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Abstract  A new version of partial differential equations and prescribed boundary conditions of already formulated 
semi-membrane shell theory of anisotropic materials is presented. It is based on the theories been developed by authors 
previously. The isotropic versions of the theory has been known to be developed nearly a century ago by Vlasov and it has 
been efficiently utilized for design and analysis. The aerospace vehicle structures and outer space rocket fuel storage tanks 
designed efficiently however not much for composite materials, while most of recent structural materials are of the 
combination of anisotropic materials. The semi-membrane cylindrical shell theories are classified as that of very long 
effective length scale and we adopted here the longest possible longitudinal and short circumferential length scales, 
respectively, for the formulation. The edge effects due to the prescribed boundary condition penetrate differently depending 
on material orientation of each layer but all within the limit of length scale (ah)1/2 where Donnell-Vlasov bending theory is 
valid. Demonstrated that beyond the limit of edge effective zone, membrane or pseudo-membrane state dominates, it is 
traditionally named semi-membrane state. New simplified governing equations of semi-membrane theory of cylindrical shell 
are formulated and the physical interpretation of the theory is described.  
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1. Introduction 
Shell structures have numerous shapes such as cylindrical, 

spherical and conical configurations. 
Cylindrical shells are efficiently used for space shuttles, 

rocket fuel storage tanks, aircraft fuselages, above ground 
fuel storage tanks and deep water submarines.  

The advantages of cylindrical shells are not only its 
functional capacity and aerodynamic features but also a 
simple coordinate system for the mechanical analysis 
compared to spherical or conical shapes. For a shell of 
general shape we will first accept and use the classical 
assumption of Love then compare our theory with more 
elaborate theories of Reissner and Donnell-Vlasov as shown 
in the References [1], [2] and [3].  

It is known that Vlasov during the course of simplifying 
his cylindrical shell equation named Donnell-Vlasov theory 
he had noticed a proper equation for long longitudinal length, 
it is interesting that he might have invented the mathematics 
but  never used  the terminology “semi-membrane” at all.  
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Who started to name the terminology and how Vlasov was 
honored are an interesting issue. When analyzing the 
cylindrical shells, it is common to utilize known physical 
parameters such as radius (a) thickness (h) and length (L). 
Donnell, Vlasov and many other scientists classified when 
develop the analytical model for circular cylindrical shell as 
following categories: Short and Intermediate effective length, 
very long effective Length. Figures 4 and 5 indicated the 
zoning territory but the border line can be altered by the 
property of material and thickness of lamination. 

Once we built the analysis for the cylindrical shells we 
could easily convert to the other shape shells as shown in the 
References, [7], [8], [9], [10], However, the mathematics to 
describe its behavior and characteristics are complicated and 
it is more of challenge when the materials are anisotropic and 
combination of different anisotropic materials, hybrid 
anisotropic shell structures.  

Let us first start with three dimensional coordinate system 
of shell structures. 

The system is of longitudinal (X, z), circumferential (φ, θ) 
and radial (r) as shown in Figure 1 and 2. The original and 
non-dimensional coordinates as shown in the figures are 
used to allow an asymptotic integration process. According 
to the exact three-dimensional theory of elasticity, a shell 
element is considered as a volume element. All possible 
stresses and strains are assumed to exist and no simplifying 
assumptions are allowed in the formulation of the theory. We 
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therefore allow for six stress components, six strain 
components and three displacements as indicated in the 
following equation: 

ij ij l klkCσ ε=  , 1, 2,3i j =  , 1, 2k l =      (1) 

where σij and εkl are stress and strain tensors respectively and 
Cijkl are elastic moduli. 

