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Abstract  In this comparative study, convenient analytical models evaluating the permeability of unidirectional fibrous 

media towards normal and parallel flow are selected. These models are compared with respect to available data early 

published. Static and transient mode simulations are launched in order to filter out the consistent bibliography values; 

analytical models are later compared with respect to the selected data. The analysis of the comparative study presents that 

Bahrami and Tamayol, Drummond and Tahir, Berdichevsky and Cai ISCM, and unified (square) models have good 

agreement with these data for longitudinal microscopic permeability components. Concerning transverse microscopic 

permeability, Berdichevsky and Cai ISCM (hexagonal), Gebart (hexagonal), Drummond and Tahir (hexagonal), and 

Kuwabara models are elected to be the most accurate models. 
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1. Introduction 

Liquid composite molding (LCM) is one of the most 

popular composite manufacturing processes due to its 

repeatability, medium costs, and flexibility. Resin is injected 

or infused into a mold filled with dry fabric, this process is 

performed under different conditions (constant pressure or 

velocity, atmospheric or vacuum outlet ports…) with 

different methods such as RTM, VARTM, VARI, and RIFT. 

In order to simulate the resin injection and to predict the 

filling time of any structure, the permeability of the fabric is 

required. A dry fabric is considered as a dual scale medium, 

Figure 1. Researchers classify the flow inside the bundles as 

“microscopic flow”, between the bundles as “mesoscopic 

flow”, and as “macroscopic flow” at piece level. In other 

words, the permeability of bundles or unidirectional yarns is 

called microscopic permeability while that for a fabric is 

called macroscopic permeability. Microscopic permeability 

is an important parameter to discover resin flow through the 

fiber bed and understand the mechanisms of air entrapment 

which governs the quality of composite parts made by LCM. 

Moreover,  it is an  essential step  towards  macroscopic  
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permeability modeling. 

1.1. Problem Statement  

This study deals with microscopic permeability of 

unidirectional yarns; longitudinal permeability KL and 

transverse permeability KT. In general, the evaluation of 

these permeability values is done by experimental 

measurements, analytical models, or finite Element (FE) 

numerical simulations. While analyzing the previously stated 

prediction methods, wide scattering is observed. In addition, 

many analytical models exist, while there is no clear 

comparative study that evaluates all these models. 

The main objective of this paper is to evaluate the 

available analytical models, by comparing their results to the 

available bibliography data. However, because of the wide 

scattering found in bibliography results, this data is to be 

refined. Thus a finite element modeling is done, in which a 

more realistic unit cell is used where the fibers are arranged 

in a random manner; neither square nor hexagonal. Static 

mode and transient mode simulations are launched. The 

values of transient simulations approved the consistency of 

static mode simulations. The bibliography results that better 

fit the FE modeling results are selected. Then a comparative 

study is performed and the best analytical models for KL and 

KT are presented. 
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Figure 1.  P3W-GE044 from 3TEX Company 

 
1.1.1. Bibliographic Experimental and Numerical Scattering 

Researchers [1-12] predicted the permeability values 

either by numerical simulations or experimental 

measurements. This section aims to show the scattering 

found for both experimental measurements and numerical 

predictions for aligned fiber beds with the same fiber volume 

fraction. Permeability measurements depend on many 

parameters including the method, the apparatus, the 

techniques and operator skills, as well as the injection 

method which could be either radial or unidirectional. On the 

other hand, numerical simulations depend on many 

parameters such as the used code, the used method, the 

boundary conditions, and the most important and influencing 

parameter which is the unit cell selection. Table 1, Table 2, 

and Table 3 show different experimental measurements and 

numerical simulations of the dimensionless permeability 

components KL/r2 and KT/r2 values, where “r” is the fiber 

radius. 

Table 1.  Measurements for longitudinal microscopic permeability 

Longitudinal ε KL/r2 

Sullivan [1] 0.23 0.0056 

Sangani and Yao [2] 

0.3 0.00952 

0.44 0.032 

0.5 0.0468 

0.7 0.232 

Skartsis and Kardos [3] 0.9 2.48 

Sullivan [1] measured the permeability for different fiber 

types like glass wool, goat wool, and copper wire, with cross 

sectional diameter ranging from 7.6µm up to 150.5µm. 

Sangani and Yao [2] predicted the permeability of aligned 

cylinders in different array structures. Skartsis and Kardos [3] 

measured the permeability and consolidation of oriented 

carbon fiber beds. Concerning transversal permeability, 

Kirsch and Fuchs [4] performed a permeability study on 

fibrous parallel cylinders of aerosol filters which consist of 

kapron fibers of diameters 0.15, 0.225 and 0.4mm. 

Chmielewsik and Jayaraman [5] measured experimentally 

the transversal permeability for acrylic circular cylinders 

array having a diameter of 4.76 mm and 38 mm long. 

Coulaud and Al. [7] chose a numerical method where the 

medium has been modeled by cylinders of either equal or 

unequal diameters arranged in a regular pattern with a square 

or triangular base. Sadiq and Al. [8] measured the transversal 

permeability of unidirectional cylinders consisting of solid 

circular nylon fibers, whose diameter is equal 711.2 µm. Lee 

and Yang [6] predicted the transversal permeability by 

considering a non-Darcy flow through a porous medium. 

