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Abstract  Fluid level monitoring is an important control process in engineering systems. The level measurement of 
fluids having changeable densities is a complex task. Most measurement methodologies use sensors that are periodically 
paused for recalibrations. For flammable liquids, this may be unsafe and even dangerous. This paper proposes a safe 
recalibrating-free computer-based methodology for measurement of fluid levels, which is based on Hough transform, image 
processing and normalization. This paper also describes experiments using a prototype of a distillation unit that was built 
especially to test the proposed methodology. The results from these experiments have demonstrated robustness, low-cost 
and suitability of the methodology for real crude oil level measurement in distillation processes. 

Keywords  Liquid level measurement, Hough transform algorithms, Canny detector, Visual monitoring normalization, 
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1. Introduction 
Several engineering processes require fluid level 

measurement for controlling purposes. These measurement 
activities frequently use sensors and follow a beforehand 
methodology. In this context, “methodology” means the 
clustering of computer processes, methods, algorithms and 
practical tools that (together and under special rules) 
monitors the dynamic level of a fluid. In level measurement 
an applied methodology is classified as intrusive (contact) 
or nonintrusive (noncontact). Intrusive methodologies have 
the sensors in a quite continuous contact with the liquid and 
therefore they are not suitable for dangerous environments. 
In nonintrusive methodologies there are no (or a very little) 
contact with the liquid during the level monitoring. 
Although traditional sensors, such as floats and infrared, are 
hitherto the most used practical tools for level measurement, 
they are not recommended for monitoring processes of 
flammable fluids or even fluids having unstable 
characteristics (such as density and color). Floats are   
almost useless for measuring fluids that modify easily  
their densities or viscosities. Infrared sensors, although 
more accurate than floats, have not been widely       
used in flammable liquid level measurements. In crude oil  
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distillation monitoring, for instance, from which are derived 
diverse fractions of oils with different densities, infrared 
sensors are rarely applied due to their inadequacy for 
following dynamic changes. Indeed, from a crude oil 
sample it is possible to derive (according to their boiling 
points) several products with different viscosities, densities, 
colors etc. 

A variety of acoustic and optical sensors is used in 
noncontact methodologies. Acoustic sensors usually apply 
ultrasound techniques. They run by emitting short pulses in 
the direction of the liquid surface and then measuring their 
back reflections. These sensors are very sensitive to 
temperature fluctuations, which are able to change the 
speed of the emitted sound. They also are very sensitive to 
the environment circumstances and the presence of some 
gas can attenuate the ultrasound pulses [1]. An optical 
sensor measures the quantity of light and translates it into a 
readable form. A number of optical noncontact sensors have 
been specially developed for level monitoring purposes [2], 
[3]. Nevertheless optical sensors require calibrations during 
the monitoring process in which a series of measurements 
and human interventions must be applied. Indeed, most of 
the methodologies currently used for fluid level 
measurements have parameters that need recalibrations 
during the monitoring process. This frequently requires to 
pause the measurement activities, to take into account the 
new fluid characteristics, to reset sensor parameters, and 
then to resume the process. All this kind of tasks requires 
human interventions that must obey a standardized 
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methodology. This kind of methodology is generally 
beforehand conceived and its success usually depends on 
the accuracy of the human interventions during the process. 
Therefore this kind of methodology is not recommended for 
level monitoring processes of crude oil distillations, for 
instance, since crude oil is a dangerous liquid whose level 
measurement activities cannot be stopped without 
increasing risks to the whole level monitoring process. 

This paper presents a computer-based methodology for 
liquid level measurement. VILEMEM (VIsual LEvel 
MEasurement Methodology) is a novel methodology 
enclosing a set of new algorithms, methods, processes and 
practical tools, aiming to monitor liquid level measurement 
activities. The main contributions of VILEMEM are 
low-cost, fluid-density independence, non-contact approach 
and recalibrating-free methodology. It uses Hough 
transform, Canny detector, visual normalizations and 
enhanced image processing techniques [4-8]. This paper 
also presents DUVE (Distillation Unit for VILEMEM 
Experiments), a simple fractional distillation unit specially 
built to test VILEMEM through several experiments using 
crude oil samples. The results of these experiments have 
shown that VILEMEM can be successfully applied in 
industrial crude oil level measurement activities. 

The remainder of this paper is organized as follows. 
Section 2 presents a review of the principal concepts and 
methods used in the subsequent sections; describes the 
simplified distillation unit DUVE, the level measurement 
module (LMM) and its processes and algorithms to correct 
image distortions, to identify bottom and lateral edges and to 
detect current level. Section 3 introduces new algorithms to 
obtain level measurements based on identification of edges 
and image normalization techniques, and describes the 
proposed VILEMEM Algorithm. Section 4 shows the main 
obtained results of the experimentation of VILEMEN 
methodology with a lot of experiments with crude oil 
samples. Section 5 discusses the merits of the proposed 
methodology and presents the conclusions of this paper. 