 

Figure 1.  Coordinates of the Cylindrical Shell 

 

Figure 2.  Normal and Shear Stresses 
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Figure 3.  A Laminated Cylindrical Shell, Material Orientation γ 

There are thus a total of fifteen unknowns to solve for in a 
three dimensional elasticity problem. On the other hand, the 
equilibrium equations and strain displacement equations can 
be obtained for a volume element and six generalized 
elasticity equations can be used. A total of fifteen equations 
can thus be formulated and it is basically possible to set up a 
solution for a three-dimensional elasticity problem. It is 
however very complicated to obtain a unique solution which 
satisfies both the above fifteen equations and the associated 
boundary conditions. This led to the development of various 
theories for structures of engineering interest. A detailed 
description of classical shell theory can be found in various 

references [1] through [13]. 
The cylindrical shell theory that we are concerned is 

among the three classifications of above is very long 
effective length shell which is well compared to 
Donnell-Vlasov theory. As shown in Figure 4, the edge 
effective zone due to the prescribed edge boundary condition 
represented by curved pattern is limited within close distance 
from the end and after the zone the deformation is nearly 
linear with respect to the longitudinal axis, which is very 
close to membrane analysis. It is more distinct for a 
cylindrical shell of one end fixed or hinged boundary 
condition and the other free open. That is semi-membrane 
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status, we will now mathematically formulate the governing 
equations. 

According to Calladine, Vinson and Chung, References 
[18], [21], [22] respectively, we pick and choose the 
longitudinal (L) and circumferential (ℓ) length scales as 
follows: 

    (2) 

While we keep the circumferential length scale as same 
as the inner radius (a) of the shell, the longitudinal length 
scale is the longest we can physically describe. Insert the 
equation (2) into stress displacement and equilibrium 
equations and use a small thin shell parameter λ = h/a, where 
h is the total thickness and a is the inner radius of the shell, 
we will obtain the following equations. 

 

 

Figure 4.  Cylindrical Shell under Internal Pressure 
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Figure 5.  Edge Effective Zone of Bending and Pure Membrane Theories 
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Stress-displacement relations 

 (3) 

Equilibrium equations 

              (4) 

By going through the first approximation procedure of previous formulation as explained in the References [20], [21], 
[22], [23], we found the following phenomena. 

Transverse Strains; the first three equations of (5) are zero and all displacements shown in (6) independent of thickness 
coordinate, r, which means it is only membrane state. 

In-plane Circumferential and Shear Strains; the longitudinal strain is represented by the combination of longitudinal and 
circumferential stresses (tz and tθ). 

In-plane Shear Stresses; trz does not appear in the first approximation theory. 
We now complete the second approximation theory of the asymptotic expansion and integration procedure, which can be 

shown as follows: 
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              (5) 

By integrating the first three equations of the above, we will obtain the following equations: 

                (6) 

Inserting the displacements obtained in the equation (5) into the middle three equations of (6) to obtain the following 
equations: 

            (7) 

By combining the equation for Vz,x in the equation (6) and the last two equations of (7), we can obtain the in-plane 
stress-strain relations as follows: 

                        (8) 
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where  

                            (9) 

Substituting tz, tθ and tθz into the first approximation equations of (5), we will obtain the following transverse stresses: 

(10) 

The boundary conditions at the inner and the outer surface of the shell can be specified as follows: 

               (11) 

While the pressure term will be dimensionless as: 

                                    (12) 
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Note that p* is axi-symmetric and only allowed to vary in longitudinal direction. 

                                      (13) 

After mathematical manipulation and inserting boundary conditions, we can obtain the following final equations: 

    (14) 

 
where 

             (15) 

The above differential equations are the governing 
equations and can be solved efficiently as the following 
simplifications: 

[ Γ1 vx,xyy + Γ2vx,xxx + Γ3Vx,xyyy ] + [ Γ4Vy,yyy + Γ5Vy,xxy 

 + Γ6Vy,yyyyy] + Γ7Vz,xxy – Γ8Vz,xxy ] + 
 [ Γ9Vz,yyy – Γ10 Vr,yyyyyy ] + [Γ11p,xx] = 0    (16) 