Zhong and Al [13] measured the transversal permeability of 

square arrayed rods of diameter 3.18 mm. 

As shown in Table 3, on the same porosities different 

studies measured the permeability with a scattering going 

from 55% to 300%. Table 4 shows that the permeability is 

not only related to the fiber volume fraction and porosity, but 

is also greatly influenced by the packing structure. This 

effect has been shown clearly in the scatter between the 

predicted permeability values for two selected porosities, 

where for a porosity of 30% the scatter is more than 70% and 

for a porosity of 50% the scatter is more than 130%. The 

scattering is calculated by equation (1). 

𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 =
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑  𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑚𝑒𝑎𝑛
∗ 100    (1) 

1.1.2. Analytical Scattering 

Analytically, researchers have studied the microscopic 

permeability for unidirectional fibers, and then derived 

various analytical models based on 4 different modeling 

approaches: 

 Lubrication approach 

 Capillary approach 

 Analytic Cell modeling 

 Mixed models based on previous models. 

Table 5 shows a comparison between some analytical 

models from the bibliography on a selected fiber volume 

fraction (ε = 0.5). It’s well noticed that for the same fiber 

volume fraction, different models give rise to values of 

permeability with a scatter more than 60% for longitudinal 

permeability and more than 200% for transversal 

permeability models.  
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Table 2.  Measurements for transversal microscopic permeability 

Reference ε KT/r2 Reference ε KT/r2 

Kirsch and Fuchs [4] 

0.7 0.1292 
Chmielewsik and Jayaraman [5] 

0.7 0.10636 

0.8 0.3 0.967 11.2 

0.85 0.5997 

Sadiq and Al [8] 

0.385 0.00288 

0.89 1 0.416 0.00508 

0.935 2.597403 0.51 0.016 

0.955 4.36 0.59 0.038 

0.982 17.36 

Lee and Yang [6] 

0.4345 0.005076 

0.99 40 0.6073 0.039139 

0.9945 83.2 0.8076 0.337553 

Coulaud and Al [7] 
0.4345 0.00791171 

Zhong and Al [13] 
0.95 4 

0.6073 0.04489842 0.976 12 

Table 3.  Permeability values with corresponding scattering 

ε KT/r2 Reference Difference % 

0.4345 0.007912 Coulaud 
55% 

0.4345 0.005076 Lee and yang 

0.5 0.0488 Sangani and Yao 
300% 

0.5 0.012 Sadiq et Al 

0.7 0.1292 Kirsch and Fuchs 
240% 

0.7 0.24 Sangani and Yao 

Table 4.  Effect of the packing structure on the scattering between the numerically predicted permeability values for two selected porosities 

Reference Geometry 
ε=0.3 ε=0.7 ε=0.3 ε=0.7 

KT/r2 Average Scatter Average Scatter 

Dave et Al. [10] - 1.25E-03 8.66E-01 

1.04E-03 75.85% 1.86E-01 130.59% 

Gutowski [11] Square Packing 1.92E-04 8.65E-02 

Gutowski [11] Hex. Packing 1.31E-03 1.23E-01 

Berd. and Cai [14] - 2.57E-03 1.54E-01 

Berd. and Cai [14] Hex. Packing 1.62E-03 1.08E-01 

Berd. and Cai [14] Square Packing 3.32E-04 1.02E-01 

Wang et Al. [12] Square Packing 4.26E-04 1.10E-01 

Choi et Al. [15] Hex. Packing 1.57E-03 9.84E-02 

Choi et Al. [15] Square Packing 8.18E-05 2.44E-02 

Table 5.  Comparison between analytical models from the bibliography on a selected porosity 

Model Name/(ε= 0.5) KL/r2 KT/r2 

Kuwabara [16] 0.0342 0.017 

Gutowski (for Va=0.83) [11] - 0.0131 

Gutowski (for Va=0.78) [11] 0.1786 0.0086 

Gebart (Square) [17] 0.0702 0.0129 

Gebart (Hexagonal) [17] 0.0755 0.0164 

Berdichevsky and Cai ISCM (Square) [14] 0.0464 0.0097 

Berdichevsky and Cai ISCM (Hexagonal) [14] 0.0354 0.0116 

Tamayol and Bahrami (Square) [18] - 0.0117 

Scattering 67.7% 217.6% 
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Although compared at the same fiber volume fractions, a 

wide scattering between permeability values derived from 

analytical models, numerical simulations, and experimental 

measurements was observed. That scattering reveals the 

importance of this study that aims to investigate and compare 

the different analytical models to numerical and 

experimental results. 

No generalized comparative study was found in the 

bibliography focusing on all approaches to characterize the 

microscopic permeability. It is noticed that researchers who 

predicted the permeability values using different approaches 

used to approve their results by comparing them with a 

selected experiment, a selected model, or a selected 

numerical simulation from the bibliography instead of doing 

a generalized comparison. Chen and Papathanasiou [19] 

compared their finite element simulation results to 

Drummond and Tahir model [20]. Same for Choi and Al [15] 

who compared their finite element simulation to Gebart [17] 

and Berdichevsky and Cai [9, 14] analytical models. 

Tamayol and Bahrami [21] compared their analytical model 

to experiments from literature. Wang and Hwang [12] 

compared the results of a finite element simulation to Gebart 

[17] analytical model. Sadiq and al [8] compared their 

experimental results with the asymptotic model developed 

by Brushke and Advani [22]. 

