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Abstract  A conflict between refactoring and AOP techniques can arise whenever an application with aspects is subjected 
to a refactoring application. When the units of code being restructured are also part of a pointcut definition, changes in the 
external behaviour of the application can occur. This study presents an approach to anticipate the impact of refactoring 
changes in AO applications. We first decompose refactorings into atomic change operations. Then we individually analyse 
and evaluate each of these operations. The overall results anticipate the consequences of the refactoring. Our approach is 
partially automated. We also provide some examples and introduce a discussion (left open in this work) about the relationship 
between different variables that characterize the refactorings. 
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1. Introduction 
The process of changing a software system in a way that 

improves its internal structure yet does not alter the external 
behaviour of the code yet is called “restructuring”[1]. 
Refactoring[2] is the object-oriented variant of restructuring. 
The key idea is to redistribute classes, variables, and 
methods across the class hierarchy in order to facilitate 
future adaptations and extensions[3]. In the context of 
software evolution, restructuring and refactoring are used to 
improve the quality of the software (e.g., extensibility, 
modularity, reusability, complexity, maintainability, and 
efficiency).  

Refactoring is not only a theoretical technique; it has also 
won acceptance in real practice, with several commercial 
and noncommercial tools supporting refactoring, such as 
Eclipse, IntelliJ, NetBeans, and JBuilder. These tools 
automatically perform a set of refactorings for any 
programming language, such as Java.  

Aspect-Oriented Programming (AOP)[4] is a technique 
that provides for separation of concerns[5]. AOP proposes a 
new kind of modularization called aspects. An aspect is a 
module that can localize the implementation of crosscutting 
concerns (CCC)[6]. The main dynamic abstractions of an 
aspect are pointcuts and advice. Pointcuts are predicates 
that describe a set of join points where an advice code 
should be executed. A join point is a well-defined point in a 
program’s control flow. The key to the AOP modularization 
technique lies in its composition mechanism called weaving 
[7]. In traditional approaches such as OO, subroutines  
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explicitly invoke the behaviours implemented by other 
subroutines. In contrast, aspects have an implicit invocation 
mechanism, so that the behaviour of an aspect is implicitly 
invoked in the implementation of other modules. 
Consequently, the implementation of these other modules 
can be largely unaware of the CCC. However, this structure 
(pointcuts and advice) makes it difficult for developers to 
evaluate the behaviour of a system. In particular, the 
implicit invocation mechanism introduces an additional 
layer of complexity in the construction of a system. This 
can make it difficult to understand how and when the base 
system and the aspects interact, and consequently, how the 
overall system will behave. 

As suggested in[8], a conflict between refactoring and 
AOP techniques can arise whenever an application with 
aspects is subjected to a refactoring application. When the 
units of code under restructuring are also pieces of pointcut 
definitions, changes in the external behaviour of the 
application can occur. If the refactoring unintentionally 
causes links or connections (generated by the aspect 
weaving process) between the base code and the aspects to 
disappear or appear, the impact is not evident to the 
developer. Such situations can arise because of the tight 
coupling and dependency among aspects and classes and 
the fact that refactoring is an invasive technique.  

The present study answers some questions raised in[8]. 
We propose an approach to anticipate the impact of 
refactoring changes in AO applications. Our proposal first 
decomposes the refactorings into atomic change operations. 
Then we analyse and evaluate each of these individually, 
and use the overall results to anticipate the consequences of 
the refactoring. Our approach is partially automated. The 
central software artifact in this study is source code, and for 
this purpose we have focused on the AspectJ language[9]. 
However, our approach may be applied to any other AO 
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language.  
This study comprises two parts. The first part presents 

our approach and some examples, and the second part uses 
descriptive statistics to discuss the relationships between 
different variables involved in the application of 
refactorings to AO systems. The remainder of the paper is 
organised as follows. Section 2 presents a simple 
motivating example for the problem. Section 3 introduces 
the model that will be used to anticipate the consequences 
of refactorings in AO applications. Section 4 explains how 
the predictions are made and introduces the tool BaLaLu, 
followed by some examples. Section 5 uses descriptive 
statistics to discuss the relationships between certain 
variables that are involved in the application of refactoring 
in AO systems. Section 6 describes some related work, and 
Section 7 presents our conclusions. 

