
Computer Science and Engineering 2014, 4(1): 7-16
DOI: 10.5923/j.computer.20140401.02

Refactoring and AOP under Scrutiny

Sandra Casas*, Cecilia Fuentes Zamorano

GISP, Instituto de Tecnología Aplicada, Universidad Nacional de la Patagonia Austral, Río Gallegos, 9400, Argentina

Abstract A conflict between refactoring and AOP techniques can arise whenever an application with aspects is subjected
to a refactoring application. When the units of code being restructured are also part of a pointcut definition, changes in the
external behaviour of the application can occur. This study presents an approach to anticipate the impact of refactoring
changes in AO applications. We first decompose refactorings into atomic change operations. Then we individually analyse
and evaluate each of these operations. The overall results anticipate the consequences of the refactoring. Our approach is
partially automated. We also provide some examples and introduce a discussion (left open in this work) about the relationship
between different variables that characterize the refactorings.

Keywords Aspect-Oriented Software Development, Refactoring, Software Evolution, Change Impact Analysis, AspectJ

1. Introduction
The process of changing a software system in a way that

improves its internal structure yet does not alter the external
behaviour of the code yet is called “restructuring”[1].
Refactoring[2] is the object-oriented variant of restructuring.
The key idea is to redistribute classes, variables, and
methods across the class hierarchy in order to facilitate
future adaptations and extensions[3]. In the context of
software evolution, restructuring and refactoring are used to
improve the quality of the software (e.g., extensibility,
modularity, reusability, complexity, maintainability, and
efficiency).

Refactoring is not only a theoretical technique; it has also
won acceptance in real practice, with several commercial
and noncommercial tools supporting refactoring, such as
Eclipse, IntelliJ, NetBeans, and JBuilder. These tools
automatically perform a set of refactorings for any
programming language, such as Java.

Aspect-Oriented Programming (AOP)[4] is a technique
that provides for separation of concerns[5]. AOP proposes a
new kind of modularization called aspects. An aspect is a
module that can localize the implementation of crosscutting
concerns (CCC)[6]. The main dynamic abstractions of an
aspect are pointcuts and advice. Pointcuts are predicates
that describe a set of join points where an advice code
should be executed. A join point is a well-defined point in a
program’s control flow. The key to the AOP modularization
technique lies in its composition mechanism called weaving
[7]. In traditional approaches such as OO, subroutines

* Corresponding author:
scasas@unpa.edu.ar (Sandra Casas)
Published online at http://journal.sapub.org/computer
Copyright © 2014 Scientific & Academic Publishing. All Rights Reserved

explicitly invoke the behaviours implemented by other
subroutines. In contrast, aspects have an implicit invocation
mechanism, so that the behaviour of an aspect is implicitly
invoked in the implementation of other modules.
Consequently, the implementation of these other modules
can be largely unaware of the CCC. However, this structure
(pointcuts and advice) makes it difficult for developers to
evaluate the behaviour of a system. In particular, the
implicit invocation mechanism introduces an additional
layer of complexity in the construction of a system. This
can make it difficult to understand how and when the base
system and the aspects interact, and consequently, how the
overall system will behave.

As suggested in[8], a conflict between refactoring and
AOP techniques can arise whenever an application with
aspects is subjected to a refactoring application. When the
units of code under restructuring are also pieces of pointcut
definitions, changes in the external behaviour of the
application can occur. If the refactoring unintentionally
causes links or connections (generated by the aspect
weaving process) between the base code and the aspects to
disappear or appear, the impact is not evident to the
developer. Such situations can arise because of the tight
coupling and dependency among aspects and classes and
the fact that refactoring is an invasive technique.