1.2. Objectives 

The main objective of this work is to select the best 

available analytical models predicting the permeability 

values for unidirectional fiber beds. To do so, seven 

analytical models predicting the longitudinal microscopic 

permeability [9, 11, 14, 16, 17, 23, 24] and seventeen models 

[6, 9, 11, 14, 16, 17, 20-23, 25-27] predicting the transversal 

microscopic permeability are selected from bibliography. 

From the comparison, the best models for predicting 

microscopic longitudinal and transversal permeability are 

selected. 

1.3. Methodology  

Reviewed analytical models’ calculations are compared 

with numerical simulations or experimental results from 

bibliography; but these results showed big differences 

between each other for the same fiber volume fraction as 

previously explained in the first part. This reveals the 

importance of performing a new numerical study simulating 

a real experiment and eliminating experiment’s problems. 

Figure 2 shows two different fabrics which are 3D 

Orthogonal from 3TEX with fiber volume fraction equal to 

55.76%, and a unidirectional stitched fabric (U14EU920) 

from SAERTEX with fiber volume fraction equal to 60.59%. 

Note that these real injections are done in order to affirm that 

the fiber arrangement is random. Thus the numerical FE 

modeling is performed based on a random fiber packing 

structure. This study measures averaged volume filling speed 

under a constant pressure. In other words, it is the saturated 

permeability value. The study is done in both longitudinal 

and transversal directions. A more advanced study is done 

for the same unit cell in a transient mode; where the flow 

front position is detected as function of time, taking into 

consideration capillary effect. Averaged unsaturated 

permeability is deduced. This simulation approved the 

consistency of static mode simulation. 

Values are selected from the literature at different fiber 

volume fractions. When two values are at the same fiber 

volume fraction, the permeability value which best matches 

with the numerical data is chosen for the comparative study. 

The selection between different values is convenient, taking 

into consideration that the unselected experiments are far 

from being perfect due to the inconsistency in the measuring 

process. 

A two-level comparative study is done between all data 

derived from present work with the selected experiments and 

analytical models. From this comparison, the best models for 

predicting microscopic longitudinal and transversal 

permeability are selected. 

 

 

Figure 2.  Two fabrics: 3D Orthogonal from 3TEX at a fiber volume fraction equal to 55.76% and unidirectional stitched fabric (U14EU920) from 

SAERTEX at a fiber volume fraction equal to 60.59% 
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1.4. Organization 

A review of the available analytical models in the 

literature is established. In the second section, a numerical 

study is launched in order to simulate the longitudinal and 

transversal flow in aligned fiber beds at different fiber 

volume fractions in a steady state mode “saturated 

permeability”. In the third section, the experiments are 

selected based on the numerical simulations and a 

comparative study is launched in order to select the best 

analytical models based on the previous numerical 

simulations and selected experiments. Then, a numerical 

simulation in a transient free boundary problem mode is 

done and consequently the best analytical models will be 

filtered from the selection made in the third part. At the end 

of this study, a conclusion is deduced. 

2. Analytical Models 

Studies on the permeability of fibrous media date back to 

the experimental work of Carman [28] and Sullivan [1] in 

1940s, and theoretical analyses of Kuwabara [16], Happel 

[23] and Brenner [29]. (Appendix 1 Eq.1). Kuwabara [16], 

solving vorticity transport and stream function equations and 

employing limited boundary layer approach, predicted the 

permeability of flow normal to randomly arranged fibers for 

materials with high porosities. (Appendix 1 Eq.2,3). Happel 

[23] and Brenner [29] analytically solved the Stokes 

equation for parallel and normal flow for a single cylinder 

with free surface model (limited boundary layer). The 

boundary conditions used by Happel and Brenner [29] were 

different from Kuwabara’s study [16]. They hypothesized 

that the flow resistance of a random 3D fibrous structure is 

equal to one third of the parallel plus two third of the normal 

flow resistances of 1D array of cylinders. Later, Sangani and 

Acrivos [27] performed analytical and numerical studies on 

viscous permeability of square and staggered arrays of 

cylinders for the entire range of porosity values, when their 

axes were perpendicular to the flow direction. Their 

analytical models were accurate for the lower and higher 

limits of porosity (Appendix 1 Eq.4). 

Drummond and Tahir [20] solved Stokes equations for 

normal and parallel flow towards different ordered structures. 

They used a distributed singularities method to find the 

flow-field in square, triangular, hexagonal, and rectangular 

arrays. They compared their results with numerical values of 

Sangani and Acrivos [27] for normal flow. The model of 

Drummond and Tahir [20] for predictting transversal 

permeability values was very close to those predicted by 

Sangani and Acrivos model [27], thus, it is accurate only for 

highly porous materials (Appendix 1 Eq.5,6,7). 

Sahraoui and Kaviani [26] included inertial effects and 

they numerically determined the permeability of cylinders 

for normal flow. They also proposed a correlation which is 

accurate for a limited range of porosity values, i.e., 0.4 < 0.7 

(Appendix 1 Eq.8).  

A general mathematical model derived by Gutowski [11] 

assumed that the fibers make up a deformable, nonlinear 

elastic network. The resin flow is modeled using Darcy’s 

Law for anisotropic porous medium. (Appendix 1 Eq.9). 

