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Abstract  The characteristics and behavior of pure, pseudo and semi membrane theories were described earlier by authors, 
now it is time to actually apply specific loadings and boundary conditions to the developed theories. We apply the kinematic 
conditions to the developed governing equations as well. The differences of each theory and the methods of lamination are 
interestingly significant when it comes to hybrid anisotropic materials, namely laminated shell wall thickness. The 
nomenclatures and classifications have been existed centuries for isotropic material shells since Donnell and Vlasov era but 
for shells of longitudinally composite materials, such as cylindrical shells, it is significantly different and distinct. The 
methods of formulation of the theories are unique and never been used by others except by the authors. Governing differential 
equations are uniquely formulated for each theory by use of asymptotic expansion method which never been used by others 
for isotropic or anisotropic materials. Longitudinal (L) and circumferential (Π or l) length scale were introduced during the 
course of asymptotic expansion method and the different theories among membrane theory are apparently classified. In this 
article we will mainly concentrate on the applications and discovering the characteristic behaviors of each theory together 
with the mathematical interpretation of the governing equations. 
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1. Introduction 
The properties of anisotropic materials are represented by different elastic coefficients and different cross-ply angles. The 

cross-ply angle, γ, is the angle between major elastic axis of the material and reference axis (Figure 1 and 2).  
According to the exact three-dimensional theory of elasticity, a shell element is considered as a volume element. All 

possible stresses and strains are assumed to exist, and no simplifying assumptions are allowed in the formulation of the theory. 
We therefore allow for six stress components, six strain components and three displacements as indicated in the following 
relation: 

STRESSES = [ELASTIC COEFFICIENTS] X [STRAINS] 
There are a total of fifteen unknowns to solve for in a three dimensional elasticity problem. On the other hand, the 

equilibrium equations and strain displacement equations can be obtained for a volume element and six generalized elasticity 
equations can be used. A total of fifteen equations can thus be formulated, and it is basically possible to set up a solution for 
a three-dimensional elasticity problem.  

In the first part of this article, the asymptotic expansion and integration method is used to reduce the exact 
three-dimensional elasticity theory for a non-homogeneous, anisotropic cylindrical shell to approximate theories. The 
analysis is made such that it is valid for materials which are non-homogeneous to the extent that their mechanical properties 
are allowed to vary with the thickness coordinate. The derivation of the theories is accomplished by first introducing the shell  
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dimensions and, as yet unspecified characteristic, length scales via changes in the independent variables. Next, the 
dimensionless stresses and displacements are expanded asymptotically by using the thinness of the shell as the expansion 
parameter. A choice of characteristic length scales is then made and, corresponding to different combination of these length 
scales, different sequences of systems of differential equations are obtained. Subsequent integration over the thickness and 
satisfaction of the boundary conditions yields the desired equations governing the formulation of the first approximation 
stress states of a non-homogeneous anisotropic cylindrical shell. 

 

Figure 1.  Dimensions, Deformations and Stresses of the Cylindrical Shell 

2. Formulation of Cylindrical Shell Theory of Anisotropic Materials 
Consider a non-homogeneous, anisotropic volume element of a cylindrical body with longitudinal, circumferential 

(angular) and radial coordinates being noted as z, θ, r, respectively, and subjected to all possible stresses and strains (Figure 1). 
Here, a is the inner radius, h the thickness and L the length. See Table 1. 

 
a : Inside Radius of Cylindrical Shell 
h : Total Thickness of the Shell Wall 
d : Distance (thickness) from Inside rsiud to mechanical neutral surface 
Si : Radius of Each Layer of Wall (I = 1, 2, 3 -- - to the number of layer) 
L : Longitudinal Length Scale to be defined, Also Actual Length of the Cylindrical Shell 
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Π : Circumferential Length Scale of cylindrical shell to be defined 
Ei : Young’s Moduli in I Direction 
Gij : Shear Moduli in i-j Face 
Sij : Compliance Matrix of Materials of Each Layer 
r : Radial Coordinate 
Π : Circumferential Length Scale to be defined 
Ɣ : Angle of Fiber Orientation 
σ : Normal Stresses 
ε : Normal Strains 
z, θ, r : Generalized Coordinates in Longitudinal, Circumferential and Radial 
Directions Respectively 
τ : Shear Stresses 
εij : Shear Strains in i-j Face 
λ ; Shell Thickness / Inside Radius (h/a) 
Cij : Elastic Moduli in General 
X, φ, Y : Non Dimensional Coordinate System in Longitudinal, 
Circumferential and Radial Directions Respectively 
 