2. Crude Oil Distillation Processes 
Crude oil is composed of aliphatic hydrocarbons. The 

length of an aliphatic compound depends on the quantity and 
configuration (chain) of carbon atoms. Diverse products may 
be derived from the crude oil and the main difference among 
them is the length of their carbon chains. The longer the 
chain is the heavier the product is. For instance, gas has few 
carbon atoms, such as methane CH4, ethane C2H6, propane 
C3H8 and butane C4H10, that boil at -258.7oF, -127.5oF, 
-43.8oF and 31oF, respectively. Light naphtha has chains 
from C5 to C6 and boiling points from 86oF to 194oF. Heavy 
naphtha has chains from C6 to C12 and boiling points from 
194oF to 392oF. Liquids from C7H16 to C11H24 (such as 
gasoline) have their boiling point from 100oF to 400oF. 
Chains from C12 to C15 (such as kerosene) have their boiling 
from 302oF to 572oF. Chains from C11 to C19 (such as diesel 

fuel, lubricating oils and heavier fuel for heating houses) 
have their boiling points from 392oF to 662oF. Solids over 
C19 are the heaviest derived products (such as paraffin wax, 
tar and asphaltic bitumen) and have the highest boiling 
points (around 977oF).  

Crude oil is universally classified as extra heavy, heavy, 
medium, light, and extra light. Each one of these classes has 
its variety and quantity of derivable products. The widely 
used way to determine the brand and the quantity of products 
derived from a crude oil sample is through a fractional oil 
distillation unit in which the products are separated by their 
boiling points. The information gathered from a distillation 
is important to determine the quality of the crude oil (that 
implies the cost of refinement), an essential premise for 
guiding investment decisions which influence petroleum 
market prices. The extra light type is easier and cheaper to 
refine than the others and consequently its market price is 
higher. Inversely, the extra heavy is less valuable because of 
its cost of refinement. In [9] some interesting fundaments 
about crude oil distillation processes are shown. [10] 
describes a mathematical model for fractional distillations. 
[11] shows a thermodynamic analysis of crude oil distillation 
systems. 

2.1. The Distillation Unit DUVE 

A simple crude oil distillation unit like DUVE includes 
several parts such as a boiler, a distillation column, a top 
condenser, a lateral condenser and a conveyor belt with a set 
of collecting devices as showed in Figure 1. Once the 
different sub products that come up from a crude oil sample 
melt at different boiling points, the system gathers each 
fraction in different collecting devices in order to provide a 
way to analyze its volume and quality. 

 

Figure 1.  Main parts of a simple oil distillation unit 

Whenever the capacity of the collecting device is reached 
( maxH ) or the current sub product has been wholly melted, 
the conveyor belt is activated positioning the next collecting 
device below the spout. DUVE is a simple prototype of a 
distillation unit specially built for the conception and 
construction of the visual system research in an academic 
laboratory. It includes a special collecting device as shown in 
Figure 2, a distillation column, a suspended reservoir for the 
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oil fraction and a manual system to control the oil flow. 
DUVE uses a translucent collecting device in order to 
facilitate the visual measurements and the device has three 
distinct regions: a top region (the neck area), a false bottom 
region and a measurable region (the cylindrical middle area). 
The top and the false bottom regions do not gather liquids. 
The false bottom holds a digital barcode that is read by the 
visual system in order to identify and connect each collecting 
device with its respective oil fraction.  

2.2. The Level Measurement Module 

A fluid level measurement methodology is classified as 
contact or non-contact according to the need (and amount) of 
manipulations required during the measurement activities. 
When a methodology assists all the steps of the whole 

measurement activity it is classified as global, and local 
otherwise. VILEMEM is a synchronous non-contact and 
global measurement methodology. VILEMEM encloses a 
Programmable Logic Controller (PLC), a Supervisor System 
and a Visual Monitoring System. The PLC is responsible for 
dealing with all signals sent by the sensors and for 
redirecting them to the Supervisor System. The Visual 
Monitoring System is the part of the sensor array that is 
interconnected to the PLC through a field-bus network. The 
electric signals interchanged between the Supervisor System 
and the Visual Monitoring System is done through the PLC, 
and a specialized tension adapter circuit matches the voltages 
varying from five to twenty-four volts. The Visual 
Monitoring System has two main modules, the First Drop 
Fall Detection and the Level Measurement Module (LMM). 

 

Figure 2.  Regions of a collecting device 

 

Figure 3.  Main monitoring activities 
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Before the LMM can be activated (at the beginning of a 
measurement activity) the following human interventions are 
required just to start the distillation environment: i. put the 
collecting devices on the conveyor belt; ii. place the camera 
and calibrate its active angle; iii. verify the position of the 
lighting apparatus; and iv. hang up a white screen. For 
simplicity it is assumed that the distillation maintains a 
steady behavior, such as the liquid never slipping through an 
edge of the collecting device. The camera is rotated o90  
clockwise to improve the visualization and to capture the 
largest side of the collecting device. Firstly, the camera and 
the artificial illumination are turned on by a signal from the 
Visual Module System, after that the Supervisor System is 
notified and then verifies the position of the current 
collecting device. The First Drop Fall Detection module 
detects the fall of the first drop and the LMM is activated. 

