it arrived earlier

than P4. P2 therefore runs for 1 time unit.

At time t=9, P1, P2, P3, P4 and P5 are available.

P1: R = (6+6)/6 = 2; Hp= 0.9(2) + 0.1(2) = 2

P2: R = (2+1)/1 = 3; Hp= 0.9(3) + 0.1(5) = 3.5

P3: R = (5+5)/5 = 2; Hp= 0.9(2) + 0.1(3) = 2.1

P4: R = (3+2)/2 = 2.5; Hp= 0.9(2.5) + 0.1(4) = 2.65

P5: R = (1+7)/7 = 1.143; Hp= 0.9(1.143) + 0.1(1) = 1.13

Process P2 has the highest hybrid priority, Hp. continues to

runs for another 1 time unit and then leaves the queue.

At time t=10, P1, P3, P4 and P5 are available.

P1: R = (7+6)/6 = 2.167; Hp= 0.9(2.167) + 0.1(2) = 2.15

P3: R = (6+5)/5 = 2.2; Hp= 0.9(2.2) + 0.1(3) = 2.28

P4: R = (4+2)/2 = 3; Hp= 0.9(3) + 0.1(4) = 3.1

P5: R = (2+7)/7 = 1.286; Hp= 0.9(1.286) + 0.1(1) = 1.257

Process P4 has the highest hybrid priority, Hp. P4 runs for

1 time unit.

At time t=11, P1, P3, P4 and P5 are available.

P1: R = (8+6)/6 = 2.33; Hp= 0.9(2.33) + 0.1(2) = 2.3

P3: R = (7+5)/5 = 2.4; Hp= 0.9(2.4) + 0.1(3) = 2.46

P4: R = (4+1)/1 = 5; Hp= 0.9(5) + 0.1(4) = 4.9

P5: R = (3+7)/7 = 1.429; Hp= 0.9(1.429) + 0.1(1) = 1.39

Process P4 has the highest hybrid priority, Hp. P4 runs for

another 1 time unit and then leaves the queue.

At t=12, P1, P3 and P5 are available.

P1: R = (9+6)/6 = 2.5; Hp= 0.9(2.5) + 0.1(2) = 2.45

P3: R = (8+5)/5 = 2.6; Hp= 0.9(2.6) + 0.1(3) = 2.64

P5: R = (4+7)/7 = 1.57; Hp= 0.9(1.57) + 0.1(1) = 1.514

Process P3 has the highest hybrid priority, Hp. P3 runs for

5 time units and leaves the queue. Note that for subsequent

computations after process P3 runs its first time unit, it

remains the process with the highest hybrid priority. Hence it

runs for 5 time units.

At time t=17, processes P1 and P5 are available.

P1: R = (14+6)/6 = 3.33; Hp= 0.9(3.33) + 0.1(2) = 3.2

P5: R = (9+7)/7 = 2.286; Hp= 0.9(2.286) + 0.1(1) = 2.157

Process P1 has the highest hybrid priority, Hp. P1 runs for

6 time units and leaves the queue. Note that for subsequent

computations after process P6 runs its first time unit after

process P3 leaves the queue, it remains the process with the

highest hybrid priority. Hence it runs for 6 time units.

At time t=23, only process P5 is available. P5 runs for 7

time units and leaves the queue.

Figure 2 shows the comparison of parameters studied for

PMHRRN and WPMHRRN (90/10) algorithms based on

Table 1.

3.4. Comparing Existing Scheduling Algorithms with

PMHRRN

To study the performance of WPMHRRN, a simulator

was developed which produces a simulation of the

scheduling algorithms discussed namely PMHRRN and

WPMHRRN for a single CPU. Burst times and arrival times

of processes were generated by the simulator using Poisson

distribution. The simulator computes the scheduling

parameters discussed. The user is also provided with the

facility to check whether his or her answer is correct or not.

The simulator also provides detailed results of each process

as well as a summarised result of all processes run.

Figure 3 shows the summary of results obtained for a

one-time run of 100 processes with burst range of 1-17.

Table 10 shows a summary of results obtained for ATAT,

AWT and ART for 1000 processes with a burst range of

1-1200 run 10 different times for WPMHRRN with varied

weights assigned as internal and external priorities.

