
Computer Science and Engineering 2015, 5(2): 25-29
DOI: 10.5923/j.computer.20150502.01

Testing Randomness: The Original Poker Approach
Acceleration Using Parallel MATLAB with OpenMP

Wael M. F. Abdel-Rehim1,*, Ismail A. Ismail2, Ehab Morsy3

1Department of Mathematics and Computer Science, Faculty of Science, Suez University, Suez, Egypt
2College of Computers and Informatics, Misr International University, Cairo, Egypt

3Department of mathematics, Suez Canal University, Ismailia, Egypt

Abstract In this paper, motivated by certain practical applications such as Monte Carlo simulation and cryptography. On
the other hand, Pseudo-random numbers are often required for simulations performed on parallel computers. We implement
the classical Poker test using parallel MATLAB with OpenMP (Open Multi-Processing) using MEX-file. After that, we
compares the performance of the implementation with that implemented the Poker test in parallel with MATLAB using
MEX-file with multithreading. We show that the running time of implementing the Poker method using parallel MATLAB
with OpenMP is significantly less than that using MEX-file (MEX stands for MATLAB Executable) with multithreading,
especially when the number of random numbers is sufficiently large.

Keywords Poker test, Randomness, Cryptography, Parallel random numbers test, MATLAB Multithreading, OpenMP

1. Introduction
Measuring the quality of randomness of a given sequence

is a crucial problem that significantly affects the quality of
many practical applications such as distributed algorithms,
cryptography [1, 2], statistical sampling and computer
simulation, as example pseudo-random numbers used in
Monte Carlo calculations [3]. In other words, the quality of
such applications depends on generating unpredictable
(random) sequence of quantities. From the practical point of
view, such sequence must be of sufficiently large size in the
sense that the probability of any particular value being
selected must be sufficiently small in order to prevent an
adversary from optimizing a search scheme based on such
probability.

There are many techniques described in the literature for
generating random, pseudorandom bits, parallel
pseudorandom bits and numbers. A random bit generator is a
device or an algorithm which outputs a sequence of
independent and unbiased binary digits. A random bit
generator can be used to generate uniformly distributed
random numbers. However, generating of random bits is an
inefficient procedure in most practical environments (storing
and transmitting a large number of random bits are
impractical if these are required in applications). We can
overcome this difficulty by substituting a random bit
generator with a Pseudorandom Bit Generator (PRBG).

* Corresponding author:
wael_fawaz@hotmail.com (Wael M. F. Abdel-Rehim)
Published online at http://journal.sapub.org/computer
Copyright © 2015 Scientific & Academic Publishing. All Rights Reserved

In order to make sure that such generators are secure
enough, they should be subjected to a variety of statistical
tests designed to detect the specific characteristics expected
of random sequences. We now review a number of empirical
tests described in the literatures; for further details [4-7].

Runs Test tests the runs up and down or the runs above and
below the mean by comparing the actual values to expected
values. The statistic for comparison is the chi-square.

Frequency Test develops frequency distribution of
individual samples, uses the chi-square test to compare the
distribution of the set of numbers generated to a uniform
distribution.

Poker Test (to be explained later in details) treats numbers
grouped together as a poker’s hand. Then the hands obtained
are compared to what is expected using the chi-square test
[8, 9].

These sequential tests often check for correlations within a
stream (on one processor), or the combined stream from all
processors [10], while parallel tests check for correlations
between different streams (on different processes) [11].

MATLAB is a wonderful high-level programming
language for scientific research. It is an interactive
environment that provides high-performance computational
routines [12]. Since threads are a common software solution
for parallel programming, on multi-core systems [13]. We
found that MATLAB supports kinds of parallelism one of
them is multithreaded parallelism [14].

MATLAB is an interpreted language, M-files execute
slower than compiled programs written in other languages,
such as C, C++, and Fortran. Therefore, we use MEX-file
(MEX stands for MATLAB Executable), because when we
integrate MATLAB with C++ code we can combine the

26 Wael M. F. Abdel-Rehim et al.: Testing Randomness: The Original Poker
Approach Acceleration Using Parallel MATLAB with OpenMP

advantages of MATLAB with the advantage of
multithreading that increase speed. Moreover, the execution
time of MEX files is significantly less than M-files [10, 15].

OpenMP (Open Multi-Processing) is an Application
Program Interface (API) that supports multi-platform shared
memory multiprocessing programming like C++. Moreover,
OpenMP is a nice way to get a parallel program from a
sequential program and it is standard for shared memory
programming for scientific applications.