2. Motivating Example 
As we have explained, pointcuts and advice provide the 

AOP mechanism that encapsulates CCC by changing the 
dynamic execution of the base code. Advice is a fragment of 
code, such as a method, that will be executed with the base 
code (before, after, or around). A pointcut is an expression 
that establishes the events and conditions specifying when 
and where advice code will be executed, typically as a 
method call. Pointcuts are the more critical elements in AOP 
evolution, because a simple change in the base code may 
alter the set of join points of any pointcut and thus have 
consequences for advice execution. Pointcuts can refer to 
events either explicitly or by using defined pattern names 
with wildcards.  

A well-known refactoring is the Pull Down Method, as 
documented in[2]. This refactoring involves moving one or 
more methods of a superclass to a subclass; it is 
recommended when behaviour of a superclass is relevant for 
only some of its subclasses. A problem can arise when an 
aspect intercepts the method that refactoring pulled down. In 
Figure 1, the LogQuota aspect intercepts all calls of the 
getQuota method of the Employee class, and it records some 

information in a log. Then, when the getQuota method is 
moved to the Salesman subclass, the changeQuota pointcut 
is no longer valid. After application of Pull Up Method 
refactoring, the behaviour of the LogQuota aspect is not 
linked because the join point does not exist—that is to say, 
the join point is broken.  
 

public aspect LogQuota { 

 pointcut changeQuota(..):  

    call(* Employee.setQuota(..int))&& target(p); 

   after(Employee p): changeQuota(p) {  

       Logger.writeLog("Change Quota:”  

       +p.toString());  } 

} 

 
Some change operations, such as adding a class, removing 

a method or field, or renaming a method, are important 
because they can generate diverse nonlocal consequences in 
AO applications. An elementary change in the base code can 
produce potential false positives/negatives. After a change 
operation has been applied, a pointcut may either capture too 
many join points (false positives) or fail to capture certain 
join points that were intended to be captured (false 
negatives). Refactorings are very complex change operations 
because they comprise a set of different change operations. 
Thus, a refactoring can generate a set of false positives/ 
negatives. 

When this happens, developers must identify the problem 
and resolve it. However, the identification of false 
positives/negatives and their causes is not a trivial task in 
medium-scale applications. This analysis is even more 
difficult when it is performed after the source code has been 
modified and particularly when it was automatically 
modified by a tool. Developers must perform several tasks 
such as exhaustive code analysis and inspection and 
intensive execution of test cases. All these tasks impact 
maintenance time and effort, increasing the maintenance 
costs. Therefore, new methods and tools are necessary to 
reduce the maintenance time, effort, and costs. 

 

Figure 1.  LogQuota aspect and Pull Down Method refactoring 
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Figure 2.  Entities and relationships in the repository 

3. Overview of Anticipation Model 
Change operations are the core of software evolution. A 

change operation can be simple (atomic), such as adding a 
field in a class, or very complex, as in refactoring. Our 
model’s underlying idea for anticipating the consequences of 
refactoring in AOP is to anticipate the consequences of 
atomic change operations, as follows. i) Identify the 
consequences of change operations in AO applications. This 
implies the possibility of detecting the effects of change 
operations on the source code. ii) Quantify the consequences 
of change operations in metrics that facilitate the analysis for 
developers. This implies the possibility of quantitatively 
measuring the false positives/negatives that a change 
operation may produce. iii) Identify where the consequences 
occur and relate them to the quantified information. This 
implies the possibility of delimiting the segments of source 
code that may be affected by a change operation.  

Our model comprises three main components: program 
repository, identification of change operations, and 
identification of their consequences.  