Table 9. Summary of WPMHRRN (90/10) result

Process Arrival Time Burst Time Priority (E) Start Time Finish Time TAT WT RT

P1 0 9 1 0, 3, 17 2, 4, 23 23 14 2.56

P2 2 6 3 2, 4, 8 3, 7, 10 8 2 1.3

P3 4 5 4 12 17 13 8 2.6

P4 5 3 5 7, 10 8, 12 7 4 2.3

P5 8 7 2 23 30 22 15 3.14

Average 14.6 8.6 2.38

64 G. A. Shidali et al.: Weighted Pre-Emptive Modified Highest Response Ratio Next

Table 10. A comparison of PMHRRN and variations of PMHRRN

Weighted PMHRRN PMHRRN

Variations 10/90 30/70 70/30 90/10 50/50

ATAT 195383.8 195383.8 195384.35 195389.93 195383.85

AWT 194816.28 194816.28 194816.84 194822.41 194816.34

ART 274.475 274.475 274.482 274.504 274.476

Figure 2. Comparing parameters for PMHRRN and WPMHRRN (90/10)

Figure 3. Screen shot of a one-time run of 100 processes with burst range of 1-17

Based on the research, the following is found in terms of

performance metrics studied; an increase in internal priority

causes an increase in average turnaround time, average

waiting time and average response time. This implies that if

the external priority is favoured over the internal priority the

system will perform better than if otherwise.

4. Conclusions

The aim of the research was to study the performance of

PMHRRN (a preemptive algorithm that incorporated fixed

internal and external priorities to determine which process

gets the CPU) when its priorities are staggered or altered.

Upon successful completion of the study, it was found that

response times, waiting times and turnaround times of

processes in a uniprocessor are found to be maximized with

an increase in internal priority of the system. Table 9 shows a

summary of results obtained from the system showing the

behaviour of the processes with respect to performance

criteria. Users and designers of operating systems will find

that placing more weight on the external priority which in

this case is the shortest job first is helpful in addressing the

issue of starvation and response times especially in

interactive systems.

0 5 10 15 20

ATAT

AWT

ART

WPMHRRN(90/10)

PMHRRN

 Computer Science and Engineering 2015, 5(3): 59-65 65

In future, the proposed scheduling algorithm shall be

applied on tasks in a multiprocessor environment and that

have dependencies among one another.

REFERENCES

[1] A. Silberchatz, P. B. Galvin and G. Gagne. Operating System
Concepts. 7th ed., John Wiley & Sons. Hoboken, USA. 2005.

[2] J. Patel and A. K. Solanki. “Performance evaluation of CPU
scheduling by using hybrid approach,” International Journal
of Engineering Research & Technology (IJERT) ., 1 (4), 1-8,
June 2012.

[3] J. Breecher. (2013). web.cs.wpi.edu/~cs3013/c07/lectures.
Retrieved March 3, 2013.

[4] S. Varma. “Design of modified HRRN scheduling algorithm
for priority systems using hybrid priority scheme,” Journal of
Telematics and Informatics (JTI), 1 (1), 14-19, 2013.

[5] W. Stallings. Operating Systems: Internals and Design
Principles.7th ed., Prentice Hall, USA. 2012.

[6] E. O. Oyetunji and E. Oluleye. “Performance assessment of
some CPU scheduling algorithms,” Research Journal of
Information Technology , 1 (1), 22-26, 2009.

[7] M. Abur, A. Mohammed, S. Danjuma, S. Abdullahi S. “A
critical simulation of CPU scheduling algorithm using
exponential distribution,” International Journal of Computer
Science Issues , 8 (6), 201-206, 2011.

[8] J. Niu. http://www.sci.brooklyn.cuny.edu/~jniu/teaching/csc
33200/files/1201-UniprocessorScheduling.pdf. Retrieved
August 26, 2012.

[9] S. S. Monemi.http://www.csupomona.edu/~carich/classes/cs
499/201001/notes/os_fundamentals.pdf. Retrieved April 10,
2013.

[10] H. S. Behera, B. K. Swain, A. K. Parida, G. Sahu. (2012). “A
new proposed Round Robin With Highest Response Ratio
Next (RRHRRN) scheduling algorithm for soft real time
systems,” International Journal of Engineering and Advanced
Technology, 1 (3), 2012.

[11] G. A. Shidali, S. B. Junaidu, S. E. Abdullahi. “A new hybrid
process scheduling algorithm (Pre-Emptive Modified Highest
Response Ratio Next),” Computer Science and Engineering,
Vol. 5 No. 1, 2015, pp. 1-7.

http://www.csupomona.edu/~carich/classes/cs499/201001/notes/os_fundamentals.pdf
http://www.csupomona.edu/~carich/classes/cs499/201001/notes/os_fundamentals.pdf
http://www.csupomona.edu/~carich/classes/cs499/201001/notes/os_fundamentals.pdf