Gebart [17] derived an analytical model to predict the 

unidirectional permeability starting from Navier-Stokes 

equation. (Appendix 1 Eq.10, 11) In 1993, Berdichevsky and 

Cai [14], after performing some numerical simulations, 

considered that the permeability depends on the fiber volume 

fraction and the ultimate fiber volume fraction. Then they 

derived a unified empirical model. (Appendix 1 Eq.12, 13). 

Then in the same year, they developed their model “self 

consistent method model” to “improved self consistent 

model “[14], where Stokes flow and Darcy flow are then 

respectively considered at different regions. Boundary and 

interface conditions as well as two consistency conditions 

including the total amount of the flow and the energy 

dissipation, are applied accordingly. The permeability is 

solved based on these considerations. This improved 

permeability model captures the flow characteristics in a 

given fiber bundle. In the transverse flow case, the gaps 

between neighboring fibers govern the flow resistance. The 

derived expression for the transverse permeability contains 

two variables, the averaged fiber volume fraction and the 

maximum packing efficiency, which adequately describe the 

status of a fiber bundle. (Appendix 1 Eq.14,15). 

Phelan and Wise [25] studied the transverse flow through 

rectangular arrays of porous elliptical cylinders and derived a 

semi-analytical model based on lubrication theory. The 

Brinkman equation is used to model the flow inside porous 

structures, and the Stokes equation to model the flow in the 

open media between the structures (Appendix 1 Eq.16). Lee 

and yang [6] considered the flow as a non-Darcy flow 

through a porous medium. The continuity equation and the 

momentum equation in pore scale are solved on a Cartesian 

grid system. To avoid the numerical difficulties resulting 

from the flow domain of irregular shape, the weighting 

function scheme along with the APPLE algorithm and the 

SIS solver are employed. The Darcy-Forchheimer drag 

(pressure drag) is then determined from the resulting 

volumetric flow rate under a prescribed pressure drop to 

derive their permeability model. (Appendix 1 Eq.17). 

Brushke and Advani [22] considered the flow across regular 

arrays of cylinders. The analytic solutions are matched to 

produce a closed form solution. This is done by employing 

the lubrication approach for low porosities and the analytic 

cell model solution for high porosities. (Appendix 1 Eq.18). 

Using numerical simulations, Van der Westhuizen and Du 

Plessis [24] proposed a correlation for the normal 

permeability of 1D fibers. (Appendix 1 Eq.19,20). Tamayol 

and Bahrami [21] performed studies on the ordered fibrous 

media towards normal and parallel flow, thus the 

permeability is obtained analytically. To predict 

permeability, a compact relationship is suggested by 

modeling 1D touching fibers as a combination of 

channel-like conduits. Moreover, analytical relationships are 
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developed for pressure drop and permeability of rectangular 

arrangements. This is performed by using an “integral 

technique” and simulating a parabolic velocity profile within 

the unit cells. The experimental results collected by others 

for square arrangement confirm the data of the developed 

models. (Appendix 1 Eq.21,22). 

Tamayol and Bahrami [18] studied the transverse 

permeability of fibrous porous media both experimentally 

and theoretically. A scale analysis technique is used in order 

to obtain the transverse permeability of fibrous media with a 

variety of fibrous matrices including square, staggered, and 

hexagonal unidirectional fiber arrangements. In this field, a 

relation is designated between the permeability and the 

porosity, fiber diameter, and tortuosity of the medium. Also, 

the pressure drop in several samples of tube banks of 

different arrangements and metal foams is measured in the 

creeping flow regime. The obtained results are then utilized 

to calculate the permeability of the samples. The developed 

compact relationships are confirmed by performing 

comparison with the present experimental results and the 

data given by others. (Appendix 1 Eq.23,24). 
The models listed in this section predict the longitudinal 

and transversal microscopic permeability “KL” and “KT”, for 

most models the permeability is a function of the fiber radius 

“r” and the fiber volume fraction “Vf”. However, for some 

models the permeability is linked to other parameters like the 

maximum fiber packing factor “Vfmax”, geometrical effects 

“C, C1…’’, packing structure (hexagonal or square or other 

structures) “Va”. 

3. Numerical Steady State Method and 
Results (Saturated Permeability) 

In this section, a FE modeling, using COMSOL 

MULTIPHYSICS software which consists of a CFD 

analysis is performed to estimate the microscopic saturated 

permeability value of multiple cases involving porous media. 

Two cases were studied, which involve a longitudinal and a 

transversal flow through certain porous media in order to 

predict the saturated permeability value of the media. A 

finite element (FE) based model for viscous, incompressible 

flow through random packing of fibers is employed for 

predicting the permeability associated in the porous media.  

3.1. Methodology 

In this study, random arrangement of fiber is considered, 

which is shown to be as most representative for a real fiber 

stacking. Figure 3 shows the 2D unit cell dimensions for 

transverse permeability predictions having a length of 

0.33mm and a width of 0.1mm. However, the 3D unit cell 

dimensions for longitudinal permeability are length = 

0.33mm, width = 0.1mm, and depth=1mm. Different fiber 

contents are selected to cover a wide range of porosities  

(0.3 to 0.9) for both transversal and longitudinal simulations 

Figure 4 and Figure 5. Porosities are selected with respect to 

available data from the bibliography; refer to the 

introduction. 