This paper is organized as follows. In Section 2, we
discuss Poker test. In particular, two versions of Poker test
are presented in the literatures, the classical Poker test and
the modified Poker test. In Section 3, we run some
experiments for Poker test in parallel with MATLAP
followed by a discussion of the results. Finally, Section 4 we
provide some final conclusions.

2. Poker Test
In this section we present in details the two versions of

Poker test, the classical Poker test and the approximated
Poker test.

2.1. Classical Poker Test

The classical poker test consists of using all possible
categories obtained from poker that uses five hands, i.e.
AAAAA (five of a kind), AAAAB (four of a kind), AAABB
(full house), AAABC (three of a kind), AABBC (two pairs),
AABCD (one pair), and ABCDE (bust). In general, the poker
test using five hands considers n groups of five successive
integers denoted by (X5i, X5i+1,…, X5i+4), 0 ≤ i ≤ n, and then
observes which of the seven possible patterns is matched by
each quintuple. The following table summarizes such
patterns and their corresponding probabilities.

Name Pattern Probability

All different ABCDE 0.3024

One Pair AABCD 0.5040
Two pairs AABBC 0.1080

Three of a kind AAABC 0.0720

Full house AAABB 0.0090
Four of a kind AAAAB 0.0045
Five of a kind AAAAA 0.0001

It is well known that the number of hands a poker test can
apply with is not restricted to five [5]. In particular, Poker
test that uses four hands is more convenient to be applied to
certain applications such as simulation(see [16]), and
cryptography (see [2], [17]) in which we need to generate
random integers or a random sequence of bits. For example,
in cryptography, secret keys (used for encryption of
messages or other purposes) are generated using random
number generators (RNGs) (see [17]). Thus we applied
Poker test to bit streams (typically represented by a 32-bit or
64-bit unsigned integer) rather than floating point numbers,
and since 64 bits is not evenly divisible by five we use the

closest number that divides 64: four. That is, the generated
sequence of random numbers is divided into segments of
four bits (see [18]).

Given a sequence of n random numbers to be tested, it is
shown that there is a limit based on n as to how large the
value of k can be [19]. On the other hand, most practical
applications apply poker test with different values of k in
order to ensure that the underlying sequence is truly random
[20].

Some cryptographic algorithms using block cipher take
blocks, or keys with different sizes 128, 192, or 256 bits.
Therefore, if the block or the key size is 192, we find that
they are not evenly divisible by five or four, however
divisible by two. Therefore, series of pseudorandom
numbers generated is divided into parts, each consisting of
two bits. This encourages us to apply Poker test with hands
of two numbers instead of hands of three, four or five
numbers, especially in applications involving testing the
randomness of a sequences of bit such as cryptography.

Motivated by increase speed of the test we also
implemented the Poker test in parallel with MATLAB using
MEX-file with one, two, three and four threads, reducing the
execution time of the test (see [21]).

A Chi-square test is based on the number of quintuple in
each category. We count the number of occurrences in each
k-tuples, and then use a chi-square analysis against the
theoretical probabilities to determine whether the stack
represents a fair poker deck. We computed the theoretical
probabilities of some categories two (k=2), three (k=3), five
(k=4) and seven (k=5) categories (see [18, 22, 23, 24]).

2.2. Approximated Poker Test

At the time the classical Poker test is designed, checking
the occurrences of these subsequences of length five using a
computer program creates difficulties for the programmers
as they have no one systematic similarity. This motivates
constructing a simpler version of the classical test to
overcome the programming difficulties involved.

A good compromise would simply be to count the number
of distinct values in the set of five (see [6, 16]). Namely,
corresponding to the classical Poker test that uses five hands
we get five categories, 1different, 2different, 3 different, 4
different and 5 different. Thus, a finite time algorithms have
been designed to implement such modified Poker test; see
[4, 24].

This breakdown is easier to determine systematically, and
the test is nearly as good. In general, we consider n groups of
k successive numbers, and then count the number of k-tuples
with r different values. A chi-square test is then made using
the following probability of the existence of r different.

(1)...(1)Pr k
kd d d r
rd
 − − +

=  
 

Where







r
k denote the Stirling number of the second

kind (see [25]) (the number of ways to partition a set of k

 Computer Science and Engineering 2015, 5(2): 25-29 27

elements into exactly r parts). The Stirling number can be
computed using a well known formula.

Then different hands obtained can be compared to what is
expected using the chi-square test to see how far the data has
strayed from the theoretical distribution.

3. Experimental Results
In this section we implement the classical Poker test in

parallel with MATLAB using MEX-file with multithreading
and the corresponding modified version using parallel
MATLAB with OpenMP. We evaluate both versions of the
test by implementing programs using C++ code that create
random numbers. After that, we use MATLAB using
MEX-file to count the occurrence of these differences or
count number of occurrences, then classified each to possible
type of poker hand. Finally, it determines the chi-square. We
have compared the classical Poker test in parallel with one,
and two threads and compare the performance.