Table 1 List of Symbols 
 

 

Figure 2.  Details of the Coordinate System 
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Assuming that the deformations are sufficiently small so that linear elasticity theory is valid, the following equations 
govern the problem: 

 

             (1) 

In the above Equations (1) are equilibrium equations and complete anisotropy of the material is allowed for and there are 
thus 21 independent material constants. We are not allowed to illiminate any of those components, since the material 
properties are dependent on the manufactures set up and different gravity environment in case of aerospace vehicles. Also the 
compliance matrix is symmetric, Sij is the same as Sji, and the components can be expressed in terms of engineering constants 
as follows: 

                             (2) 

In equation (2) the Ei’s are the Young’s moduli in tension along the i – direction and Equation (2) implies anisotropic 
property of the material only, material to be non-homogeneous, different properties of each layer of the shell, we will allow 
the material property variation in the radial direction as follows: 

                                            (3) 

The above equation is unique and different from most of conventional theories, including Reddy’s, Reference (11), which 
input the engineering constants artificially from the beginning, while we take the existence and magnitude of components 
only by approximation theory of the asymptotic expansion. 
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The principal material axes in general do not coincide with the body axes with respect to material axes specified, then the 
properties with respect to the body axes are given by the following transformation equations: 

      (4) 

Where λ is the angle of anisotropic orientation between the original longitudinal coordinate z axes.  
The shell is subjected to a uniformly distributed tensile force, then the boundary conditions are as follows: 

                              (5) 

We will find it convenient to work with stress resultants rather than the stresses themselves. These stress resultants, which 
are forces and moments per unit length, are obtained by integrating with respect to the thickness coordinate. They are: 

                                  (6) 
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In the equations (6) variable, a, denotes the inner radius of the cylindrical shell and, d, the distance from the inner surface to 
the reference surface where the stress resultants are defined.  

 

Figure 3.  A Laminated Cylindrical Shell, Material Orientation γ 

3. Formulation of a Boundary Layer Theory 
As a first step to integrating equations (6), we make them non-dimensionalized coordinates as follows: 

                         (7) 

are quantities which are to be determined later. 
The parameters L and Π are thus seen to be characteristic length scales for changes of the stresses and displacements in the 

axial and circumferential directions, respectively where λ is the thin shell parameter defined as 

                                         (8) 

The parameter λ is representative of the thinness of the cylindrical shell. 
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The first system of equations of “thin shell” theory and we will call it the first approximation system. We can however 
obtain stresses and displacements of each layer of thickness coordinate, that can be an advantage of the procedure among 
others. In the following section, the thin shell theories for different combinations of length scales will be derived. 

4. Formulation of Pure Membrane Theory 
(Associated with characteristic length scales, a) 
As we observed, the shell geometry is an important factor for the formulation of theories. 
The basic geometry of cylindrical shells are the longitudinal length L, inside radius a, total wall thickness h and the distance 

from Inner surface to a desired surface, d. We are interested here in deriving the shell theory associated with the case where 
the axial and circumferential length scales are both equal to the inner radius of the cylinder, a, as follows: 

                                         (9) 

Here we adopt the concept of characteristic length scale first developed by Calladine in the Equation (9) in the Reference 
[15]. 

The reason for taking the length scales, a, is the longest practical dimension of the shell and we are interested in developing 
membrane type theory which requires longer than the bending characteristic influential length according to the classical 
theory of isotropic materials. 

