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Abstract  The problem of minimization of ill-conditioned functions is considered. These functions are motivated by the 
limit analysis problem for dielectrics in powerful electric fields. From computing point of view a minimization of these 
functions is not following by standard methods because they are nonsmooth. Distinct ravine of objective function in 
combination with a high dimension variables requires a smooth regularisation of finite-dimensional problem. Convergence of 
heave-ball method in relation to it’s internal parameters and optimization parameters are studied in numerical computing 
environment and fourth-generation programming language Matlab. 
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1. Introduction 
Investigation of electrical strength of dielectrics particular 

interest in both theory and practice[1]. It is stimulated by 
significance and practical interests in field of electrical 
engineering and microelectronics. When dielectrics are 
located in powerful electric fields it appears there the effect 
of loss of global electrostatic balance state between external 
electric field and dielectric. This effect we interpret as 
electrical puncture of dielectric[3-7]. 

The electrical state of a medium in the given domain is 
characterized by the bulk ρ and surface g density of charges 
and by the vectors of electrical tensity E, electrical induction 
D and electric current density J. Vector D is introduced by 
the rule PED += 0ε , where 12

0 10*85.0 −≈ε  is the 
electrical constant, and P is the vector of polarization. For the 
electrical tensity the scalar potential u is introduced such as 

uE −∇= . 
In weak electrical fields the currents of conductivity in 

dielectric media are practically absent, i.e. 0≈J , and the 
simplest linear constitutive relation DE → is used[1]. As a 
result, for the solution of the appropriate linear BVPs, 
various effective analytical and numerical methods have 
been worked out. 

2. The Limit Analysis Problem in 
Electrostatics 

In powerful electrical fields the essentially nonlinear 
phenomena of polarization saturation ( )+∞≤ <*PP  and  
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ionization ( )0≠J  must be taken into account[1]. As a 
result, the integral model of bounded electrical induction is 
used, where +∞≤ <λD  and 0>λ  is the complementary 
physical parameter of dielectric medium (the parameter of 
saturation) which is easily calculated[3-7].  

From the physical point of view this effect is interpreted as 
loss of the global electrostatic balance state between external 
electric field and dielectric on the analogy of loss of the 
load-carrying capability of solids in mechanics[7]. 

Let a dielectric medium occupy a domain 3R∈Ω . It’s 
described by two vector-functions ( ) 33:, RRExDD →×Ω=



 

and ( ) 33:, RRExJJ →×Ω=


. 
We consider the following boundary-value problem. The 

quasi-static electrical influences acting on the dielectric are: 
a bulk charge with density ρ  in Ω , a surface charge with 
density g on a portion 2Г  of the boundary, and a potential 

0u  on a portion 1Г  of the boundary is also given. Here
Ω∂=∪ 21 ГГ , 021 =∩ ГГ and area(Г1)>0. Point 

charges absent. 
We assume that from the classical Thomson's principle[1] it 

follows that the free energy of the electrical field in dielectric 
has the global minimum on the real potential, i.e. the potential 
u is the solution of the following variational problem: 

( ){ }VuuIu ∈= :inf*             (1) 

where: 
( ) ( )( ) ( )uAdxxuxФuI −∆= ∫

Ω

, , ( ) ∫∫ +=
Ω 2Г

gududxuA γρ , 

where ( ){ }1,0;: ГxxuRuV ∈=→Ω=  is the set of 
admissible electrical potentials, A(u) is the work of the 
electrical field on the external charges, Ф is the specific full 
energy of the electrical field such that 

( ) ( ) ii EExФExD ∂∂= /,, for every 3RE∈ and almost every
Ω∈x .  
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In the general case, according to the Thomson law and 
Joule-Lenz law specific potential energy of electric-field 
with regard to noninvertible losses from the current of 
conductivity is searched by formula: 

( ) ( ) ( )[ ]∫ −⋅=
1

0
,,, dPpExJpExDEExФ ,      (2) 

where point is the scalar product in R3. 
In the work[3] it is shown that there is always exists such 

parameter of electrostatic saturation λ>0, that for any 
3RE∈  and almost all Ω∈x  an estimation is faithful: 

   ( ) ( )ExExФ λ≤, .              (3) 
A solution for the problem (1) can be absent. Physical 

sense of this effect is that a dielectric can perceive a limited 
amount of the electric fields that is interpreted as a loss of 
electrostatic equilibrium between externals source of electric 
field and dielectric. This effect we call as electrical puncture 
of dielectric. 