The experimental results are reported on Laptop Core i5
2.50 GHz CPU, 4GB of RAM, 3M of Cache and, MATLAB
8.1 (R2013a).

We analyze the running time of the classical Poker test
described in Figure 2, using parallel MATLAB with
OpenMP. We determine the running time of executing the
algorithm (time is in milliseconds). The resulting running
time is shown in the following table 1.

Table 1. Summary of execution time in ms, for the original Poker test
using threads and Using OpenMp

Random No 1 Thread 2 Thread Using OpenMp

1000 27 15 14

5000 29 16 15

10000 46 32 31

50000 62 47 43

100000 78 67 62

500000 94 79 71

1000000 156 140 125

5000000 188 172 140

10000000 265 234 171

50000000 421 356 218

100000000 642 507 296

The results of Table 1 (shown in Figure 1) imply there is a
significant improvement in term of the running time in the
case of applying the classical Poker test with one, two
threads and using parallel MATLAB with OpenMP,
especially when the number of random numbers is
sufficiently large.

Finally, we compare the performance of the classical
Poker test described in Figure 2, with one, and two threads
with that using parallel MATLAB with OpenMP. We are
interested in the speedup of execution time for implement of

the classical Poker method in parallel. Speedup Formula:
Speedup (Sn) = T1/Tn

Where Sn is the speedup experienced on n processors, T1 is
the execution time for the sequential implementation, and Tn
is the execution time on n processors. We calculated the
speedup using the last equation. The tests were performed on
one, and two threads as shown in figure 1. The resulting
speedup is shown in table 2.

Table 2. Speedup results for two threads and Using OpenMp for each
random numbers using Poker test

Random No Speedup for 2 thread Speedup for Using
OpenMp

1000 1.80 1.93

5000 1.81 1.93

10000 1.44 1.48

50000 1.32 1.44

100000 1.16 1.26

500000 1.19 1.32

1000000 1.11 1.25

5000000 1.09 1.34

10000000 1.13 1.55

50000000 1.18 1.93

100000000 1.27 2.17

From Table 2 and figure 1, we show that the speedup of
the implement of the classical Poker test in parallel with
MATLAB using two threads is greater than one thread.
Furthermore, Poker approach that using parallel MATLAB
with OpenMP is significantly greater than that using one and
two threads.

Figure 1. Speedup gained by implementing the classical Poker test on two
threads and Using OpenMp using parallel MATLAB

28 Wael M. F. Abdel-Rehim et al.: Testing Randomness: The Original Poker
Approach Acceleration Using Parallel MATLAB with OpenMP

Figure 2. The classical Poker test pseudo-code algorithm

4. Conclusions
We have been studied Poker method for testing

randomness using parallel MATLAB with OpenMP. In
particular, we have been discussed the Poker using parallel
MATLAB with OpenMP using MEX-file and compared the
performance with parallel with MATLAB using MEX-file
with one and two threads. From the computations point of
view, we have been compared the performance of
implemented the Poker test in parallel with MATLAB using
MEX-file with multithreading.

We show that the speedups of implementing the Poker test
using parallel MATLAB with OpenMP is significantly
greater than that using MEX-file using multithreading with
one and two threads, especially when the number of random
numbers is sufficiently large.

REFERENCES
[1] Fan, Zheng, Xiao-jian, Tian, Jing-yi, Song, Xue-yan, Li, 2008.

Pseudo-random sequence generator based on the generalized
Henon map. The Journal of China Universities of Posts and
Telecommunications, 15(3), pp. 64–68.

[2] Menezes, A. J., Oorschot, Paul C van, Vanstone, Scott A,
1997. Handbook of applied cryptography. CRC Press. ISBN:
0849385237.

[3] Brent, R. P., 1998. Random number generation and
simulation on vector and parallel computers. Proc. Fourth
International Euro-Par Conference (Southampton, UK, 1-4
Sept 1998), D. Pritchard and J. Reeve (editors), Lecture Notes
in Computer Science, Vol. 1470, Springer-Verlag, Berlin,
1998, 1-20.

[4] Hamilton, John A., Nash, David A., 1997. Distributed
Simulation. CRC Press, ISBN: 0849325900.

[5] Kendall, M G, Smith, B B, 1938. Randomness and random
sampling numbers. Journal of the Royal Statistical Society
101, 147–166.