The present study answers some questions raised in[8].
We propose an approach to anticipate the impact of
refactoring changes in AO applications. Our proposal first
decomposes the refactorings into atomic change operations.
Then we analyse and evaluate each of these individually,
and use the overall results to anticipate the consequences of
the refactoring. Our approach is partially automated. The
central software artifact in this study is source code, and for
this purpose we have focused on the AspectJ language[9].
However, our approach may be applied to any other AO

8 Sandra Casas et al.: Refactoring and AOP under Scrutiny

language.
This study comprises two parts. The first part presents

our approach and some examples, and the second part uses
descriptive statistics to discuss the relationships between
different variables involved in the application of
refactorings to AO systems. The remainder of the paper is
organised as follows. Section 2 presents a simple
motivating example for the problem. Section 3 introduces
the model that will be used to anticipate the consequences
of refactorings in AO applications. Section 4 explains how
the predictions are made and introduces the tool BaLaLu,
followed by some examples. Section 5 uses descriptive
statistics to discuss the relationships between certain
variables that are involved in the application of refactoring
in AO systems. Section 6 describes some related work, and
Section 7 presents our conclusions.

2. Motivating Example
As we have explained, pointcuts and advice provide the

AOP mechanism that encapsulates CCC by changing the
dynamic execution of the base code. Advice is a fragment of
code, such as a method, that will be executed with the base
code (before, after, or around). A pointcut is an expression
that establishes the events and conditions specifying when
and where advice code will be executed, typically as a
method call. Pointcuts are the more critical elements in AOP
evolution, because a simple change in the base code may
alter the set of join points of any pointcut and thus have
consequences for advice execution. Pointcuts can refer to
events either explicitly or by using defined pattern names
with wildcards.

A well-known refactoring is the Pull Down Method, as
documented in[2]. This refactoring involves moving one or
more methods of a superclass to a subclass; it is
recommended when behaviour of a superclass is relevant for
only some of its subclasses. A problem can arise when an
aspect intercepts the method that refactoring pulled down. In
Figure 1, the LogQuota aspect intercepts all calls of the
getQuota method of the Employee class, and it records some

information in a log. Then, when the getQuota method is
moved to the Salesman subclass, the changeQuota pointcut
is no longer valid. After application of Pull Up Method
refactoring, the behaviour of the LogQuota aspect is not
linked because the join point does not exist—that is to say,
the join point is broken.

public aspect LogQuota {

 pointcut changeQuota(..):

 call(* Employee.setQuota(..int))&& target(p);

 after(Employee p): changeQuota(p) {

 Logger.writeLog("Change Quota:”

 +p.toString()); }

}

Some change operations, such as adding a class, removing

a method or field, or renaming a method, are important
because they can generate diverse nonlocal consequences in
AO applications. An elementary change in the base code can
produce potential false positives/negatives. After a change
operation has been applied, a pointcut may either capture too
many join points (false positives) or fail to capture certain
join points that were intended to be captured (false
negatives). Refactorings are very complex change operations
because they comprise a set of different change operations.
Thus, a refactoring can generate a set of false positives/
negatives.

When this happens, developers must identify the problem
and resolve it. However, the identification of false
positives/negatives and their causes is not a trivial task in
medium-scale applications. This analysis is even more
difficult when it is performed after the source code has been
modified and particularly when it was automatically
modified by a tool. Developers must perform several tasks
such as exhaustive code analysis and inspection and
intensive execution of test cases. All these tasks impact
maintenance time and effort, increasing the maintenance
costs. Therefore, new methods and tools are necessary to
reduce the maintenance time, effort, and costs.

Figure 1. LogQuota aspect and Pull Down Method refactoring

 Computer Science and Engineering 2014, 4(1): 7-16 9

Figure 2. Entities and relationships in the repository

3. Overview of Anticipation Model
Change operations are the core of software evolution. A

change operation can be simple (atomic), such as adding a
field in a class, or very complex, as in refactoring. Our
model’s underlying idea for anticipating the consequences of
refactoring in AOP is to anticipate the consequences of
atomic change operations, as follows. i) Identify the
consequences of change operations in AO applications. This
implies the possibility of detecting the effects of change
operations on the source code. ii) Quantify the consequences
of change operations in metrics that facilitate the analysis for
developers. This implies the possibility of quantitatively
measuring the false positives/negatives that a change
operation may produce. iii) Identify where the consequences
occur and relate them to the quantified information. This
implies the possibility of delimiting the segments of source
code that may be affected by a change operation.

Our model comprises three main components: program
repository, identification of change operations, and
identification of their consequences.