The LMM finds the false-bottom region, identifies both 
the barcode and the measurable cylindrical region. The 
camera begins capturing frames that are put into a FIFO list. 
The level measurement starts and whenever the current 
product increases the level of a h∆ , the LMM sends a signal 
to the Supervisor System, and the current volume is 
immediately calculated. When the level reaches the maxH  
(or there is no more liquid to be extracted under the current 
temperature) the LMM is notified and is automatically 
paused by the Supervisor System while the collecting device 
is replaced. When this task is over, the Visual Module 
System notifies the Supervisor System that verifies whether 
the new collecting device is placed and then the 
measurement activity restarts. The LMM carries out five 
main processes: i. correction of image distortions; ii. barcode 
detection and interpretation; iii. identification of the lateral 
edges; iv. identification of the bottom; and v. detection of the 
current liquid level. Figure 3 shows a block diagram of the 
main monitoring activities.  

2.3. The LMM Correction of Image Distortions 

All images are susceptible to geometric distortions caused 
by variations in camera lens. These come from variations of 
the image magnitude and its distance from the focal axis. The 
sources of these distortions (and lens positioning errors) vary 
according to the configuration, however it is vital to remove 
(or at least to reduce) these distortions before gathering 
measurements. The best-known distortions are the cushion 
form and the barrel form [12]. 

A cushion form distortion enlarges as the distance from 
the center increases, whereas in a barrel form distortion the 
magnitude decreases as a function of the distance to the 
center of the image. A digital camera with a wide-angle lens, 
such as the one used in DUVE, causes a barrel form 
distortion (Figure 4). DUVE uses indirect lighting by a high 
LED luminance array, the safest lighting tool for flammable 
liquids. The white screen at the back of the collecting device 
emphasizes the contrast level (vital for transparent oils). 
Although a direct illumination using traditional lamps would 
allow a better definition of the object edges, a high indirect 
lighting eliminates background noises, reducing the 

interference of eventual light sources that cause flickering 
effects. All these calibrations depend on the characteristics 
(and configuration) of the distillation unit. For classical units, 
like DUVE, these calibrations are uncomplicated, costless 
and fast. The LMM correction of image distortions uses a 
customized method based on grid mapping. It consists of 
initially spotlighting several points of the image that 
characterize distortions, then a grid with horizontal and 
vertical lines is grabbed by the camera, and the intersection 
points of these lines are highlighted (Figure 5).  

 

Figure 4.  Barrel distortion 

 

Figure 5.  Correcting distortions through a grid intersection 

For instance, in a 44×  grid (Figure 6), for the 
twenty-five intersections (measured from the center of the 
grid, in pixels with distortion), an array H of heights is 
generated. A member ),( yxh  of H is the height calculated 
from the vertical line in the center of the image. In this 
example, as the actual distance from each line with respect to 
the others is cm1 , the heights are easily calculated:

cmh 2)1,1( = . In the Figure 7 each square has 22×  pixels, 
an arrow may be null (small circles), positive ( cm1  or cm2 ) 
if pointing upwards, or negative otherwise. It represents the 
correspondence between the distorted coordinates of an 
intersection in pixels and the actual height, without 
deformation, in centimeters. 

Although this relationship between the distorted 
coordinates and the non-distorted height is known, it is 
difficult to correct accurately all the points of the image. In 
fact, the intersection points are corrected, but it is necessary 
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to approximate lines in order to correct the other points. This 
results in an exponential growing of intersections. The 
camera from DUVE captures 2534×  centimeters of the 
collecting device and therefore just 1mm between the lines 
implies 81600 points. Nevertheless, since the relationship 
distorted-coordinate/actual-height has a constant behavior, 
an interpolation based on Delaunay triangulation [13] is 
applied with third degree polynomials to obtain new points 
between the intersections. These new points are stored in an 
array 'H , and as long as the distance between the camera and 
the collecting device remains unchanged, new interpolations 
are not required because all values are already in 'H .  

 

Figure 6.  A grid pixel/cm correcting a barrel distortion 

 

Figure 7.  Distorted coordinates × actual height without deformation 

A function ),( yxmapsH =  maps the original distorted 
points (in pixels) to the corresponding non-distorted heights 
(in centimeters). H is graphically represented in the figures 
8 and 9. A value from 'H is not the actual height of the 
product level due to the collecting device bottom height. The 
level is )(hfabshha += , where h is the obtained level 
height, and hf is the bottom height (Figure 10). 