 

Figure 3.  Unit cell Dimensions 

 

Figure 4.  Selected porosities for transversal flow simulation  

The model used is based on Navier-Stokes equation, 

where the fluid is subjected to the action of a body force F, 

the Navier-Stokes equation can be written as follow in 

equation (2). 

𝜌.   
𝑑𝑣  

𝑑𝑡
+ 𝑣 . 𝛻𝑣   = 𝜌𝐹 + 𝛻. 𝜍         (2) 

Where ρ is the density, v is the velocity of the fluid, t is 

time, P is the pressure, and F is the volumetric force. 

Permeability in fluid mechanics is a measure of the ability of 

a porous material to allow fluid to pass through it. The most 

widely used equation for describing flow is Darcy’s equation 

for flow through porous media. Fluids modeled by Darcy’s 

law must obey the assumptions used to formulate the Navier 

Stokes equation. Namely, fluids must have a constant density 

and viscosity and must obey Newtonian behavior [30]. 

𝐾 =
𝜇 .𝐻.𝑈𝐷

∆𝑃
                  (3) 

 is the viscosity of the fluid, ∆P is the pressure drop, K is 

the permeability tensor of the porous medium, 𝑈𝐷  is the 

velocity of the fluid, and H is the depth of the unit cell. 

The flow Reynolds number should be kept sufficiently 

low to ensure negligible effects of inertial terms. Reynolds 

number equation (4) is ranged between 1 and 10 (1< Re < 10) 

[31], Where 𝐷𝑒  is the equivalent pore diameter. 

𝑅𝑒 =
𝜌.𝑈𝐷 .𝐷𝑒

𝜇
                (4) 

The porosity of a porous medium is the ratio of the pore 

volume to the total volume of a representative sample of the 

medium; it can be calculated using this equation (5). 

𝜀 = 1 −
𝑁.𝜋.𝑑2

4.𝑆𝑡
               (5) 
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(a): 0.9, (b): 0.7, (c):0.5, (d): 0.44, (e): 0.3, and (f):0.23 

Figure 5.  Selected porosities for transversal flow simulation 

Where N is the number of fibers, d is the fiber diameter 

and St is the total surface of the unit cell. So for a selected 

fluid “selected viscosity”, on a selected porosity and on a 

predefined inlet and outlet pressures the filling time is 

obtained from the simulation. Using equation (3) the 

saturated permeability is calculated. 

3.1.1. Selected Porosities 

Based on the available data from literature, different 

porosities were selected Table 6, in order to predict the 

microscopic permeability values on these porosities.  

Table 6.  Porosity values for performing the study 

ε (longitudinal 

flow) 
0.23 0.3 0.44 0.5 0.7 0.9 - 

ε (transversal 

flow) 
0.385 0.45 0.51 0.6073 0.7 0.8 0.89 

3.1.2. Flow Type and Fluid Properties 

In fluid transients, laminar flow occurs when a fluid flows 

in parallel layers, with no disruption between the layers. At 

low velocities, the fluid tends to flow without lateral mixing, 

and adjacent layers slide past one another like playing cards. 

Neither cross-currents perpendicular to the direction of flow, 

nor eddies or swirls of fluid exist. In laminar flow, the 

motion of the particles of the fluid is very orderly with all 

particles moving in straight lines parallel to the walls. The 

fluid used in simulations is epoxy resin which has the 

properties shown in Table 7. 

Table 7.  Fluid properties of epoxy resin 

Fluid properties 

Temperature 293 K 

Density 1120 kg/𝑚3 

Transient viscosity 0.195 Pa.s 

3.1.3. Meshing Technique 

CFD simulation requires that the computational domain 

gets divided into small cells where the flow is modeled and 

the flow equations are solved. COMSOL MULTIPHYSICS 

software is used to generate the mesh that will be used in 

simulations involving random form. The generated mesh for 

longitudinal and transversal unit cells and meshing controls 

are shown respectively in Figure 6 and Table 8. For example 

for a longitudinal permeability unit cell for a Vf of 0.5, the 

complete mesh consists of 1603619 domain elements, 

461336 boundary elements, and 57153 edge elements. 

Table 8.  Meshing Conditions 

Control Longitudinal Transversal 

Mesh type Free Tetrahedral Free Triangle 

Maximum element size 0.055 mm 0.055 mm 

Minimum element size 0.044 mm 0.044 mm 

Max element growth rate 1.4 1.4 

Calibrated for Fluid Transients Fluid Transients 

3.1.4. Boundary Conditions  

After the mesh process is completed, the next step is to 

specify the boundary conditions. Similar boundary 

conditions were used in all the simulations, which are shown 

in Table 9. Type of boundary condition: constant pressure 

with no viscous stress. 

Table 9.  Boundary Conditions 

Surface Boundary conditions 

Left surface Inlet pressure =1.5 bar 

Right Surface Outlet pressure =1 bar 

Other surfaces No slip wall 

1 mm 

0.33 mm 

0.1 mm 
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Figure 6.  Generated mesh for longitudinal and transversal unit cells 

 

3.1.5. Solver Settings 

Since the flow in the simulations that were performed is 

supposed to be Laminar (low velocity flow), the Laminar 

model that solves the Navier-Stokes equations was used 

Table 10. 