In the work[3] it’s shown, that analysis of electrostatic 
equilibrium in a dielectrics is reduced in order to research 
parameter 0* >t , such, that for ( )*,0 tt∈  functional 

( ) ( )( ) ( )∫
Ω

−∆= utAdxxuxФuIt ,          (4) 

is limited on V and it’s proved, that for *t  an estimation 
above +< tt*  is correct , where 

( ) ( ) ( )








=∈∇= ∫
Ω

+ 1,:inf uAVudxxxut λ      (5) 

and 

( ) ( ) ( ){ }3:,,max REExJExDx ∈−=λ  . 
Solution of the given  problem is reduced in[3] to substit 

(4) by the solution of next problem: 

( ) ( ) ( ) ( )








=∈+∇= ∫
Ω

1,:min uAVuuRdxxxut λ , 

and more precisely to research of properties of function 
R(u), having next view: 

( ) ∑
=

−−−=
n

i
iiii xxuR

2
11ψψ .           (6) 

It is possible to show by a simple example, that without 
boundary conditions, i.e. without fixing actual value of first 
or last variable, an objective function (6) achieves  at 
minimum on a linear variety. In other words, an objective 
function has an endless number of points of minimum. For 
example, function of three variables 

( ) 22331122 xxxxxR ψψψψ −+−=  

achieves at a minimum value ( ) 0=xR for all variables 
fulfilling a condition: 

332211 xxx ψψψ == . 

Through the variational-difference method based on 
finite-element piecewise linear approximation of the 
required solution, an initial continual problem (5) is reduced 
to the next finite-dimensional problem of minimization of 
uneven function of kind: 

( ) min
2

11 →−= ∑
=

−−

n

i
iiii xxxf ψψ .    (7) 

The function (7) is a convex function, but it is nonsmooth 
because it’s a sum of the modules, that does not allow to 
apply the standard methods of minimization, for example, 
gradient or Newton’s methods. Even more, the simplest 
coordinate descent minimization requires a continuously 
differentiable (smoothing) objective function for the 
convergence[8]. 

For application of standard methods of minimization it is 
necessary to smooth out this function, i.e. to carry out it’s 
regularization. 

 
Figure 1.  Regularization of the module at a value ε=0,01 

Here curves:  

1 – xy =  is the initial function of modulus; 
2 – 22 ε+= xy is the regularization above; 
3 – ( ) ε+= 1xy  is the regularization near x=0. 
We suggest to use the third variant - regularization near 

x=0, since it’s more natural, saving basic properties of 
modulus function in the neighbourhood of singular point.  

As a result, a finite-dimensional problem takes the 
following form: 

( ) ( ) min
2

1
11 →−= ∑

=

+

−−

n

i
iiii xxxf εψψ ,  

where ε  is a small positive parameter ( 1<<<0 ε ). In this 
case the object function is ill-conditioned. 

Ill-conditioned functions are characterized by that slight 
changes of basic data can result in the massive changes of 
solutions.  

We remind that the condition number of a matrix A is 

( )
i

iAcond
γ
γ

min
max

= , 

possessing properties ( ) 1≥Acond  and 

( ) ( )AcondAcond kk = , where iγ  are eigenvalues of the 
matrix A. 

Matrix A is named ill-conditioned if ( ) 1>>Acond . In 
practically important problems the condition number can 
evaluate too large as (106-109). 

Function RRF N →:  is named ravine, if its hessian can 
be ill-conditioned matrix. 

The original objective function is attributed to the class of 
functions of ravine type, for minimization of which a number 
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of the special methods has been worked out. We have chosen 
the heavy-ball method, since this method is master of the 
certain set of properties allowing effectively resolve 
problems of minimization of ill-conditioned functions[9]. 

Heavy-ball two-step method is lookup method of global 
minimum and its modification of gradient method. 