 

Figure 8.  H absolute value 

 

Figure 9.  H and pixels/centimeters 

 

Figure 10.  Interpolation process 

2.4. The LMM Identification of the Lateral Edges 

The cornerstone of this process is the barcode 
identification. The top left and bottom right coordinates are 
used in the search of the horizontal lines that lie close to the 
projection of the barcode center point, the dotted line in 
Figure 11. The horizontal component of the Sobel filter 
(directly on the initial image) was solitarily used in order to 
verify the edges horizontal lines. Unfortunately, this resulted 
in bad defined edges with a lot of noise. In order to try to 
reduce these noises a median filter was applied, but this 
worsened the sharpness of the edges. 

 

Figure 11.  Searching for a lateral edge 

This problem was solved by the VILEMEM methodology 
employing a threshold δ  in the binary representation of a 
window of the image, and then applying the Canny detector 
which results in increased sharpness. As a Canny detector 
does not have specialized masks for detecting vertical or 
horizontal lines, the horizontal component of the Sobel filter 
and a median filter are applied to reduce noise. Eventually, a 
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constant sized imaginary window passes through the image 
while the threshold is compared to the quantity of pixels 
(inside the window). This allows selecting the lateral edges 
among the possible candidates. 

With this combination of filters, the LMM identification 
of lateral edges process have shown robustness and efficacy 
in some experiments with DUVE, exhibiting promising 
results in extracting horizontal and vertical edges. Figures 12, 
13, 14, 15, 16 and 17 show a sequence of application of these 
algorithms in an actual experiment using DUVE. 

 

  

Figure 12.  Captured image Figure 13.  Canny detector 

  
Figure 14.  Sobel filter Figure 15.  Median filter 

 
 

Figure 16.  Window method Figure 17.  Edges found 

 
Whenever the dimensions of the collecting device are 

known it is possible to apply a straightforward method to 
find the horizontal line (with the searched dimension), which 
is the closest to the horizontal projection of the barcode 
center point. Afterwards, a constant sized imaginary window 
is used (the window height is approximately equal to the 
lateral edges of the collecting device), which contains a 
particular pixel and some bordering pixels. This window 
may continually shift vertically through the image at a rate of 
one pixel per step. This is the VILEMEM ImaginaryWindow 
method. In experiments with DUVE this imaginary window 
was set as a rectangular area about half the height of the 
image, and all pixels in it were computed (sum of the 
horizontal projections of the window). If this sum is bigger 

than δ  then the area is considered as a possible edge or else 
the imaginary window is displaced up or down (depending 
on which edge is being searched) and the sum is again 
compared to δ . 

The LMM identification of the lateral edges process is 
based on the Algorithm 1. The experiments with DUVE have 
demonstrated that the use of the Sobel filter, the Canny 
detector and the ImaginaryWindow method together is an 
easy and very effective way to detect lines with known size 
and orientation. One of its main advantages is the detection 
of lines that are not perfectly straight. 

Algorithm 1.  Detection and segmentation of lateral edges 

Img = Capture()  
ImgEdges = CannyDetector(Img)  
ImgHEdges = SobelDetector(ImgEdges, HorMask) 
CleanImgHEdges = MedianFilter(ImgHEdges, Mask)  
[UpImg LwrImg] = DivideImg(CleanImgHEdges, BarcodePos) 
UpHProjs = GetHorProjections(UpImg) 
LwrHProjs = GetHorProjections(LwrImg) 
UpLatWinPos = SearchLine(UpImg, 'Up', UpHProjs,WinHeight) 
LwrLatWinPos = SearchLine(LwrImg, 'Down', LwrHProjs,WinHeight) 
UpLatMeanYCoord = 
MeanHPixPos(UpHProjs,UpLatWinPos,WinHeight) 
LwrLatMeanYCoord = 
MeanHPixPos(LwrHProjs,LwrLatWinPos,WinHeight) 
SegmentedImg = CutImgBelow(Img, LwrLatMeanYCoord) 
SegmentedImg = CutImgAbove(SegmentedImg, UpLatWinPos) 
function SearchLine(Img, Dir, HorProjs, WinHeight) 
 if Dir == 'Up' then 

star = Height(Img) 
end = 0 
step = -Height(Window) 

else 
start = 0 
end = Height(Img) 
step = Height(Window) 

 
Some methods, such as the Hough transform for lines, 

basically detect “perfect'” straight lines. Another important 
advantage of this algorithm is its low cost. Its main 
disadvantage is that it requires knowing in advance the 
approximate dimension of the line being searched in order to 
correctly set δ , and to delimitate the region of search. This 
disadvantage is less serious if the environment is controlled. 
Such as DUVE, the majority of the environments for real 
crude oil distillation processes are controlled. 