Table 10.  Solver Settings for stationary solver 

Solver Setting 
Solver Type: 

Longitudinal 

Solver Type: 

Transversal 

Direct MUMPS PARADISO 

Fully coupled Iterative DIRECT 

Iterative GMRES GMRES 

Where MUMPS: Multifrontal Massively Parallel Sparse 

(direct Solver), GMRES: Generalized Minimum Residual 

(iterative method). 

3.2. Results and Comparison for Numerical Simulations 

in Steady State Mode 

The results of the calculated permeability values are 

shown in the Table 11. In the next section, two comparative 

studies are launched for both longitudinal and transversal 

microscopic permeability values; where in the results 

derived from numerical steady state mode simulations and 

experimental measured results will be compared with results 

derived from available analytical models. 

A comparison is launched between analytical models on 

one hand and the bibliography results and numerical results 

on the other hand. This comparison aims to choose the 

analytical models which best matches with these results. 

3.2.1. Comparison for Longitudinal Flow (Steady State 

mode) 

As shown in Table 12 and Chart 1, Gutowski model values 

compared with the bibliography results show big scatter at 

most of the selected porosities such as 34.8% at porosity ε = 

0.3, and keeps rising till 70.9% at porosity ε = 0.7. Similarly, 

the comparison of these models’ values with the simulation 

reveals almost same scattering ranging between 30.6% and 

72.1%. 

Van der Westhuizen model results reveal large scattering 

when compared to bibliography and numerical results. This 

scatter starts from 22.9% and rises up till 39.1%. Gebart 

(square and hexagonal) models' results exhibit low scattering 

only on the porosities 0.3 and 0.44 such as 6.7% and 8.7% 

with the bibliography results, and 1.6% and 5.3% when 

compared with the numerical ones. But the scattering 

increases sharply at porosities less or greater than 0.3 and 

0.44, ranging between 23.4% and 47.4% when compared to 

bibliography and numerical results. Analogously, the models 

Berdichevsky and Cai ISCM (hexagonal), Berdichevsky and 

Cai unified (hexagonal), and Happel and Kuwabara show an 

intersection with the bibliography and numerical results at a 

single porosity which is 0.7 (scatter around 3% and 1% when 

compared with the bibliography and numerical results 

respectively), while it seems to be high on the other 

porosities for the entire three models. The models Gutowski, 

Van der Westhuizen, Gebart (square and hexagonal), Happel 

and Kuwabara, Berdichevsky and Cai ISCM (hexagonal), 

and Berdichevsky and Cai unified (hexagonal) are excluded 

due to the big scatter between the results of these models 

when compared to the bibliography and numerical values on 

almost all of the selected porosities. 

On the other side of the coin by referring to Table 13 and 

Chart 2, it is obviously realized that there are four models 

that give values which are very close to the bibliography and 

numerical values, evidenced by the low scattering between 

the values at most of the selected porosities. One of these 

models is Tamayol and Bahrami which when compared with 

bibliography values has a range of scatter lying between  

0.3% at porosity ε = 0.7, and 7.1% at porosity ε = 0.44. And 

compared to the numerical results, it also shows very low 

scattering, as shown in the table; 1.9% at porosity 0.3 and  

7.9% at porosity 0.5. Drummond and Tahir is also one of the 

models that have results close to the bibliography and 

numerical results. Examples are 3.4% scatter with the 

bibliography result at porosity 0.44 and 3.3% scatter with 

numerical value at porosity 0.7. But the scatter is relatively 

high (25.3%) compared to the bibliography result on 

porosity 0.23. 

The other two models which show very low scatter in 

comparison with the bibliography and numerical results are 
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Berdichevsky and Cai ISCM square and Berdichevsky and 

Cai unified square. The scattering with the bibliography 

results ranges between 0.4% and 4.0% for the first model and 

between 0.7% and 11.3% for the second one. Similarly, the 

comparison with the numerical study results also reveals 

very low ranges of scattering, being between 0.4% and  

17.9% for the first model and between 2.1% and 13.7% for 

the second. 

3.2.2. Comparison for Transversal Flow (Steady State Mode) 

By referring to Table 14 and Chart 3, Happel shows very 

high scattering with bibliography results on all selected 

porosities, with the least scattering equal to 56.7% at 

porosity 0.89 and greatest one equal to 91.1% at porosity 

0.45. The scattering is similarly high with numerical results 

ranging between 68.7% and 95.6%.Gutowski (hexagonal) 

reveals distinct scattering values but the overwhelming 

majority lies between 21.6% and 51.8%.Tamayol and 

Bahrami (hexagonal) displays great scattering values with 

the bibliography results on one hand and with the numerical 

results on the other hand, which range between 17.4% and 

98.3%. The models having great scatter with the 

bibliography and numerical results are excluded from the 

study. Those are Happel, Gutowski (hexagonal), and 

Tamayol and Bahrami (hexagonal) models. Both models 

Sangani and Acrivos and Drummond and Tahir (square) 

when compared with both bibliography and numerical 

results show big scattering at lower porosities and smaller 

scattering values at higher porosities, which reveals the 

ineffectiveness of these models in our study. The comparison 

of Sangani and Acrivos results with the bibliography results 

show scattering values 8.7%, 2.2% and 5.0% at porosities 0.7, 

0.8, and 0.89 respectively; while the scattering is high at 

lower porosities (19.3%, 46.3%, 23.2%). Similarly, when 

compared to the numerical results, the scattering values are 

divided into two halves, some are high and the others are 

relatively low. Drummond and Tahir scattering values with 

numerical and bibliography values are mostly greater than  

20% at the first three porosities, and lower than 20% at the 

next three ones. 