3.1. Program Repository

In contrast to CVS or Subversion repositories that manage
text files, our approach represents programs (classes and
aspects) as entities and relationships. Since we focus on AO
applications, we consider constructs such as packages,
classes, methods, fields, aspects, pointcuts, advice, and
exception handlers. We also represent different relationships
among these entities that are relevant for AO, such as
inheritance, method calls, and aspect weaving/compositions.
Each entity has several properties and states such as

identifier, type, and access modifier. These properties and
states identify and represent entities in the repository and the
relationships between them. Pointcuts are represented in two
ways, as expressions and as sets of join points intercepted in
specific instances. The program repository has semantic and
syntactic information about the program, but it does not store
the source code or text. Figure 2 represents the main entities
and relationships in the repository.

3.2. Change Operations and Consequences

A change operation is a function whose inputs produce
specific outputs over a specific instance of the repository.
Usually, the “add” change operations can generate potential
false positives, the “remove” change operations can generate
potential false negatives, and the “move” and “rename”
change operations can generate potential false positives and
negatives. For example, the change operation “remove class
X” impacts all designators of pointcuts that refer to class X.
That is, the join point expressions of a primitive pointcut
designator include “call”, “execution”, “target”, “within”,
and so on, and if X is referenced in any of these expressions,
then a potential false negative is present.

In general, we say
 if (ChOp(x) && P(x)) then[C],

where ChOp is any change operation, P is any pointcut of the
application, x is a source code entity (package, class, method,
field, etc.), and C is the set of consequences of ChOp (false
positives/negatives). In general, when we refer to the
consequences, we describe them as “potential” false
positives/negatives. This is because not all impacts are bad or
problematic. The significance of the result should be

10 Sandra Casas et al.: Refactoring and AOP under Scrutiny

evaluated by the developer, according to the software
requirements and objectives.

A change operation can be atomic or composite. Atomic
change operations are indivisible operations that cannot be
separated into more than one task or step; thus, they are very
simple. An atomic change operation contains all the
necessary information to represent a function that can be
analysed with the repository information. An atomic
change operation can produce false positives/negatives
during system evolution. A composite change operation is a
set of atomic change operations, such as move or rename an
entity.

In Table 1, we have analysed the potential consequences
(impacts) of a repertory of change operations to which code
units or entities are “sensitive” in the AOP context,
specifically in pointcut expressions of the AspectJ language.
That is, we only examine change operations that can alter
pointcut definitions. AspectJ provides several pointcut
descriptors that identify groups of join points that meet
different criteria. These descriptors are classified into
different groups as follows.

Table 1. Change Operation Analysis and Consequences (Impacts)

Change Operation Type
Group

PFP PFN
G1 G2 G3 G4 G5 G6

Add package A X X X X X X +

Add class A X X X X X X +

Add method A X X X - - - +

Add field A X X X - - - +

Add handler A X X X - - - +

Add message A X X X - - - +

Remove package A X X X X X X +

Remove class A X X X X X X +

Remove method A X X X - - - +

Remove field A X X X - - - +

Remove message A X X X - - - +

Remove handler A X X X - - - +

Move package C X X X X X X + +

Move class C X X X X X X + +

Move method C X X X - - - + +

Move field C X X X - - - + +

Move handler C X X X - - - + +

Move message C X X X - - - + +

Rename Package C X X X X X X + +

Rename class C X X X X X X + +

Rename method C X X X - - - + +

Rename field C X X X - - - + +

Based on the categories of join points (G1): these capture
join points according to the category to which they belong,
i.e., call, execution, get, set, handler, staticinitialization,
initialization, preinitialization, adviceexecution.

Based on the control flow (G2): these capture join points
of any category as long as they occur in the context of

another pointcut, i.e., cflow and cflowbelow.
Based on the location of code (G3): these capture join

points of any category that are located in certain fragments of
code, for example, within a class or within the body of a
method, e.g., within and withincode.

Based on run-time objects (G4): these capture join points
whose current objects (this) or objects (target) are of a certain
type.

Based on the arguments of the join points (G5): these
capture join points whose arguments are of a certain type,
using the “args” descriptor.

Based on conditions (G6): these capture join points based
on some condition using the “if” descriptor.