Substituting these length scales into the three-dimensional elasticity equations (1) and the asymptotic expansions the 
following equations representing the first approximation theory of the problem result upon use of the procedure outlined 
earlier 

  

                    (10) 

The superscripts indicate the leading term in each of the above equations and represent the relative of magnitude of the 
displacements and stresses. These orders of magnitude result from the intention to obtain a system of equations which is 
inferable with respect to the thickness coordinate y in a step-by-step manner with the following additional reasoning; 

a)  The dominant stress state in thin shell theory is the in-plane stress state. These stresses should be of the same order of 
magnitude. 

b)  The order of the displacements is chosen so that the product of the in-plane strains and the elastic moduli is of the same 
order of magnitude as the in-plane stresses. 

c)  The choice for the transverse stresses arises from the fact that they should contribute terms of the same magnitude in 
the equilibrium. Integration of the first three equations of (10) with respect to y yields 

                                        (11) 
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where , vr, vz, vӨ are the displacements in r, z and Ө directions respectively. 
The middle three equations of (10) can be solved for the in-plane stresses as follows: 

                                      (12) 

Here, C. (i, j = 1, 2, 3) are the components of a symmetric matrix given by 

                                   (13) 

From equations (12) and (13) we can obtain strains as follows: 

                                   (14) 

On substituting the first approximation in-plane stress-strain relations into the last three equations of (10) and integrating 
with respect to y, we obtain: 

                  (15) 

where Trz , TrӨ , Tr are the transverse stress components of the r =0 surface and 

                                         (16) 

In relations (14) and in what is to follow, the superscripts on the displacements have been dropped. 
Boundary conditions are to be satisfied by each term of asymptotic expansions. This yields 

                                (17) 

Here, p* is a dimensionless pressure defined by 

                                      (18) 

Satisfaction of conditions (17) by (15) yields 

                                    (19) 

and the following three differential equations for displacements Vz, VӨ and Vr, 
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In the above equations 

                                         (20) 

To obtain the appropriate expressions for the stress resultants we first non-dimensionalize those defined by (9) as follows: 

                          (21) 

where N and M are the generic symbols for the force and moment stress resultants, respectively. Note that to 
non-dimensionalize the force and moment, we divide by same unit of force and moment per unit strip of the shell surface, 
which is of pound/inch or kilogram/centimeter for force and pound-inch/inch or kilogram-centimeter/centimeter respectively. 
Assuming it to be possible, we now asymptotically expand each of the dimensionless stress resultants in a power series in 1/2, 

                                   (22) 

where N (m) and M (m) are of the order unity. 

5. Pseudo-Membrane Phenomena 
We are now interested in a formulation of equations to be able to obtain all the stress resultants due to membrane and 

bending actions. 
On substitution (21), (22) and the results for in-plane stresses (15) into relations (9) and equating terms of like powers in 

1/2 on each side of the equations, we obtain the following expressions for the first approximation stress resultants: 

                                       (23) 

where the superscript zero has been omitted and B. is defined as follows: 

                             (24) 

and submatrices [A] and [B] are given by 
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             (25) 

Note that d/a can be written as 

                                        (26) 

From the results obtained above, we characterize the theory as follows: 
a)  The approach that this research took, the asymptotic integration, for deriving shell equations is capable of obtaining all 

stress components, including the transverse components. 
b)  The first three equations of (9) result from the relations for the transverse strains. The variation with respect to y is zero, 

as shown in the displacements (23) which are independent of y. The strain components of any point y off r=0 surface 
are thus equal to those of they r=0 surface, similar to classical membrane theory. 

c)  The stress components vary with y because as the y Cij, and the Aij are functions of γ . 
d)  Equations (23) show that moment stress resultants are produced due to the non-homogeneity of the material. 
For an isotropic and homogeneous material, Cij are constants and d/h = 1/2. This 

                                       (27) 

On substituting this result into relations (25), it is seen that submatrix B is equal to zero and that relations (27) become 
those of the classical membrane theory of shell (zero moment resultants). In the case of hybrid anisotropic materials, it is very 
rare to satisfy all the components of the submatrix [B] to be equal to zero at the same time. Another way of observation, it is 
unavoidable to associate with some bending moments in addition to pure membrane forces for laminated anisotropic shell 
walls, as clearly shown in Figure 5, the blue colored curves are the additional contribution to the pure membrane deformation. 
Therefore, the analysis is named pseudo-membrane theory. It is different from the long effective length of Vlasov’s semi 
membrane theory or the short effective length of Donnell’s theory, References [2, 6, 8 and 12]. 