As shown in the Table 15 and Chart 4, Bruschke and 

Advani model shows mostly scattering values greater than 

15%. For example, compared with bibliography values, 

some of the scattering values are 13.6%, 15.5%, and 24.5%. 

And the comparison with the numerical results shows 

scattering values 29.8% at porosity 0.45, 23.0% at porosity 

0.51, 22.4% at porosity 0.8. Gebart (square), Gutowski 

(square), and Van Der Westhuizen intersect with the 

bibliography and numerical results at a single porosity each. 

That's to say, Gebart (square) showed low scattering with 

both bibliography and numerical values (4.5% and 8.2%) at 

porosity 0.51, but the scattering is higher at the entire other 

porosities. Similarly, Gutowski has a single intersection with 

the bibliography and numerical results, and that's at porosity 

0.6073 with scattering 3.1% compared to bibliography result 

and 4.0% compared to numerical result, while the scatter 

increases at the other porosities. In addition, Van Der 

Westhuizen values intersect with the bibliography and 

numerical results at porosity 0.8 and the other scattering 

values take place between 2.9% and 26.5%. Bruschke and 

Advani, Gebart (square), and Gutowski (square) are the most 

likely to be eliminated from the study. 

The models Drummond and Tahir (hexagonal), Sahraoui 

and Kaviany, Berdichevsky and Cai ISCM (square), Phelan 

and Wise, Lee and Yang, Berdichevsky and Cai unified 

Model Square, and Berdichevsky and Cai unified model Hex 

exhibit in most of the comparisons with both bibliography 

and numerical results scattering values less than 15%. 

Each one of the models mentioned in the Table 16 and 

Chart 5 shows results which have very low scattering when 

compared with the bibliography and numerical results, 

which is in most of the cases less than 15%. All models 

having a scattering less than 15% are selected to be discussed 

in the next section. 

 

Table 11.  Permeability results of the numerical simulation in steady state mode for longitudinal and transversal flow with the selected measurements 

ε (longitudinal flow) 0.23 0.3 0.44 0.5 0.7 0.9 - 

Numerical Steady state mode KL/r2 0.0081 0.0105 0.0369 0.0516 0.2206 1.5482 - 

Bibliography results KL/r2 0.0056 0.0095 0.0320 0.0468 0.2320 2.4800 - 

ε (transversal flow) 0.385 0.45 0.51 0.6073 0.7 0.8 0.89 

Numerical Steady state mode KT/r2 0.00156 0.0058 0.0124 0.03394 0.09 0.26 0.672 

Bibliography results KT/r2 0.00288 0.012 0.016 0.03914 0.1292 0.3 1 
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Chart 1.  Comparison between longitudinal models 

Table 12.  Scattering values derived from the comparison with the bibliography results and numerical simulation results 

Analitycal models / ε 0.23 0.3 0.44 0.5 0.7 0.9 

Happel and kawabara 

scatter with bibliography 55.6% 39.1% 25.0% 15.7% 3.6% 0.3% 

scatter with numerical 67.0% 43.0% 31.5% 20.4% 1.1% 23.4% 

Gebart Square 

scatter with bibliography 32.1% 10.4% 8.7% 20.0% 39.5% 61.0% 

scatter with numerical 47.4% 15.0% 1.6% 15.3% 41.6% 73.7% 

Gebart Hexagonal 

scatter with bibliography 28.8% 6.7% 12.3% 23.4% 42.5% 63.2% 

scatter with numerical 44.5% 11.4% 5.3% 18.8% 44.6% 75.3% 

Gutowski 

scatter with bibliography 13.4% 34.8% 50.4% 58.5% 70.9% 82.6% 

scatter with numerical 4.8% 30.6% 44.9% 55.2% 72.1% 88.8% 

scatter with numerical 17.9% 0.8% 10.3% 5.3% 0.4% 23.3% 

Berdichevsky and cai iscm 

hexagonal 

scatter with bibliography 46.4% 31.6% 21.9% 13.9% 3.1% 11.2% 

scatter with numerical 59.5% 35.8% 28.6% 18.7% 0.6% 33.5% 

Van der westhuizen 

scatter with bibliography 22.9% 30.3% 27.2% 30.5% 29.9% 39.1% 

scatter with numerical 5.0% 25.9% 20.5% 26.0% 32.2% 57.1% 

Berdichevsky and cai 

unified hexagonal 

scatter with bibliography 16.4% 17.7% 24.4% 19.0% 3.8% 30.0% 

scatter with numerical 33.5% 22.3% 31.0% 23.6% 1.3% 49.7% 
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Chart 2.  Comparison between longitudinal models 

Table 13.  Scattering results derived from the comparison with the bibliography results and numerical simulation results 