The change operations cited in the G1 group have the
greatest impacts (consequences), because their semantics
always refer to program elements such as class identifier,
method, or attribute. Also, every pointcut must be defined
around a designator of this group. By contrast, operations in
the G6 group turn out to be much less used, and although
they might be mentioned in the definition of a program
element, such use is not mandatory or frequent.

4. Anticipation of Refactoring
Consequences in AO Applications

Refactoring is a code restructuring discipline. Every
refactoring includes an application’s sequential steps. These
steps can be analysed as atomic change operations. For
example, a move method can be analysed as two atomic
change operations: “remove method" and “add method”. The
main idea is to treat a refactoring as a composite change
operation that can be decomposed into a set of atomic change
operations.

For example, the steps of the “Extract Class” refactoring
are:

1. Decide how to split the responsibilities of the class.
2. Create a new class to express the split-off

responsibilities.
3. Make a link from the old class to the new class.
4. Apply “Move Field” to each field you wish to move.
5. Compile and test after each move.
6. Use “Move Method” to move methods over from the

old class to the new class.
7. Compile and test after each move.
8. Review and reduce the interfaces of each class.
9. Decide whether to expose the new class.

Figure 3. “Extract Class” refactoring decomposition

Add
Class

FP

FNFP

EXTRACT CLASS
Add

Method
Remove
Method

Add
Field

Remove
 Field

Add
Message

FNFP FP FPFN

 Computer Science and Engineering 2014, 4(1): 7-16 11

Figure 4. “Extract Class” refactoring decomposition into atomic change operations

12 Sandra Casas et al.: Refactoring and AOP under Scrutiny

Step 2 is the “add class” atomic change operation. Step 4 is
a set of pairs of “add field” and “remove field” atomic
change operations. Step 6 is similar. Graphically, the
“Extract Class” refactoring’s decomposition into atomic
change operations is shown in Figure 3; here the potential
consequence of each single atomic change operation can be
anticipated.

Following this scheme and using the practical notation in
Table 2, the refactoring decomposition can be expressed in
atomic change operations. Only atomic change operations
that can be impacted in a pointcut definition will be
identified. This set of atomic change operations, which we
call “relevant”, is enumerated in Table 1. Other atomic
change operations exist, such as “remove a local variable”,
but this atomic change operation is not relevant in the AOP
context because a local variable cannot be reached by a
pointcut definition.

Table 2. Notation Used to Decompose Refactorings

Expression Description
AC(c) Add class c

AM(m c) Add method m to class c
AF(f c) Add field f to class c

AH(h m c) Add exception handler h to method m of class c
AS(s m c) Add message s to method m of class c

RC(c) Remove class c
RM(m c) Remove method m from class c
RF(f c) Remove field f from class c

RH(h m c) Remove exception handler h from method m of class c
RS(s m c) Remove message s from method m of class c

Figure 4 presents a concrete typical example of
decomposing an “Extract Class” refactoring into atomic
change operations. Expressions (14-16) are the atomic
change operations necessary to establish the relationship
between two classes. The entire set of atomic change
operations (1-16) can be evaluated to discover the
consequences of refactoring. The evaluation is automatically
performed with the BaLaLu tool.

The _officeAreaCode and _officeNumber fields and their

corresponding set/get methods will be moved to the
TelephoneNumber class. Expression (1) represents the “Add
Class” atomic change operation, the first step of this
refactoring. Next, the refactoring indicates moving features
between the two classes. Expressions (2-3) are the
decomposition of the “Move Field” action, as are
expressions (8-9). Expressions (4-5) represent the
decomposition of “Move Method”, as do the pairs of
expressions (6-7), (10-11), and (12-13).

4.1. BaLaLu Tool

We have developed the BaLaLu (Bajo La Lupa, “Under
Scrutiny” in Spanish) tool to support our approach to
predicting the impact of refactoring changes. BaLaLu
supports both Java and AspectJ source code. The main
aspects of the design and implementation of BaLaLu that we
will discuss here are how change operations (atomic
operations and refactorings) are represented and how they
interact with the repository.