The Algorithm 1 calculates the straight lines •= cy m~ , 
where c is a constant and m~ is the mean of the x values that 
belong to the lateral edge. The SearchLine function selects 
the lateral edges among the possible candidates. The 
imaginary window is displaced by one pixel towards the top 
or the bottom. When the lines that represent the edges 
(calculated by the method of least squares) are found, the 
regions of the image above and below the detected edges are 
removed. This reduces the search space and obviously the 
cost of the algorithm. 
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2.5. The LMM Bottom Identification 
The localization of the barcode reduces the search region 

of the bottom, whose main descriptor is an ellipse (a 
distortion from the circle of the bottom) captured by the 
camera. The Hough transform uses a voting procedure to 
find line [14], circle [15], ellipse [16], parabolic [17] etc. To 
detect a line, the idea is to identify linear or pseudolinear 
groups of disconnected points and intersected lines. A line 

φφ sincos yxr += has r and φ  as the unknown 
parameters to be found. If this line intercepts a point ),( ii yx  
then it can be solved with different values for r andφ . Thus, 
each point ),( ii yx  in the image can be associated with a set 
of values for r and φ . This set forms a sinusoidal curve in 
the space ),( φr . As for each point in the image there is a 
related curve, the whole image has a large number of 
sinusoidal curves, which normally converge to a common 
point. Thus, a pair ),( φr from the sinusoidal convergence 
point indicates an inclination and a position r belonging to a 
line that can be drawn through the dots in the image. 

Algorithm 2.  Generating a Hough space 

function CreateHS(I,H) 
  for x in range (0, n) do 

  for y in range (0, m) do 
     if I(x,y) == 1 then 
   for φ  in range (0, 2π) do 
          xc = x – r cos(φ ) 
          yc = y - r sin(φ ) 
          H(xc,yc) = H(xc,yc) + 1 

 
The Hough transform may be generalized to detect groups 

of points belonging to a curve, but this increases the 
complexity of the algorithm whether the defining function 
has too many independent variables (such as for ellipses). A 
modification of Hough transform for circles and ellipses 
detection has been well studied [18-21], as well as some 
methods reducing the complexity of the Hough transform for 
ellipses in unknown environments have been developed [22], 
[23]. In this context, VILEMEM proposes a simple and 
efficient method that transforms the original image to a 
circumference, reducing the computational effort. Indeed, 
since the axis of the bottom ellipse is parallel to the 
horizontal and vertical main axis of the captured image, then 
it is possible to resize the image and transform the ellipse in a 
circumference. 

The Algorithm 2 generates a Hough space, a 
two-dimensional array having the same size of the original 
image. The input I is a '' nm × binarized image and the 
output H is a '' nm × array. The indexes from the columns 
and rows represent the possible values of the circumference 
center coordinates ),( cc yx . All the cells ),( cc yx , which 
represent centers of circumferences (with radius r ), going 
through the point ),( yx , are incremented in the Hough space. 
The cells with higher values point out the most probable 

centers of circumferences. The gradient method is used to 
search the higher values in the Hough space array. 

Algorithm 3.  Identifying the bottom of a collecting device 

Resize the image  
Apply the CannyDetector 
Apply the Hough circular transform 
 
The abridged Algorithm 3 identifies the bottom of a 

collecting device. A bilinear interpolation helps the image 
resizing, and the m × n actual image is fitted in another 

'' nm × ),( '' nnmm << . The Canny detector removes the 
low frequency pixels from the image. The Hough transform 
for circles detects all pixels belonging to circumference 
candidates in the image. The Hough space is built (via 
Algorithm 2) and the obtained cells with higher values are 
the candidate centers for the circumferences. [23], for 
instance, focuses on an application of Hough transform for 
circumferences, whose centers and perimeters are detected 
after the Hough algorithm had been applied, and the highest 
value (point of maxima) of the Hough space array represents 
the best point to be a center of a circumference. In 
VILEMEM, the center of a corrupted circumference 
corresponds to the point of higher concentration of 
intersections in the Hough space. Thus, when the 
circumference center had been detected it is mapped back in 
the ellipse center via the application of the inverse process of 
resizing and the right vertical tangent of the circle will 
represent the bottom side of the collecting device. 

2.6. The LMM Detection of the Current Level 
The identification of the bottom provides a hint to the 

visualization of the lateral edges, which are a benchmark to 
identify the measurable region. The level is a line in this 
region, which has three likely visualizations according to its 
localization with regard to the focal axis of the camera. The 
current height of the liquid is considered as the intersection 
between the lateral edges and the level-line. The level is 
assigned to a right and a left position of the intersections, and 
the final level is calculated as the mean of these two 
measures. The search region can be reduced through two cuts 
on the image after the bottom identification. As the level 
goes up while the liquid is dripping from the spout, the area 
below the last detected level might be theoretically discarded. 
Nevertheless, as the liquid may oscillates due to the impact 
of dripping, for safety sake a first cut in the image is done 
only at 1p  pixels above the last detected level ( 1p is a 
predefined constant). A second cut is 2p  pixels wide, 2p
meaning the lower search limit for the next level detection 
(when the threshold δ is reached). Thus, the search region 
obtained by the discard of upper area ( 1p ) and lower area 
( 2p ) can still be improved through the search of possible 
vertical intersections in the split left and right regions using 
the ImaginaryWindow method starting from the top of the 
restricted search region.  
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3. Measuring Fluid Levels through 
VILEMEM 

During the development of VILEMEM, three algorithms 
were implemented and tested. Mishaps detected during some 
DUVE experiments have been solved in the VILEMEM 
enhanced algorithm. The first algorithm was based on the 
LMM identification of lateral edges, the second on the use of 
a set of frames and the third algorithm on the removing of 
irrelevant pixels. 