3.1. Program Repository 

In contrast to CVS or Subversion repositories that manage 
text files, our approach represents programs (classes and 
aspects) as entities and relationships. Since we focus on AO 
applications, we consider constructs such as packages, 
classes, methods, fields, aspects, pointcuts, advice, and 
exception handlers. We also represent different relationships 
among these entities that are relevant for AO, such as 
inheritance, method calls, and aspect weaving/compositions. 
Each entity has several properties and states such as 

identifier, type, and access modifier. These properties and 
states identify and represent entities in the repository and the 
relationships between them. Pointcuts are represented in two 
ways, as expressions and as sets of join points intercepted in 
specific instances. The program repository has semantic and 
syntactic information about the program, but it does not store 
the source code or text. Figure 2 represents the main entities 
and relationships in the repository. 

3.2. Change Operations and Consequences 

A change operation is a function whose inputs produce 
specific outputs over a specific instance of the repository. 
Usually, the “add” change operations can generate potential 
false positives, the “remove” change operations can generate 
potential false negatives, and the “move” and “rename” 
change operations can generate potential false positives and 
negatives. For example, the change operation “remove class 
X” impacts all designators of pointcuts that refer to class X. 
That is, the join point expressions of a primitive pointcut 
designator include “call”, “execution”, “target”, “within”, 
and so on, and if X is referenced in any of these expressions, 
then a potential false negative is present. 

In general, we say 
   if (ChOp(x) && P(x)) then[C], 

where ChOp is any change operation, P is any pointcut of the 
application, x is a source code entity (package, class, method, 
field, etc.), and C is the set of consequences of ChOp (false 
positives/negatives). In general, when we refer to the 
consequences, we describe them as “potential” false 
positives/negatives. This is because not all impacts are bad or 
problematic. The significance of the result should be 
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evaluated by the developer, according to the software 
requirements and objectives. 

A change operation can be atomic or composite. Atomic 
change operations are indivisible operations that cannot be 
separated into more than one task or step; thus, they are very 
simple. An atomic change operation contains all the 
necessary information to represent a function that can be 
analysed with the repository information.  An atomic 
change operation can produce false positives/negatives 
during system evolution. A composite change operation is a 
set of atomic change operations, such as move or rename an 
entity. 

In Table 1, we have analysed the potential consequences 
(impacts) of a repertory of change operations to which code 
units or entities are “sensitive” in the AOP context, 
specifically in pointcut expressions of the AspectJ language. 
That is, we only examine change operations that can alter 
pointcut definitions. AspectJ provides several pointcut 
descriptors that identify groups of join points that meet 
different criteria. These descriptors are classified into 
different groups as follows. 

Table 1.  Change Operation Analysis and Consequences (Impacts) 

Change Operation Type 
Group 

PFP PFN 
G1 G2 G3 G4 G5 G6 

Add package A X X X X X X +  

Add class A X X X X X X +  

Add method A X X X - - - +  

Add field A X X X - - - +  

Add handler A X X X - - - +  

Add message A X X X - - - +  

Remove package A X X X X X X  + 

Remove class A X X X X X X  + 

Remove method A X X X - - -  + 

Remove field A X X X - - -  + 

Remove message A X X X - - -  + 

Remove handler A X X X - - -  + 

Move package C X X X X X X + + 

Move class C X X X X X X + + 

Move method C X X X - - - + + 

Move field C X X X - - - + + 

Move handler C X X X - - - + + 

Move message C X X X - - - + + 

Rename Package C X X X X X X + + 

Rename class C X X X X X X + + 

Rename method C X X X - - - + + 

Rename field C X X X - - - + + 

Based on the categories of join points (G1): these capture 
join points according to the category to which they belong, 
i.e., call, execution, get, set, handler, staticinitialization, 
initialization, preinitialization, adviceexecution.  

Based on the control flow (G2): these capture join points 
of any category as long as they occur in the context of 

another pointcut, i.e., cflow and cflowbelow.  
Based on the location of code (G3): these capture join 

points of any category that are located in certain fragments of 
code, for example, within a class or within the body of a 
method, e.g., within and withincode.  

Based on run-time objects (G4): these capture join points 
whose current objects (this) or objects (target) are of a certain 
type.  

Based on the arguments of the join points (G5): these 
capture join points whose arguments are of a certain type, 
using the “args” descriptor.  