The atomic change operations comprise a hierarchy in
which AddClass, AddPackage, AddMethod, AddField,
AddMessage, RemoveClass, RemoveMethod, RemoveField,
RemoveMessage, and so on, are subclasses of the
AtomicChangeOperation class. The refactoring class is a
container of AtomicChangeOperation objects. Each atomic
change operation has its own consequences (potential false
positives/negatives). Consequence objects represent
information about false positives/negatives (such as join
points, aspects, or pointcuts) that will be given to the user.
Figure 5 shows a simple schema of the design.

The repository manages the entity-relationships model
that represents the program source code. The repository is
implemented as a relational database. Each change operation
class has a specific SQL query to execute. The parameters of
the query are fields of the particular atomic change operation
class. Figure 6 presents a very simple scenario in which we
need to evaluate the consequences of removing the
setBalance method of the Account class.

Figure 5. Diagram of classes of change operations

RefactoringAtomicChangeOperation

AddMethod

Consequence

AddMessage AddHandlerAddFieldAddClass

 Computer Science and Engineering 2014, 4(1): 7-16 13

The Logging aspect is matching calls of all methods of the
Account class. The Pointcut table contains all join points
matched by each pointcut. An instance of the Remove
Method class is created with setBalance and Account fields.
Then a query is set up with these values. The executeQuery
method executes the query and maps the results to
Consequence objects.

4.2. Examples

Next we present several examples of anticipating the
consequences of refactoring in a Spaceware AO application.
Spaceware implements a clone of the famous “Asteroids”
computer game. The source code is distributed by Eclipse.
When an application is edited with Eclipse, the “Refactor”
wizard automatically reports or recommends the refactorings
that the developer can apply. In this case, Refactor suggests
15 refactorings. First, we have (manually) decomposed each
refactoring into atomic change operations, and then we have
analysed them with BaLaLu. An instance is showed in Table
3. Refactor recommended Pull up Method refactoring in
which the handleCollision method of the EnergyPacket and
Bullet classes should be moved to the SpaceObject
superclass. This movement of code requires 3 atomic change
operations, which are explicit in the Table. This set of atomic
change operations (this refactoring) will produce 3
consequences: 1 potential false positive and 2 potential false
negatives.

Figure 6. Instance of atomic change operation

Table 3. Decomposing a Refactoring Recommended by Refactor

Refactoring Set of Atomic
Change Operation PFP PFN

Pull up Method[pull
handleCollision method

of EnergyPacket and
Bullet subclasses up to

SpaceObject superclass]

RM(handleCollision,EnergyPacket) 0 1

RM(handleCollision,Bullet) 0 1

AM(handleCollision,SpaceObject) 1 0

 1 2

BaLaLu reports the number of potential false positives/
negatives for each atomic change operation. It also reports
the location of each of these consequences, i.e., the aspects,
pointcuts, and join points that are affected.

The analysis of 15 refactorings proposed by Refactor
indicates that all the refactorings will produce consequences.
The graph in Figure 7 presents the numbers of potential false
negatives (PFN) and false positives (PFP) reported by
BaLaLu for each refactoring. Refactorings 7, 12, 13, and 14
are the most critical operations from this perspective.

Another issue that we should note is the number of
atomic change operations in each refactoring. Figure 8
illustrates these. Here refactorings 7, 12, 13 and 14 are
composed of sets of more than 20 atomic change operations,
and in 2 cases (12 and 13), more than 60. There is an
apparent relationship between the number of atomic change
operations in a refactoring and the number of consequences
that the refactoring can generate. We address this
relationship in the next section.

Figure 7. Consequences calculated by BaLaLu

Figure 8. Atomic change operations in refactorings

5. Exploration of Descriptive Statistics
Based on our examples, we considered the possible

relationships between the different variables involved when
anticipating the impact of refactoring on AO applications.
The questions we asked are: Does the number of atomic
change operations composing a refactoring have any impact
on the number of consequences? And does the number of
join points intercepted by aspects affect the size of the impact
a refactoring may cause? A priori, we believe that the answer
to both questions is yes. To direct our discussion, we use

+executeQuery()

-pclass
-pmethod
-query
-Consequence

RemoveMethod

Pointcut = aspect, pointcut, designator, class, method...
 È
 { (Logging p1 account call setBalance)
 (Logging p1 account call getBalance)
 (Logging p1 account call getIdAccount)…. }

chop = new RemoveMethod(“setBalance”, “Account”)

query= select *
 from pointcut
 where class = pclass and
 method = pmethod

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PFP PFN

14 Sandra Casas et al.: Refactoring and AOP under Scrutiny

descriptive statistics to test the hypotheses.
The AO applications used are Spaceware, Telecom (an

Eclipse distribution code source), and Tetris (http://www.gu
zzzt.com/coding/aspecttetris.shtml). The main features of
these systems are shown in Table 4.