3.1. An Algorithm Based on the Identification of Lateral 
Edges 

This algorithm uses Sobel filter and Canny detector 
through a vertical mask. The Canny detector is applied to 
detect the edges of the Image (Figures 18, 19) and the 
vertical component of the Sobel filter is applied to extract the 
vertical lines of the Image (Figure 20). A median filter is 
applied to reduce the noise of the Image (Figure 21). The 
ImaginaryWindow method is also used to detect and to 
segment the level-line, but improved to detect vertical lines. 

 

  

Figure 18.  Image Figure 19.  Canny detector 

  

Figure 20.  Sobel filter Figure 21.  Median filter 

Algorithm 4.  Level measurement based on identifications of edges 

ImageEdges = CannyDetector(Image) 
Image = VerticalSobel(ImageEdges) 
Image = MedianFilter(Image) 
Image = ImaginaryWindow(Image) 

 
The main advantage of the Algorithm 4 is its swiftness due 

to its low computational cost and the straightforward 
insertion of the Canny detector, the Sobel filter and a median 
filter. The main disadvantages are due to the concomitant use 
of two processes for edge detection that increase the image 
noises (requiring a median filter to improve the final result). 
This means to accept a rough measurement of the level-line, 
which decreases the accuracy of the method. Thus, the error 
rate may be considerable and, in some frames, the level could 
not be measured. As only one frame is used to detect the 
level, in experiments with DUVE the levels from some 
images were not detected. 

3.2. An Algorithm Based on Sets of Frames 

The Algorithm 5 uses a set of frames to detect the 
level-line, with six frames extracted from every thirty frames. 
In DUVE it implies 2 seconds of video with an approximated 
capture rate of 16 fps. This means that one frame is selected 
to calculate the level-line at every 3/1  second. The mean 
x~  of the heights (of the level-lines detected in each of the 
six selected frames) is considered the actual level-line. If the 
level had not been successfully detected in a selected frame f, 
then f is discarded and not computed in x~ . 

Histogram equalization is used to increase the contrast of 
the image, improving the level-line definition. Frame 
subtraction is calculated between a current frame and a 
background frame (the first is grabbed with the empty 
collecting device). This operation removes static elements of 
the image that interfere in the level detection. The function 
Gray (in second and third lines of the algorithm 5) converts a 
RGB image into a gray level image (Figures 22a and 22b). 
The function EqualizeHistogram does an equalization of the 
histogram of an image (Figures 22c and 22d). The sixth line 
of the algorithm subtracts the background frame from the 
current frame; the seventh line binarizes the result of this 
subtraction and the eighth line detects and segments the level 
line using the ImaginaryWindow method (Figure 22e). 

 

 

Figure 22.  Experiments using algorithm 5 

Algorithm 5. Using a set of frames 

Take(BackgroundFrame) 
Gray(BackgroundFrame ) 
Gray(CurrentFrame) 
EqualizeHistogram(BackgroundFrame) 
EqualizeHistogram(CurrentFrame) 
Image = CurrentFrame - BackgroundFrame 
Image = binarize(Image) 
Image = ImaginaryWindow(Image) 

3.3. An Algorithm Based on the Removal of Irrelevant 
Pixels 

The Algorithm 6 removes irrelevant pixels (with high gray 
level, nearly white), and applies the subtraction method from 
a background frame. In this approach the pixels are removed 
according to the standard deviation σ . It is considered that 
the most relevant Luminance Values Lv, found by the fifth 
line in algorithm 6, are below the limit Lv(1). 

a. 
 

b. 
 

c. 
 

d. 
 

e. 
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Algorithm 6.  Removing irrelevant pixels 

Take(BackgroundFrame) 
Gray(BackgroundFrame) 
Gray(CurrentFrame) 
Image = CurrentFrame - BackgroundFrame 
SearchMostRelevantPixels 
Apply ClosingMorphologicalOperator 
RemoveNoise(Image) 
EdgesImage = CannyDetector(Image) 
Image = ImaginaryWindow(Image) 

 
The pixels with values close to 0 are relevant for the 

level-line whereas the pixels near 255 are relevant for the 
background of the image. The Figure 23a shows an original 
image in grayscale and the Figure 23b shows the resulting 
image after applying the process removing non relevant 
pixels. If relevant pixels are selected by mistake as irrelevant 
and then removed, the level-line would be fragmented. The 
ClosingMorphologicalOperator was included to join these 
fragments. Thus, the Canny detector is used and eventually 
the level line is detected using the ImaginaryWindow 
method. 