6. Formulation of Semi-Membrane Theory 
The cylindrical shell theory that we are concerned is among the three classifications of above is very long effective length 

shell which is well compared to Donnell-Vlasov theory. As shown in Figure 4, the edge effective zone due to the prescribed 
edge boundary condition represented by curved pattern is limited within close distance from the end and after the zone the 
deformation is nearly linear with respect to the longitudinal axis, which is very close to membrane analysis. It is more distinct 
for a cylindrical shell of one end fixed or hinged boundary condition and the other free open. That is semi-membrane status, 
we will now mathematically formulate the governing equations. 

According to Calladine, Vinson and Chung, References [15], [18], [19], [20] respectively, we pick and choose the 
longitudinal (L) and circumferential (Π) length scales as follows 
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                                         (28) 

We can then obtain the following equations. 
 

 

Figure 4.  Non-dimensionalized Radial Displacement of Pure Theory 
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Figure 5.  Displacement of Semi-Membrane Theory 

Stress-displacement relations 

    (29) 
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Equilibrium equations 

              (30) 

By going through the first approximation procedure of previous formulation as explained in the References [20], [21], [22], 
we found the following phenomena. 

Transverse Strains; the first three equations of (5) are zero and all displacements shown in (6) independent of thickness 
coordinate, r, which means it is only membrane state. 

In-plane Circumferential and Shear Strains; the longitudinal strain is represented by the combination of longitudinal and 
circumferential stresses (tz and tθ) In-plane Shear Stresses; trz does not appear in the first approximation theory. 

We now complete the second approximation theory of the asymptotic expansion and integration procedure, which can be 
shown as follows: 

                (31) 

By integrating the first three equations of the above, we will obtain the following equations: 

                   (32) 

Insert the displacements obtained in the equation (5) into the middle three equations of (6) to obtain the following 
equations: 
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                 (33) 

By combining the equation for Vz,x in the equation (6),we can obtain the in-plane stress-strain relations as follows: 

                        (34) 

where  

                               (35) 

Substituting tz, tθ and tθz into the first approximation equations of (5), we will obtain the following transverse stresses: 
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       (36) 

After mathematical manipulation and inserting boundary conditions, we can obtain the following final equations: 

     (37) 

where 

                                        (38) 

The above differential equations are the governing equations of semi-membrane theory. 

7. Application 
We choose a problem of a laminated circular cylindrical shell under internal pressure and edge loadings to demonstrate the 

validity of the theories developed here. The shell is assumed to build with boron/epoxy composite layers. Each layer is 
taken to be taken to be homogeneous but anisotropic with an arbitrary orientation of the elastic axes. We need not consider 
the restriction of the symmetry of the layering due to the non-homogeneity considered in the original development of the 
theory expressed earlier. Thus each layer can possess a different thickness and a different material. 

We assume here that the contact between layers is such that the strains are continuous function in thickness coordinate. 
As the ijC  are piecewise continuous functions, the in-plane stresses are also continuous. We would expect them to be 
discontinuous at the juncture of layers of dissimilar materials. The transverse stresses are continuous functions of the thickness 
coordinate, r.  

Although as mentioned above the theory developed can take unlimited hybrid random layers but for an example, a 
four-layer symmetric angle ply configuration. For this configuration the angle of elastic axes γ  is oriented at γ+ , γ− , 
γ− , γ+  with the shell axis and the layers are of equal thickness. 

Let the shell be subjected to an internal pressure p ,  an axial force per unit circumferential length N . The axial force is 
taken to  be  applied at r a H= +  such that a moment ( )N H d−  is produced about the reference surface  r a d= + . 
We introduce dimensionless external force and moments as described earlier. 

To demonstrate the validity of the derived theory, we have simplified loading and boundary conditions as:  
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                      (39) 

Here,  l                is the dimensionless length of the cylindrical shell. 
The distance d at which the stress resultants were defined was left arbitrary. We now choose it to be such that there exists 

no coupling between zN   and 1K  and zM  and ijC . 

As the loading applied at the end of the shell is axi-symmetric,  all the stresses and strains are also taken to be axi-symmetric. 
We thus can set all the derivatives in the expressions for the stresses and strains and in the equations for the displacements 
equal to zero. 