Table 4. Features of Telecom, Tetris and Spaceware Systems

Feature Telecom Tetris Spaceware
LOC 277 1043 1415

Classes 10 8 21
Methods 38 28 150

Fields 15 47 102
Aspects 3 8 9

Pointcuts 6 20 22
Advices 4 18 9

The refactorings recommended by Eclipse were used to
formulate the list of refactorings which BaLaLu evaluated.
Each refactoring was decomposed into atomic change
operations, as discussed previously, and the set of atomic
change operations was processed by BaLaLu. Refactor
recommended 15 refactorings for Spaceware, 7 refactorings
for Tetris, and 4 refactorings for Telecom. The number of
atomic change operations composing the refactorings ranges
from 2 to 67. The value used to measure the consequences of
a refactoring is the number of potential false positives/
negatives.

5.1. Hypothesis 1

In this test, the variables that we analyse are the number of
consequences of refactorings and the number of atomic
change operations in the refactorings. The set of refactorings
was divided into three groups. G1 is the group of refactorings
that consist of at most 6 atomic change operations, G2 is the
group of refactorings that consist of 7 to 19 atomic change
operations, and G3 is the group of refactorings that consist of
more than 19 atomic change operations. Table 5 shows the
results.

Table 5. Descriptive Statistics for Consequences and Sets of Atomic
Change Operations

 G1
2-6

G2
7-19

G3
20 or more

No. of Refactorings Evaluated 10 7 9
Consequences

Min 0.00 0.00 0.00
Max 7.00 6.00 28.00

Mean 2.00 2.42 9.22
Median 2.00 0.00 4.00

Std. Dev. 2.01 3.05 11.47

The minimum number of consequences is 0 for any group,
and the maximum is 28 for G3. The mean values increase
from group G1 to group G3. The overall mean is 4.77. We
have also evaluated the correlation factor between the
number of atomic change operations in refactorings and the
number of their consequences, which is 0.80. We can
therefore say for the tested cases that there is a strong

relationship between the number of atomic change
operations in a refactoring and the number of potential
consequences, which increases proportionally.

5.2. Hypothesis 2

To analyse whether there is a relation between the number
of join points intercepted by pointcuts and the number of
consequences generated by refactorings, we calculate the
quotient between the total number of intercepted join-points
for all aspects of the system and the number of pointcuts. The
total number of join-points intercepted in Telecom is 6, in
Tetris is 21, and in Spaceware is 129. The results are
presented in Table 6.

Table 6. Join points/pointcuts for Spaceware, Tetris and Telecom

 Telecom Tetris Spaceware
Join-points/pointcuts 1 1.05 5.86

We also calculated the same values for the potential
consequences of each system (Table 7). Using the numbers
of join points/pointcuts (Table 6) and the number of
consequences (Table 7), we evaluated the correlation factor,
which is 0.99. As with the previous test, for these specific
cases we can say that there is a strong relationship between
the number of intercepted join points and the potential
consequences.

Table 7. Descriptive Consequence Statistics for Telecom, Tetris and
Spaceware

Consequences Telecom Tetris Spaceware
Min 0 0 1
Max 0 4 28
Mean 0 0.57 8

Median 0 0 5
Std. Dev. 0 1.51 8.58

6. Related Work
A classification of AO refactoring methods based on their

measurable effect on (i) internal software quality metrics, (ii)
external software quality attributes, (iii) AOP constructs, and
(iv) AO refactoring between and within aspects was
presented in[10]. The classification was carried out by
mapping the changes in the internal quality metrics, caused
by applying refactoring methods, to the external quality
attributes based on research studies that show correlations
between the internal quality metrics and the external quality
attributes. Six software systems were used to propose the
classification; three other systems were also used for
validation.