  

Figure 23.  Removing irrelevant pixels 

The function Gray in algorithm 6 converts a RGB image 
in a gray level image (Figures 24a and 24b). Figure 24c 
shows the result of the fourth line of algorithm 6. The pixels 
not accomplishing (1) become white (255) and the others 
black (0), and the final outcome is a binary image (Figure 
24d). The ClosingMorphologicalOperator is a 
transformation that fills holes and blocks narrow values by 
applying a structuring element (with size similar to the holes 
and values). Applying this operator to an image A through a 
structuring element B (2) means initially applying a dilation 
in A and then an erosion, both using B. Figure 24e shows the 
image after this operation. 

         A•B = ( A ⊕ B ) ⊖ B              (2) 
Removing noise is done by evaluating the 8-neighbors of 

each pixel. For instance, if a pixel has less than X black 
neighbors it is considered to be noise and removed (Figure 
24f). Canny detector is applied to extract edges (Figure 24g) 
[24], [25]. The main advantage of this algorithm is its 
reliability and performance with regards to Algorithms 4 and 
5. It uses several frames to calculate the height of the liquid 
level. In DUVE experiments, all frames had the level 

detected. The main disadvantage is its high computational 
cost due to the parallel running of several image-processing 
algorithms. 

 

Figure 24.  Experiments using algorithm 6 

3.4. The VILEMEM Algorithm 

The Algorithm 7 improves the three precedent algorithms 
and solves their drawbacks. For instance, a tricky problem is 
when the liquid is (almost) transparent, causing a low image 
contrast of the level-lines. To solve this kind of problem, a 
particular method for enhancing image definition was 
developed. Assuming that the frame rate of a camera is high 
enough to get consecutive frames with a small level 
displacement, the merge of these frames would result into an 
“averaged image” with more accurate level-line. In the 
VILEMEM Algorithm the SumArray is sized as the 
restricted region of search (using p1 to discard the upper area 
and p2 to discard the lower area). TotalFrames is the total 
number of frames used for the average operation. In 
GetLastFrame the idea is to acquire the last frame captured 
by the grabber and add each element of the array to the 
element of SumArray (with the corresponding indexes). The 
normalization of SumArray is calculated as shown in (3). 

     )/()( minmaxmin
' ZZZZZ ii −−=           (3) 

iZ  is the thi  element of SumArray, maxZ is its 
maximum element, and minZ  is its minimum element. The 
median filter reduces noises. SaturatePixels saturates the 
highest and the lowest pixels of the normalized sum array by 
an empirical value (for instance, 3% was obtained as an ideal 
value in DUVE), which improves the contrast. Categorizing 
the search region helps the identification of the left and the 
right intersections between the level-line and both the lateral 
edges.  

The image is categorized in three sections with the same 
size (Figure 25) and the central region (B) is discarded from 
the search. VertIntersections searches for the possible 
vertical intersection in the regions A and C using the 
ImaginaryWindow method, starting from the top of the 
restricted search region. CorrectDistortion corrects the 
distortion of the Image using the LMM correction of image 
distortions. Normalization is used instead of the mean 
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calculation of vL . In fact, normalization has proven to be 
more helpful and accurate than the mean calculation. Indeed, 
during mean calculation some relevant pixels representing 
edges of the image may be discarded. This does not occur in 
the normalization approach. 

 

Figure 25.  Searchable area 

 

Figure 26.  Actual edge and samples 

Algorithm 7.  The VILEMEM Algorithm 

TotalFrames = #(FramesForOperation) 
for i in range (ImageSize) do 
  SumArray[i] = 0 
CurrFrame = 0 
while CurrFrame <> TotalFrames do 
  GetLastFrame(Frame) 
  for j in range(Frame) do 
    SumArray[j] = Frame[j] 
                  CurrFrame = CurrFrame + 1  
NormSArray = Normalize(SumArray) 
NormSArray = MedianFilter(NormSArray) 
SaturatePixels (NormSArray) 
NormSArray = Bin(NormSArray) 
Image = FindIntersectionsEdges(NormSArray) 
VertIntersections = ImaginaryWindow(Image) 
Image = CorrectDistortion(Image,VertIntersections) 

 
The Figure 26 emphasizes the efficiency of the 

normalization approach using three examples of grabbed 
frames. The two binarized results were obtained with both 
edge enhancing methods, with a threshold 5.0=δ  to 
binarize each case. Our normalization approach generates a 
successful accurate representation of the actual edge with a 
suitable computational cost for a real-time edge 
enhancement. The VILEMEM Algorithm is fast and has a 
low computational cost too. One of its important advantages 
is the application of several frames to measure the level-line, 
which increases its reliability. In DUVE experiments the best 
results were obtained using this algorithm with all 
measurable variables (including σ and MAE). The main 
disadvantage of this algorithm is that it requires a high rate of 
capture of several frames in order to be applied in the 
normalization approach. 