Numerical calculations are now carried out for a shell of wall of various hybrid laminae. 
Each of the layers is taken to be equal thickness and thus the dimensionless distances from the bottom of the first layer are 

given by 

1 2 3 4 50,  0.25,  0.5,  0.75,  1.0S S S S S= = = = =  
each layer of the symmetric angle ply configuration (elastic symmetry axes y are oriented at ( γ+ , γ− , γ− , γ+ ) is taken 
to be orthotropic with engineering elastic coefficients representing those for a boron/epoxy material system, 

5
1

5
2

5
12

2.413 10  MPa

1.0 10  MPa

5.17 10  MPa

E
E
G

= ×

= ×

= ×

 

Here direction 1 signifies the direction parallel to the fibers while 2 is the transverse direction. Angles chosen were γ =0, 15,                    
30, 45  and 60. Use of the transformation equations of Equation (4) of this article then yields the mechanical properties for 
the different symmetric angle ply configurations. 

We next apply the following edge loads: N p=  and take /pσ λ= , (3 / 4)H h=  and the reference surface we 
take / 1/ 2d h = . Due to the simplicity we took the loading was internal pressure and therefore we were allowed the 
governing equations (15), (20), (28) and (37) as axi-symmetric deformations and the variables differentiated with respect to 
the angular coordinate, φ, were allowed to be equal to zero. Then we will find the simplified version of the above equations 
are identical. 

Shown in Figures (4) and (5)   are the variation of the dimensionless radial displacement with the actual distance along the 
axis for the different theories. The reference surface for the chosen configuration is given by / 1/ 2d h = . The integration 
constants determined from the edge conditions.    

For the behavior of deformations, stresses and strains we can classify two apparently different patters as 
Axi-symmetric 
Axi-asymmetric 

Axi-symmetric patterns are as shown in Figures (4) and (5). Axi-asymmetric patters with respect to longitudinal axis, x, for 
the case of compressive loads are identical as column behavior which will lead to Eigenvalue problem mathematically. 

It is also seen that wide variations in the magnitude of radial displacement take place with change in the cross-ply angle. 
The maximum displacement occurs at γ = 30 degree while the minimum displacement is at γ = 60 degree. Also shown in 
the Figure 5 is the patterns of near edge zone for both bending theories, one is simplified bending theory shown in the 
Figures(4) and (5) the other the expanded Donnell Vlasov bending theory for hybrid anisotropic materials. The results of 
both bending theories are identical for the case of internal pressure loading as explained earlier. It is interesting to observe 
the non-linear deformation in the Figure (4) and (5) due to the prescribed edge boundary conditions last only very short 
length in longitudinal direction, which we call effective bending zone, after the zone it is more of linear membrane 
deformations are governing. In Reference [13], “Pseudo Membrane Shell Theory of Hybrid Anisotropic Materials”, explains 
more mathematically. 

In each case,     the displacements increase with increase in γ  up to γ =30 degree and thereafter decrease. As shown in 
Figure (4), recommended use of original theory, Equation (10), and simplified version, Equations (19) and (20), are 
classified. 
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8. Conclusions 
First approximation shell theories are derived by use of the method of asymptotic integration of the exact 

three-dimensional elasticity equations for a non-homogeneous anisotropic circular cylindrical shell. The analysis is valid for 
materials which are non-homogeneous to the extent that their properties are allowed to vary with the thickness coordinate (r). 

The first approximation theory derived in this analysis represents the simplest possible shell theories for the corresponding 
length scales considered. Although twenty one elastic coefficients are present in the original formulation of the problem, only 
six appear in the first approximation theories. Depending on the length scales, longitudinal and circumferential, we obtain the 
governing equations and explain the particular behavior of each theory. 

For pure-membrane theory, we used both longitudinal and circumferential length scales same as internal radius of the shell. 
Pseudo-membrane theory is simply a by-product of laminated wall thickness of different anisotropic materials, that is, the 
difference between geometric half thicknesses and the true mechanical neutral axis. 

In the case of semi-membrane theory, we used the longest possible longitudinal length scale together with normal 
circumferential length scale which is inner radius of the shell. Because of the longest longitudinal length scale, the boundary 
conditions of the other end of the cylindrical shell become meaningless, that is the particular behavior of semi-membrane 
theory. 

Semi-membrane shell theory is very useful for long cylindrical shells, such as long rocket fuel storage tank and long 
airplane fuselage structures. 
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