Based on conditions (G6): these capture join points based 
on some condition using the “if” descriptor. 

The change operations cited in the G1 group have the 
greatest impacts (consequences), because their semantics 
always refer to program elements such as class identifier, 
method, or attribute. Also, every pointcut must be defined 
around a designator of this group. By contrast, operations in 
the G6 group turn out to be much less used, and although 
they might be mentioned in the definition of a program 
element, such use is not mandatory or frequent.  

4. Anticipation of Refactoring 
Consequences in AO Applications 

Refactoring is a code restructuring discipline. Every 
refactoring includes an application’s sequential steps. These 
steps can be analysed as atomic change operations. For 
example, a move method can be analysed as two atomic 
change operations: “remove method" and “add method”. The 
main idea is to treat a refactoring as a composite change 
operation that can be decomposed into a set of atomic change 
operations.  

For example, the steps of the “Extract Class” refactoring 
are: 

1. Decide how to split the responsibilities of the class. 
2. Create a new class to express the split-off 

responsibilities. 
3. Make a link from the old class to the new class. 
4. Apply “Move Field” to each field you wish to move. 
5. Compile and test after each move. 
6. Use “Move Method” to move methods over from the 

old class to the new class.  
7. Compile and test after each move. 
8. Review and reduce the interfaces of each class. 
9. Decide whether to expose the new class. 

 
Figure 3.  “Extract Class” refactoring decomposition 
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Figure 4.  “Extract Class” refactoring decomposition into atomic change operations 
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Step 2 is the “add class” atomic change operation. Step 4 is 
a set of pairs of “add field” and “remove field” atomic 
change operations. Step 6 is similar. Graphically, the 
“Extract Class” refactoring’s decomposition into atomic 
change operations is shown in Figure 3; here the potential 
consequence of each single atomic change operation can be 
anticipated. 

Following this scheme and using the practical notation in 
Table 2, the refactoring decomposition can be expressed in 
atomic change operations. Only atomic change operations 
that can be impacted in a pointcut definition will be 
identified. This set of atomic change operations, which we 
call “relevant”, is enumerated in Table 1. Other atomic 
change operations exist, such as “remove a local variable”, 
but this atomic change operation is not relevant in the AOP 
context because a local variable cannot be reached by a 
pointcut definition. 

Table 2.  Notation Used to Decompose Refactorings 

Expression Description 
AC(c) Add class c 

AM(m c) Add method m to class c 
AF(f c) Add field f to class c 

AH(h m c) Add exception handler h to method m of class c 
AS(s m c) Add message s to method m of class c 

RC(c) Remove class c 
RM(m c) Remove method m from class c 
RF(f c) Remove field f from class c 

RH(h m c) Remove exception handler h from method m of class c 
RS(s m c) Remove message s from method m of class c 

Figure 4 presents a concrete typical example of 
decomposing an “Extract Class” refactoring into atomic 
change operations. Expressions (14-16) are the atomic 
change operations necessary to establish the relationship 
between two classes. The entire set of atomic change 
operations (1-16) can be evaluated to discover the 
consequences of refactoring. The evaluation is automatically 
performed with the BaLaLu tool. 

The _officeAreaCode and _officeNumber fields and their 

corresponding set/get methods will be moved to the 
TelephoneNumber class. Expression (1) represents the “Add 
Class” atomic change operation, the first step of this 
refactoring. Next, the refactoring indicates moving features 
between the two classes. Expressions (2-3) are the 
decomposition of the “Move Field” action, as are 
expressions (8-9). Expressions (4-5) represent the 
decomposition of “Move Method”, as do the pairs of 
expressions (6-7), (10-11), and (12-13). 

4.1. BaLaLu Tool 

We have developed the BaLaLu (Bajo La Lupa, “Under 
Scrutiny” in Spanish) tool to support our approach to 
predicting the impact of refactoring changes. BaLaLu 
supports both Java and AspectJ source code. The main 
aspects of the design and implementation of BaLaLu that we 
will discuss here are how change operations (atomic 
operations and refactorings) are represented and how they 
interact with the repository. 