The idea of anticipating the impacts and consequences of
change operations using a repository was inspired by the
Change Bases Software Evolution (CBSE) approach[11]
[12][13]. CBSE, which arose to overcome typical system
configuration and version problems, treats changes as
first-class entities. One important difference between the
CBSE model and our proposal lies in the intention of CBSE.

 Computer Science and Engineering 2014, 4(1): 7-16 15

The CBSE model attempts to define the history of a program
as the sequence of submitted program changes. Based on the
history of changes, a developer can rebuild each successive
state of a program’s source code. The success of the CBSE
model requires it to be implemented in these IDEs or
development tools, while our model can be incorporated in
the IDEs or in other specific tools such as BaLaLu. Finally,
CBSE applies only to OO applications (Java and Squeak)
and does not consider AO applications, although we assume
that it is possible to extend the CBSE model to AOP.

Several tools such as PCDiff[14], Celadon[15], and
Souyoul[16] and[17] analyse change impacts in AO
programs. In general, these tools analyse and compare two or
more versions of a source code program. The observed
differences are used to derive a set of atomic change
operations. These tools employ abstract representations of
programs such as syntax trees, call graphs, and dependency
graphs, and they also include test cases. Important
differences between these tools and our proposal are as
follows. a) These tools subscribe to methods based only on
the comparison of program versions, and the analysis of
change impacts is performed after the changes occur, while
our goal is to propose a method that can identify the
consequences of changes before they occur. b) Insofar as
these tools and approaches work with program versions they
can only identify the impacts of “atomic” change operations,
while our approach also aims to analyse composite (move,
rename) and complex (refactoring) operations. A key
difference here is that the cited tools analyse atomic change
operations in isolation, as independent and dissociated
operations, and not as part of a more complex structure.
These analyses and results inevitably lose the original
semantics and integrity that existed before such changes.

ViDock[18] is a tool for analysing the impact of aspect
weaving on test cases. The approach uses static analysis to
identify the subset of test cases that are affected by the tissue
counts. This tool works after making source code changes.

A method to analyse the change impacts of woven aspects
is proposed in[19], but the method is not supported by a tool.
This work analyses how aspects can change the control flow,
input/output parameters, values of data members, and
inheritance dependencies of the base code. It also describes
the influences and possible effects of pointcut declarations
on inheritance and overriding dependencies and how the
ripple effects can be computed.

Several methods have been proposed to recover or
discover “subsets of refactorings”, but only in OO systems
[20][21][22][23][24]. They employ different techniques
such as UML diagram analysis, spatial vectors, heuristic
metrics, data mining, analysis of CVS repositories, etc.
These proposals analyse changes “after” they are produced
and do not predict potential consequences.

7. Conclusions
This work has presented an approach to predicting the

consequences of refactoring in AO software. The
decomposition of refactoring into sets of atomic change
operations is an efficient strategy that enables anticipating
the impacts that they will produce. A disadvantage of our
approach is the need to manually identify the atomic change
operations of refactoring, but this is not a complex task.
Additionally, we only work with the more usual refactorings,
specifically, those that are recommended by Eclipse Refactor.
We have not analysed the group known as Big Refactorings.
For these cases, we plan to use a similar strategy, by first
dividing the “big refactorings” into smaller refactorings. We
will also investigate passing BaLaLu to IDE-based tools for
Eclipse and connecting BaLaLu with Refactor.

In Section 5 we presented several tests and descriptive
statistic studies that allowed us to remark that when a) a
refactoring consists of many atomic change operations
and/or b) the aspects have a large number of intercepted
join-points, more consequences can follow. However, we do
not consider these results to be conclusive, because more
systems need to be tested. We are working on completing
this study; meanwhile, the discussion of these questions
remains open.

ACKNOWLEDGEMENTS
This work was partially supported by the Universidad

Nacional de la Patagonia Austral, Santa Cruz, Argentina.

REFERENCES
[1] Arnold R. S., 1986, An introduction to software restructuring,

in Tutorial on Software Restructuring, Robert S. Arnold, Ed.,
Proceeding of IEEE, vol. 77, issue 4, 607–617.