Finding a solution of the problem with the help of gradient 
methods consists of some steps: beginning from some 
starting point nx are realized consequent steps to some other 
points unless acceptable solution of problem will be found. 

Gradient method for solution of problem of absolute 
minimization 

( ) min→xf ,           (8) 
where f: Rm → R, it is possible to interpret in terms of usual 
differential equations in such a manner. We will consider 
next differential equation 

( ) 0=′+ xfxp ,                 (9) 
(here the above point x is the derivative on the independent 
variable t, and f ′(x) as usual means the gradient of mapping: 
Rm → R; it is assumed that p > 0). The simplest 
finite-difference analogue of equation (9) has the view of 
obvious chart of Euler 

( ) 0
1

=′+
−−

n
nn

xf
h

xxp , 

gradient method for problem (7) is written as 

( )nnn xf
p
hxx ′−=+1 .         (10) 

Consider now instead of equation (9) the following 
equation 

( ) 0=′++ xfxpxm  ,           (11) 

describing motion of the ball of mass m in the potential field 
f ′ in presence of friction force. The loss of energy on a 
friction will force a ball to get down pithily a minimum of 
potential of f, and forces of inertia will not allow to oscillate 
how it is represented on a chart. It allows to hope that change of 
equation (9) by introduction an inertial member will improve 
the convergence of gradient method (10). The finite-difference 
analogue of equation, describing motion of a ball: 

( ) 02 1

2

11

=′+
−

+
+− −−+

n
nnnnn

xf
h

xxp
h

xxxm  

After simple transformations and obvious labelling we get 
a next iteration scheme: 

( ) ( )11 −+ −+′−= nnnnn xxxfxx βα ,   (12) 

that describes the heavy-ball method to solve the problem of 
absolute optimization of ravine functions.  

 
Figure 2.  Gradiend method 

 
Figure 3. Heavy-ball method 

3. Numerical Experiments 
Numerical experiments were carried out in numerical 

computing environment and fourth-generation programming 
language Matlab. In the program was entered numerical 
vector of coefficients ψ , parameter of regularization ε, 
parameters α and β for calculations according to the 
heavy-ball method and precision of calculations δ. 

3.1. Program Development  

The program in Matlab was carried out in the form of 
M-files. The modules were implemented by corresponding 
M-functions. 

The module of data control checked nonnegativeness of 
precision δ and parameter ε and was implemented in the 
body of M-function for calculations according to the 
heavy-ball method. 

Module solving problem according to the heavy-ball 
method was implemented  as a separate M-function. For 
that function parameters α, β, ε and precision δ were fixed by 
user through the Command Window. 

The module for the calculation of gradient was 
implemented as a separate M-function called in the process 
of calculations in the module, solving the problem according 
on the heavy-ball method. 

3.2. Testing of the Program 

Before using the program, it was necessary to carry on 
testing with the aim of verification of all functions that the 
program must execute and verification of a response of the 
program in different situations. 

It was necessary to conduct next tests to define influence 
of different factors, such as: 

- precision δ; 
- parameter of regularization ε; 
- parameters α and β for the heavy-ball method. 
For the verification of the program the method of testing 

described above was used on the example of the problem a 
decision of that is easily determined analytically, or in the 
Matlab.  

With the aim of the comparison of the efficiency of 
different algorithms special test functions having essential 
singularities on extremum lookup are developed. One of well 
known is a Rosenbrock function, that was used for testing of 
the complex program. 

For testing the program vector of coefficients with 
dimensionality n random number generator was used. 

For estimation of influence of the precision on the quantity 
of iterations parameter ε and precision of calculations δ were 
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changed with constant dimensionality of the vector of 
coefficients and parameters α and β. 

For estimation of the sensitivity of heavy-ball method to 
the parameters α and β with the constant dimensionality of 
the vector of coefficients, precision and parameter of 
regularization parameters α and β we changed itself in given 
diapason and quantity of iterations was measured. 

For estimation of influence of the parameter of 
regularization ε on the quantity of iteration with the constant 
dimensionality of the vector of coefficients, parameters α and 
β and precision δ was changed parameter of regularization 
itself in given diapason and quantity of iterations were 
measured. 