The atomic change operations comprise a hierarchy in 
which AddClass, AddPackage, AddMethod, AddField, 
AddMessage, RemoveClass, RemoveMethod, RemoveField, 
RemoveMessage, and so on, are subclasses of the 
AtomicChangeOperation class. The refactoring class is a 
container of AtomicChangeOperation objects. Each atomic 
change operation has its own consequences (potential false 
positives/negatives). Consequence objects represent 
information about false positives/negatives (such as join 
points, aspects, or pointcuts) that will be given to the user. 
Figure 5 shows a simple schema of the design. 

The repository manages the entity-relationships model 
that represents the program source code. The repository is 
implemented as a relational database. Each change operation 
class has a specific SQL query to execute. The parameters of 
the query are fields of the particular atomic change operation 
class. Figure 6 presents a very simple scenario in which we 
need to evaluate the consequences of removing the 
setBalance method of the Account class. 

 

Figure 5.  Diagram of classes of change operations 
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The Logging aspect is matching calls of all methods of the 
Account class. The Pointcut table contains all join points 
matched by each pointcut. An instance of the Remove 
Method class is created with setBalance and Account fields. 
Then a query is set up with these values. The executeQuery 
method executes the query and maps the results to 
Consequence objects. 

4.2. Examples  

Next we present several examples of anticipating the 
consequences of refactoring in a Spaceware AO application. 
Spaceware implements a clone of the famous “Asteroids” 
computer game. The source code is distributed by Eclipse. 
When an application is edited with Eclipse, the “Refactor” 
wizard automatically reports or recommends the refactorings 
that the developer can apply. In this case, Refactor suggests 
15 refactorings. First, we have (manually) decomposed each 
refactoring into atomic change operations, and then we have 
analysed them with BaLaLu. An instance is showed in Table 
3. Refactor recommended Pull up Method refactoring in 
which the handleCollision method of the EnergyPacket and 
Bullet classes should be moved to the SpaceObject 
superclass. This movement of code requires 3 atomic change 
operations, which are explicit in the Table. This set of atomic 
change operations (this refactoring) will produce 3 
consequences: 1 potential false positive and 2 potential false 
negatives. 

 
Figure 6.  Instance of atomic change operation 

Table 3.  Decomposing a Refactoring Recommended by Refactor 

Refactoring Set of Atomic 
Change Operation PFP PFN 

Pull up Method[pull 
handleCollision method 

of EnergyPacket and 
Bullet subclasses up to  

SpaceObject superclass] 

RM(handleCollision,EnergyPacket) 0 1 

RM(handleCollision,Bullet) 0 1 

AM(handleCollision,SpaceObject) 1 0 

  1 2 

BaLaLu reports the number of potential false positives/ 
negatives for each atomic change operation. It also reports 
the location of each of these consequences, i.e., the aspects, 
pointcuts, and join points that are affected. 

The analysis of 15 refactorings proposed by Refactor 
indicates that all the refactorings will produce consequences. 
The graph in Figure 7 presents the numbers of potential false 
negatives (PFN) and false positives (PFP) reported by 
BaLaLu for each refactoring. Refactorings 7, 12, 13, and 14 
are the most critical operations from this perspective. 

Another issue that we should note is the number of 
atomic change operations in each refactoring. Figure 8 
illustrates these. Here refactorings 7, 12, 13 and 14 are 
composed of sets of more than 20 atomic change operations, 
and in 2 cases (12 and 13), more than 60. There is an 
apparent relationship between the number of atomic change 
operations in a refactoring and the number of consequences 
that the refactoring can generate. We address this 
relationship in the next section. 

 

Figure 7.  Consequences calculated by BaLaLu 

 

Figure 8.  Atomic change operations in refactorings 
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The questions we asked are: Does the number of atomic 
change operations composing a refactoring have any impact 
on the number of consequences? And does the number of 
join points intercepted by aspects affect the size of the impact 
a refactoring may cause? A priori, we believe that the answer 
to both questions is yes. To direct our discussion, we use 
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descriptive statistics to test the hypotheses.  
The AO applications used are Spaceware, Telecom (an 

Eclipse distribution code source), and Tetris (http://www.gu
zzzt.com/coding/aspecttetris.shtml). The main features of 
these systems are shown in Table 4.  