[2] Fowler M., 1999, Refactoring: Improving the Design of
Existing Programs, Addison-Wesley.

[3] Mens T. and Tourwé T., 2004, A survey of software
refactoring, IEEE Transactions on Software Engineering,
30(2), 126–139.

[4] Kiczales G., Lamping G., Mendhekar J., Maeda A., Lopes C.,
Loingtier C., and Irwin J., 1997, Aspect-oriented
programming, Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), Finlands, LNCS
1241, Springer-Verlag, 220–241.

[5] Dijkstra E. W., 1976, A Discipline of Programming, USA,
Prentice-Hall.

[6] Hürsch W. and Lopes C., 1995, Separation of concerns,
Northeastern University Technical Report NU-CCS-95-03,
Boston.

[7] Piveta E. and Zancanela L., 2003, Aspect weaving strategies,
Journal of Universal Computer Science, 9(8), 970–983.

[8] Wloka J., 2003, Refactoring in the presence of aspects, 13th
Workshop for Phd Students in Object Oriented Programming
(ECOOP), Germany.

16 Sandra Casas et al.: Refactoring and AOP under Scrutiny

[9] Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J., and
Griswold W., 2001, An overview of AspectJ, Proceedings of
the European Conference on Object-Oriented Programming
(ECOOP), Hungary, 327–353.

[10] Alshayeb, M., Al-Jamimi, H. and Elish, M. O.,2013,
Empirical taxonomy of refactoring methods for aspect-
oriented programming. J. Softw. Evol. and Proc., 25: 1–25.
doi: 10.1002/smr.544.

[11] Robbes R. and Lanza M., 2007, An approach to software
evolution based on semantic change, Proceedings of
Fundamental Approaches to Software Engineering (FASE),
LNCS Volume 4422, Portugal, 27–41.

[12] Robbes R. and Lanza M., 2006, Change-based software
evolution, 2nd International ERCIM Workshop on Software
Evolution, France, 159–164.

[13] Robbes R. and Lanza M., 2007, A change-based approach to
software evolution, ENTCS, 166(1), 93–109.

[14] Koppen C. and Stoerzer M., 2004, PCDiff: Attacking the
fragile pointcut problem, European Interactive Workshop on
Aspects in Software, Germany.

[15] Zhang S. and Zhao J., 2007, Change impact analysis for
aspect-oriented programs, Technical Report SJTU-CSE-
TR-07-01, Center for Software Engineering, Shanghai Jiao
Tong University.

[16] Bouteraa I. and Bounour N., 2011, Towards the use of
program slicing in the change impact analysis of aspect
oriented programs, Proceedings International Arab
Conference on Information Technology, Saudi Arabia.

[17] Cavallero L. and Monga M., 2009, Unweaving the impact of
aspect changes in AspectJ, Proceedings of the workshop on
Foundations of aspect-oriented languages (FOAL), USA,
13–18.

[18] Delamare R., Muñoz F., Baudry B., and Le Traon Y., 2010,
Vidock: A tool for impact analysis of aspect weaving on test
cases, Proceedings of the 22nd IFIP WG 6.1 International
Conference on Testing Software and Systems, Berlin:
Springer-Verlag, 250–265.

[19] Liu C., Chen S., and Jhu W., 2011, Change impact analysis
for object-oriented programs evolved to aspect-oriented
programs, ACM Symposium on Applied Computing, Taiwan,
59–65.

[20] Di Penta G. and Merlo E., 2004, An automatic approach to
identify class evolution discontinuities, 7th International
Workshop on Principles of Software Evolution, Japan, 31–40.

[21] Serge Demeyer O. and Ducasse S., 2000, Finding refactorings
via change metrics, ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, USA,
166–177.

[22] Xing Z. and Stroulia E., 2003, Recognizing refactoring from
change tree, 1st International Workshop on Refactoring:
Achievements, Challenges, Effects, Canada, 41–44.

[23] Xing Z. and Stroulia E., 2004, Understanding class evolution
in object-oriented software, 12th International Workshop on
Program Comprehension, Italy, 34–43.

[24] Carsten P., 2005, Detecting and visualizing refactorings from
software archives, Proceedings of the 13th International
Workshop on Program Comprehension, USA, 205–214.