3.3. Results of Numerical Experiments without 
Considering of Boundary Conditions 

3.3.1. Dependence of the number of iterations on parameter 
of regularization ε 

At the fixed value of precision δ=0.1 and β=0.1 there was 
a next picture: 

At α=0.12 the number of iterations was 1 at any value of ε. 
At values from α=0.15 to α=0.13 and и ε=0.1 number of 

iterations was 1, then at ε<0.1 a process loops 
At α>0.16 the process loops at all values ε. 

3.3.2. Dependence of the number of iterations on precision δ 

At ε=0.1, ε=0.01, ε=0.001, ε=0.0001 dependence is 
identical. 

At precision δ=0.1 the number of iterations was 1, at δ<0.1 
the process loops. 

3.3.3. Research of sensibility of heavy-ball method to 
parameters ( βα , ) 

We see distinctly, that at ε=0.1 the number of iterations 
rises sharply and a process loops at α>0.15, while at ε<0.1 
the number of iterations rises sharply already at α>0.12. 

3.4. Results of Numerical Experiments with Considering 
of Boundary Conditions 

The analysis of problem showed that objective function 
without boundary conditions has an endless great number 
of points of minimum, located in a ravine area that results in 
the formal cycling of algorithm. As a result, for providing 
of unicity of decision the boundary condition of х(1)=2 was 
used. We will notice that an initial variation problem in 
natural way contains boundary conditions on the required 
function. 

3.4.1. Research of Sensibility of Heavy-Ball Method to 
Parameters ( βα , ) 

General view of chart of dependence of number of 
iterations from parameters α and β at precision δ=0.1 and 
ε=0.01. 

 
Figure 4.  Sensibility of heavy-ball method to parameters ( βα , ) 

At different precision δ the peak of number of iterations is 
observed at different values α, that evidently from the brought 
4th charts of dependence of number of iterations from the 
parameter α at the fixed parameters ε=0.01 and β=0.01. 

With the change of precision the characteristic peak of 
number of iterations evolves in the area of small values, in 
this process his size raises sharply. 

 

Figure 5.  Sensibility of heavy-ball method to parameters with δ=0.1, 
δ=0.01, δ=0.001 and δ=0.0001 

3.4.2. Dependence of the Number of Iterations on Parameter 
of Precision Δ 

The number of iterations was measured at the fixed values 
of parameters α=0.01 and β=0.01. 

From a chart is evident, that at precision δ=0.1 the number 
of iterations is small, at the increase of precision to δ=0.01 it 
increases sharply and then it changes insignificantly. Also it 
is obvious, that at the change of parameter ε the number of 
iterations changes in the narrow range of values. Thus, it is 
possible to conclude that the parameter of regularization ε 
poorly influences on convergence of heavy-ball method. 
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Figure 6.  Dependence of the number of iterations on parameter of 
precision δ 

3.4.3. Dependence of the number of iterations on parameter 
of parameter regularization ε 

The number of iterations was measured at the fixed values 
of parameters α=0.04 and β=0.01.  

The number of iterations at different values of the 
parameter ε changes insignificantly, as well as at different 
values of precision δ. 

5. Basic Conclusions Based on 
Numerical Results 

As a result of the carried out numerical experiments it was 
discovered, that without boundary conditions the objective 
function has an endless great number of the points of 
minimum, located in a ravine area, that result in formal 
cycling of algorithm. As consequence, for providing of 
unicity of decision it is necessary to use boundary conditions. 

During numerical experiments with boundary conditions 
it was discovered, that: 

- At different precision δ the peak of number of iterations 
is observed at different values α. With the change of 
precision δ the characteristic peak of number of iterations 
evolves in the area of small parameters, there peak increases 
sharply and then it changes insignificantly. 

- At precision δ=0.1 the number of iterations is small. At 
the increase of precision to δ=0.01 the number of iterations 
increases sharply and then changes insignificantly.  

- Number of iterations at the change of parameter ε 
changes in the narrow range of values. As a result, it is 
possible to conclude that the parameter of regularization ε 
poorly influences on convergence of heavy-ball method. 

- With decrease of parameter of regularization the number 
of iterations of heavy-ball method rises nonlinearly. 

- The number of iterations at different values of parameter 
ε changes insignificantly, as well as at different values of 
precision δ. 
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