Table 4.  Features of Telecom, Tetris and Spaceware Systems 

Feature Telecom Tetris Spaceware 
LOC 277 1043 1415 

Classes 10 8 21 
Methods 38 28 150 

Fields 15 47 102 
Aspects 3 8 9 

Pointcuts 6 20 22 
Advices 4 18 9 

The refactorings recommended by Eclipse were used to 
formulate the list of refactorings which BaLaLu evaluated. 
Each refactoring was decomposed into atomic change 
operations, as discussed previously, and the set of atomic 
change operations was processed by BaLaLu. Refactor 
recommended 15 refactorings for Spaceware, 7 refactorings 
for Tetris, and 4 refactorings for Telecom. The number of 
atomic change operations composing the refactorings ranges 
from 2 to 67. The value used to measure the consequences of 
a refactoring is the number of potential false positives/ 
negatives. 

5.1. Hypothesis 1 

In this test, the variables that we analyse are the number of 
consequences of refactorings and the number of atomic 
change operations in the refactorings. The set of refactorings 
was divided into three groups. G1 is the group of refactorings 
that consist of at most 6 atomic change operations, G2 is the 
group of refactorings that consist of 7 to 19 atomic change 
operations, and G3 is the group of refactorings that consist of 
more than 19 atomic change operations. Table 5 shows the 
results.  

Table 5.  Descriptive Statistics for Consequences and Sets of Atomic 
Change Operations 

 G1 
2-6 

G2 
7-19 

G3 
20 or more 

No. of Refactorings Evaluated 10 7 9 
Consequences  

Min 0.00 0.00 0.00 
Max 7.00 6.00 28.00 

Mean 2.00 2.42 9.22 
Median 2.00 0.00 4.00 

Std. Dev. 2.01 3.05 11.47 

The minimum number of consequences is 0 for any group, 
and the maximum is 28 for G3. The mean values increase 
from group G1 to group G3. The overall mean is 4.77. We 
have also evaluated the correlation factor between the 
number of atomic change operations in refactorings and the 
number of their consequences, which is 0.80. We can 
therefore say for the tested cases that there is a strong 

relationship between the number of atomic change 
operations in a refactoring and the number of potential 
consequences, which increases proportionally. 

5.2. Hypothesis 2 

To analyse whether there is a relation between the number 
of join points intercepted by pointcuts and the number of 
consequences generated by refactorings, we calculate the 
quotient between the total number of intercepted join-points 
for all aspects of the system and the number of pointcuts. The 
total number of join-points intercepted in Telecom is 6, in 
Tetris is 21, and in Spaceware is 129. The results are 
presented in Table 6. 

Table 6.  Join points/pointcuts for Spaceware, Tetris and Telecom 

 Telecom Tetris Spaceware 
Join-points/pointcuts 1 1.05 5.86 

We also calculated the same values for the potential 
consequences of each system (Table 7). Using the numbers 
of join points/pointcuts (Table 6) and the number of 
consequences (Table 7), we evaluated the correlation factor, 
which is 0.99. As with the previous test, for these specific 
cases we can say that there is a strong relationship between 
the number of intercepted join points and the potential 
consequences. 

Table 7.  Descriptive Consequence Statistics for Telecom, Tetris and 
Spaceware 

Consequences Telecom Tetris Spaceware 
Min 0 0 1 
Max 0 4 28 
Mean 0 0.57 8 

Median 0 0 5 
Std. Dev. 0 1.51 8.58 

6. Related Work 
A classification of AO refactoring methods based on their 

measurable effect on (i) internal software quality metrics, (ii) 
external software quality attributes, (iii) AOP constructs, and 
(iv) AO refactoring between and within aspects was 
presented in[10]. The classification was carried out by 
mapping the changes in the internal quality metrics, caused 
by applying refactoring methods, to the external quality 
attributes based on research studies that show correlations 
between the internal quality metrics and the external quality 
attributes. Six software systems were used to propose the 
classification; three other systems were also used for 
validation. 