[6] Knuth, D. E., 1997. The Art of Computer Programming:
Seminumerical Algorithms. Volume 2 (3rd Ed.),
Addison-Wesley Longman Publishing Co., Inc, ISBN:
0201896842.

[7] Sheskin, David J., 1997. Handbook of: Parametric and
Nonparametric Statistical Procedures. CRC Press, ISBN:
0849331196

[8] Rutti, Mario, 2004. A Random Number Generator Test Suite
for the C++ Standard. Diploma Thesis, Institute for
Theoretical Physics, ETH Zurich.

[9] Stewart, William J., 2009. Probability, Markov chains,
queues, and simulation: the mathematical basis. Princeton
University Press, ISBN: 0691140626.

[10] Coddington, Paul D. and Ko, Sung-Hoon, 1998. Techniques
for Empirical Testing of Parallel Random Number Generators.
Northeast Parallel Architecture Center. Proc. International
Conference on Supercomputing (ICS'98).

[11] Srinivasan, A., Ceperley, D., and Mascagni, M., January 2003.
Testing Parallel Random Number Generators. Parallel
Computing, Volume 29, Issue 1, Pages 69–94, ISSN:
0167-8191.

[12] Mathworks Inc. (2013) MATLAB user’s guide. [Online].
http://www.mathworks.com/products/matlab/.

[13] Luszczek, Piotr. Enhancing Multi-Core System Performance
Using Parallel Computing with MATLAB, MathWorks.
http://www.mathworks.com/company/newsletters/articles/en
hancing-multi-core-system-performance-using-parallel-com
puting-with-matlab.html.

[14] Moler, Cleve. Parallel MATLAB: Multiple processors and
multiple cores. The MathWorks Newsletters, 2013.
http://www.mathworks.com/company/newsletters/articles/pa
rallel-matlab-multiple-processors-and-multiple-cores.html.

[15] Bachnak, Rafic and Lee, Roger, Winter 2003. Converting
M-Files to Stand-Alone Applications Technology Interface
(Electronic Journal of Engineering Technology), Vol.5, No.1,
ISSN 1523-9926.

[16] Karian, Zaven A., Dudewicz, Edward J., 1998. Modern
statistical systems and GPSS simulation. Second Edition,
CRC Press, ISBN: 0849339227.

[17] Brands, Stefan, Gill, Richard, 1995. Cryptography, statistics
and pseudo randomness I. Probability and mathematical
statistics, Vol. 15, pp. 101–114.

[18] Abdel-Rehim, Wael M. F., Ismail, Ismail A., Morsy, Ehab,
2012. Testing randomness: Implementing poker approaches
with hands of four numbers. International Journal of
Computer Science Issues, Vol. 9, Issue 4.

[19] Supaan, Suriyati Binti, 2008. Analysis for A5/1 and A5/2
algorithm (stream ciphers). Faculty of Electrical Engineering,
Senior Thesis, Faculty of Electrical Engineering, Universiti
Teknologi Malaysia.

[20] Talamba, Sorin, 2001. A Theoretical and Empirical Study of
Uniform Pseudo-Random Number Generators. Senior Thesis,
Department of Computer Science, Middlebury College.

[21] Abdel-Rehim, Wael M. F., Ismail, Ismail A., Morsy, Ehab,
2015.” Testing Randomness: The Original Poker Approach
Acceleration Using Parallel MATLAB”. Journal of Computer

 Computer Science and Engineering 2015, 5(2): 25-29 29

Science and Applications (CSA).Vol. 2, No. 2. ISSN:
2333-9071.

[22] Abdel-Rehim, Wael M. F., Ismail, Ismail A., Morsy, Ehab,
2012. Implementing the classical poker approach for Testing
Randomness, (Submitted).

[23] Abdel-Rehim, Wael M. F., Ismail, Ismail A., Morsy, Ehab,
2012. Testing Randomness: Poker Test with Hands of Three
Numbers. Journal of Computer Science 8 (8): 1353-1357.

[24] Abdel-Rehim, Wael M. F., 2012. Testing randomness: Poker
test with hands of two numbers. Proc. 8th International

Computing Conference in Arabic: ICCA 2012 - December
26-28, Cairo, Egypt.

[25] Karl, Andrew, 2008. Pseudorandom Numbers: Generation,
Statistical Measures, Monte Carlo Methods, and
Implementation in C++. Senior Thesis, Department of
Mathematics, University of Notre Dame.

[26] Weisstein, Eric W., “Stirling Number of the Second Kind”,
From Math World-A Wolfram Web Resource-
http://mathworld.wolfram.com/StirlingNumberoftheSecond
Kind.html.

	1. Introduction
	2. Poker Test
	3. Experimental Results
	4. Conclusions