Where Γ1 through Γ11 are Constants and the deformation 
of are the functions of longitudinal, circumferential and 
radial directions, respectively 

Vx = Vx(x,y,z) 
Vy = Vy(x,y,z) 

Vz = Vz(x,y,z)              (17) 
and the prescribed boundary conditions are simply supported 
at both ends 

Vxy = Vyx = Vzx = Vzy (V is any components and x y z are 
partial differentiations in x y z variables) 

when x = 0: 
all shear forces ;  

 Vx = 0 Vy = 0 Vz = 0          (18) 
all bending moments ; 
Vx,XX = 0 Vy,XX = 0 Vz,XX = 0 
Vx,yy = 0 Vy,yy = 0 Vzyy = 0  
Vx,zz = 0 Vy,zz = 0 Vz,zz = 0 
Vx,Xy = 0 Vy,Xy = 0 Vz,Xy = 0  
Vx,Xz = 0 Vy,xz = 0 Vz,xz = 0 
When x = L 
all shear forces ;  

 Vx = 0 Vy = 0 Vz = 0        (19) 

all bending moments ; 
Vx,XX = 0 Vy,XX = 0 Vz,XX = 0 
Vx,yy = 0 Vy,yy = 0 Vzyy = 0  
Vx,zz = 0 Vy,zz = 0 Vz,zz = 0 
Vx,Xy = 0 Vy,Xy = 0 Vz,Xy = 0  
Vx,Xz = 0 Vy,xz = 0 Vz,xz = 0 

2. Conclusions 
The theory of circular cylindrical shell is developed and 

formulated by adopting circumferential length scale as inner 
radius, a, and longitudinal length scale, a(a/h)1/2, which is 
the longest possible physical length and extended to hybrid 
anisotropic materials and the governing equations are well 
compared to classical theories of Vlasov, Calladine and 
Gould, etc. which are of isotropic material as shown in the 
references [6], [10] and [11] respectively. 

The adopted the circumferential length scale is equal to 
the inner radius, a, is membrane state circumferentially as 
shown in the pseudo membrane theory formulated by 
Chung and Hong as shown in the reference [19]. 
Longitudinally, a long length scale was adopted, therefore 
radial deformation and circumferential stresses are of 
exponentially decaying patterns as explained by Vlasov, 
Calladine as shown in the references [7], [8] and [20] 
respectively. 

Due to the complexity of hybrid anisotropic material 
being used, the developed theory is of higher order partial 
differential equations but it should be considerably 
simplified considering the axi-symmetric nature of load and 
deformations and very long longitudinal length scale. The 
equations and formulations used in this article are clarified 
by the Reference of [22].  

The simplification procedure together with prescribed 
edge conditions further clarified. 
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List of Symbols 
a :  Inside Radius of Cylindrical Shell 
h : Total Thickness of the Shell Wall 
Si : Radius of Each Layer of Wall (i = 1, 2, 3 --- to the 

number of layer) 
L : Longitudinal Length Scale to be defined, Also 

Actual Length of the Cylindrical Shell  
Ei :  Young’s Moduli in i Direction 
Gij :  Shear Moduli in i-j Face 
Sij : Compliance Matrix of Materials of Each Layer 
r : Radial Coordinate 
l : Circumferential Length Scale to be defined  
Ɣ : Angle of Fiber Orientation 
σ : Normal Stresses 
ε : Normal Strains  
z, θ, r :  Generalized Coordinates in Longitudinal, 

Circumferential and Radial Directions 
Respectively 

τ : Shear Stresses 
εij : Shear Strains in i-j Face 
λ :  Shell Thickness / Inside Radius (h/a) 
Cij : Elastic Moduli in General  
X, φ, Y :  Non Dimensional Coordinate System in 

Longitudinal, Circumferential and Radial 
Directions Respectively  

Γ :  Constants used for partial differential equations 
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