The idea of anticipating the impacts and consequences of 
change operations using a repository was inspired by the 
Change Bases Software Evolution (CBSE) approach[11] 
[12][13]. CBSE, which arose to overcome typical system 
configuration and version problems, treats changes as 
first-class entities. One important difference between the 
CBSE model and our proposal lies in the intention of CBSE. 
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The CBSE model attempts to define the history of a program 
as the sequence of submitted program changes. Based on the 
history of changes, a developer can rebuild each successive 
state of a program’s source code. The success of the CBSE 
model requires it to be implemented in these IDEs or 
development tools, while our model can be incorporated in 
the IDEs or in other specific tools such as BaLaLu. Finally, 
CBSE applies only to OO applications (Java and Squeak) 
and does not consider AO applications, although we assume 
that it is possible to extend the CBSE model to AOP. 

Several tools such as PCDiff[14], Celadon[15], and 
Souyoul[16] and[17] analyse change impacts in AO 
programs. In general, these tools analyse and compare two or 
more versions of a source code program. The observed 
differences are used to derive a set of atomic change 
operations. These tools employ abstract representations of 
programs such as syntax trees, call graphs, and dependency 
graphs, and they also include test cases. Important 
differences between these tools and our proposal are as 
follows. a) These tools subscribe to methods based only on 
the comparison of program versions, and the analysis of 
change impacts is performed after the changes occur, while 
our goal is to propose a method that can identify the 
consequences of changes before they occur. b) Insofar as 
these tools and approaches work with program versions they 
can only identify the impacts of “atomic” change operations, 
while our approach also aims to analyse composite (move, 
rename) and complex (refactoring) operations. A key 
difference here is that the cited tools analyse atomic change 
operations in isolation, as independent and dissociated 
operations, and not as part of a more complex structure. 
These analyses and results inevitably lose the original 
semantics and integrity that existed before such changes. 

ViDock[18] is a tool for analysing the impact of aspect 
weaving on test cases. The approach uses static analysis to 
identify the subset of test cases that are affected by the tissue 
counts. This tool works after making source code changes. 

A method to analyse the change impacts of woven aspects 
is proposed in[19], but the method is not supported by a tool. 
This work analyses how aspects can change the control flow, 
input/output parameters, values of data members, and 
inheritance dependencies of the base code. It also describes 
the influences and possible effects of pointcut declarations 
on inheritance and overriding dependencies and how the 
ripple effects can be computed. 

Several methods have been proposed to recover or 
discover “subsets of refactorings”, but only in OO systems 
[20][21][22][23][24]. They employ different techniques 
such as UML diagram analysis, spatial vectors, heuristic 
metrics, data mining, analysis of CVS repositories, etc. 
These proposals analyse changes “after” they are produced 
and do not predict potential consequences. 

7. Conclusions 
This work has presented an approach to predicting the 

consequences of refactoring in AO software. The 
decomposition of refactoring into sets of atomic change 
operations is an efficient strategy that enables anticipating 
the impacts that they will produce. A disadvantage of our 
approach is the need to manually identify the atomic change 
operations of refactoring, but this is not a complex task. 
Additionally, we only work with the more usual refactorings, 
specifically, those that are recommended by Eclipse Refactor. 
We have not analysed the group known as Big Refactorings. 
For these cases, we plan to use a similar strategy, by first 
dividing the “big refactorings” into smaller refactorings. We 
will also investigate passing BaLaLu to IDE-based tools for 
Eclipse and connecting BaLaLu with Refactor.  

In Section 5 we presented several tests and descriptive 
statistic studies that allowed us to remark that when a) a 
refactoring consists of many atomic change operations 
and/or b) the aspects have a large number of intercepted 
join-points, more consequences can follow. However, we do 
not consider these results to be conclusive, because more 
systems need to be tested. We are working on completing 
this study; meanwhile, the discussion of these questions 
remains open. 
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