4. Main Results 
The VILEMEM methodology was tested through several 

DUVE experiments using crude oil samples. The algorithms 
presented in this paper were continuously enhanced until 
VILEMEM confirmed itself as an effective measuring 
methodology for crude oil distillation processes. In DUVE it 
was used three kinds of oil falling speeds: the slow falling 

1Sp  (drops), the medium falling 2Sp (moderate stream) and 
the high falling 3Sp (streaming).  

Table 1.  Slow, medium and high fallings 

Sample tε  S ∑ P  

Sp1 5400 174 2867 

Sp2 1980 474 1053 

Sp3 360 2610 166 
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Table 1 illustrates an experiment using 86020, 31613 and 
4981 frames for 1Sp , 2Sp  and 3Sp , respectively. The 
elapsed time (in seconds) of the experiment is represented by

tε , S  is the estimated falling speed of the liquid (in 
ml/second), and ∑P  represents how many points were 
highlighted (to compare against the points of the level 
detected by our methodology). 

Table 2.  Error analysis for slow falling 

Alg MAE(ml) σ  +Max -Max tε  ∑ P  

Alg1 7.9 0.8 5 -5 480 10 

Alg2 18.8 12.8 90 -3 1020 8 

Alg3 9.2 0.9 5 -5 2040 0 

Algv 2.0 0.7 3 -1 2220 0 

Table 3.  Error analysis for medium falling 

Alg MAE(ml) σ  +Max -Max tε  ∑ P  

Alg1 10.2 3.6 5 -84 180 3 

Alg2 6.9 3.0 64 -3 300 6 

Alg3 4.6 0.9 3 -5 540 0 

Algv 2.4 1.1 2 -7 600 0 

Table 4.  Error analysis for high falling 

Alg MAE(ml) σ  +Max -Max tε  ∑ P  

Alg1 9.6 1.0 5 -2 60 1 

Alg2 7.7 4.3 48 0 60 5 

Alg3 7.0 0.9 4 -3 120 0 

Algv 2.0 0.7 2 -2 120 0 

 
Tables 2, 3 and 4 show the mean absolute error MAE, the 

standard deviation (σ ), the lower and upper max errors 
measured in mm (-Max and +Max), the elapsed time ( tε ), 
and the quantity of points where the level was not detected 
( ∑ P ), in relation with the error analysis. Alg1 is the 
algorithm based on lateral edge identification; Alg2 is the 
frame based algorithm; Alg3 is the removing pixels based 
algorithm; and Algv is the VILEMEM Algorithm. 

An error (MethodologyLevelValue - ActualLevelValue) is 
positive whenever the level detected is higher than the actual 
position, and it is negative otherwise. The mean of an error is 
calculated using the absolute value of the errors. +Max and 
-Max are in pixels. As shown by the tables 2, 3 and 4, the 
values of the MAE and σ corroborate to emphasize the 
robustness and effectiveness of VILEMEM for crude oil 
level measurements. For instance, with a collecting device 
with radius of 3.3cm, the minimum detectable volume 
calculated was 3.4 ml, with the mean hδ  computed by 
VILEMEM at every evaluated point approximately equal to 
1mm. With a collecting device with radius of 4.5cm, the 
minimum detectable volume was 6.3 ml. These results have 
completely corroborated to all our expectations. 

5. Conclusions 
The dynamic measurement of fluid level is a complex task. 

This complexity increases when the liquid being monitored 
is flammable or has changeable densities. The most widely 
known level measurement methodologies require periodic 
recalibrations of sensors and these recalibrations must be 
done by human interventions. This paper proposed a 
computer-based methodology for liquid level measurement. 
This new methodology, named VILEMEM, is a synchronous 
density-independent and non-contact approach that does not 
require periodical sensor recalibrations. VILEMEM 
incorporates algorithms, methods and processes designed for 
all level measurement activities. This paper also presented 
DUVE, a distillation unit built especially to test VILEMEM 
using experiments with crude oil samples. The results of 
these experiments have demonstrated that VILEMEM is safe, 
truthful and adequate to actual crude oil distillation activities. 
VILEMEM is based on the use of Hough transform, Canny 
detector and enhancements of image processing techniques. 

VILEMEM algorithms, methods and processes met all 
requirements of safety, speed, cost and robustness during the 
experiments. VILEMEM is non-intrusive (liquids are not 
touched), has a low application cost and may be used for 
other liquids besides crude oil. VILEMEM uses a 
normalization approach that is more accurate and faster than 
the usual calculating approach (widely applied in level 
measurement methodologies). The concomitant use of 
Canny detector, Sobel filter, median filters and the 
ImaginaryWindow method is the cornerstone of the low-cost 
and simplicity of the VILEMEM implementation in real 
level measurement processes. 
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