Analytical models / ε 0.23 0.3 0.44 0.5 0.7 0.9 

Tam. and Bahrami 

scatter with bibliography 5.8% 2.8% 7.1% 3.1% 0.3% 1.3% 

scatter with numerical 12.4% 1.9% 14.1% 7.9% 2.8% 24.4% 

Drum. and Tahir 

scatter with bibliography 25.3% 14.5% 3.4% 0.8% 0.8% 1.5% 

scatter with numerical 7.5% 9.8% 10.4% 5.6% 3.3% 24.5% 

Berd. and Cai iscm 

square 

scatter with bibliography 0.2% 4.0% 3.3% 0.4% 2.9% 0.1% 

scatter with numerical 17.9% 0.8% 10.3% 5.3% 0.4% 23.3% 

Berd. and cai unified 

square 

scatter with bibliography 11.3% 6.9% 6.7% 3.9% 0.7% 20.3% 

scatter with numerical 6.9% 2.1% 13.7% 8.8% 3.2% 41.5% 
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Chart 3.  Comparison between transversal models 

Table 14.  Scattering results derived from the comparison with the bibliography results and the numerical simulation results 

Analytical models / ε 0.45 0.51 0.6073 0.7 0.8 0.89 

Happel 
scatter with bibliography 91.1% 91.0% 86.3% 73.6% 68.1% 56.7% 

scatter with numerical 95.6% 92.9% 88.0% 80.8% 71.8% 68.7% 

Sangani and Acrivos 
scatter with bibliography 19.3% 46.3% 23.2% 8.7% 2.2% 5.0% 

scatter with numerical 49.2% 37.6% 17.6% 10.0% 9.9% 27.4% 

Drummond and Tahir 

square 

scatter with bibliography 61.1% 43.9% 13.2% 9.7% 1.0% 3.0% 

scatter with numerical 79.1% 53.6% 20.1% 8.3% 8.1% 22.5% 

Gutowski Hexagonal 
scatter with bibliography 2.2% 21.6% 28.0% 17.5% 31.5% 35.8% 

scatter with numerical 36.8% 33.3% 34.4% 34.3% 37.8% 51.8% 

Tam. and Bahrami 

hexagonal 

scatter with bibliography 98.3% 87.2% 61.8% 52.9% 28.8% 17.4% 

scatter with numerical 96.5% 83.7% 57.2% 38.7% 22.1% 2.3% 
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Chart 4.  Comparison between transversal models 

Table 15.  Scattering results derived from the comparison with the bibliography results and numerical simulation results 

Analytical models / ε 0.45 0.51 0.6073 0.7 0.8 0.89 

Gebart Square 
scatter with bibliography 28.2% 4.5% 6.1% 3.6% 12.0% 18.3% 

scatter with numerical 7.3% 8.2% 13.1% 14.3% 19.0% 36.6% 

Drummond and Tahir 

hexagonal 

scatter with bibliography 3.7% 10.7% 7.9% 8.7% 1.2% 2.4% 

scatter with numerical 38.0% 23.0% 15.0% 9.3% 8.4% 22.0% 

Gutowski Square 
scatter with bibliography 47.9% 21.3% 3.1% 6.8% 13.9% 22.8% 

scatter with numerical 15.7% 8.8% 4.0% 11.2% 20.8% 40.6% 

Sahraoui and Kaviany 
scatter with bibliography 34.0% 12.0% 1.2% 11.2% 1.0% 2.1% 

scatter with numerical 1.0% 0.7% 5.9% 6.9% 8.1% 17.6% 

Berdichevsky and Cai 

ISCM square 

scatter with bibliography 40.9% 18.7% 8.3% 17.9% 2.3% 4.0% 

scatter with numerical 7.1% 6.2% 1.2% 0.0% 4.8% 23.5% 

Phelan and Wise 
scatter with bibliography 28.2% 4.5% 6.1% 3.6% 12.0% 18.3% 

scatter with numerical 7.3% 8.2% 13.1% 14.3% 19.0% 36.6% 

Lee and yang 
scatter with bibliography 33.2% 11.2% 1.1% 11.4% 2.2% 4.0% 

scatter with numerical 1.9% 1.5% 6.0% 6.6% 9.3% 23.4% 

Bruschke and Advani 
scatter with bibliography 5.7% 10.7% 13.6% 0.5% 15.5% 24.5% 

scatter with numerical 29.8% 23.0% 20.5% 18.4% 22.4% 2.1% 

Berdichevsky and cai 

unified model Square 

scatter with bibliography 31.5% 9.1% 0.2% 12.0% 0.4% 2.0% 

scatter with numerical 3.7% 3.7% 6.9% 6.0% 7.5% 21.5% 

Berdichevsky and cai  

unified model Hex 

scatter with bibliography 9.2% 5.6% 5.4% 11.6% 2.8% 2.9% 

scatter with numerical 26.5% 18.1% 12.5% 6.4% 4.4% 16.8% 

Van Der Westhuizen and 

Du Plessis 

scatter with bibliography 16.2% 4.5% 7.0% 6.2% 8.8% 17.6% 

scatter with numerical 19.8% 17.1% 14.0% 11.8% 15.8% 36.0% 
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Chart 5.  Comparison with transversal models 

Table 16.  Scattering results derived from the comparison with the bibliography results and numerical simulation results 

Analytical models / ε 0.45 0.51 0.6073 0.7 0.8 0.89 

Gebart (hexagonal) 
scatter with bibliography 9.4% 5.9% 6.9% 8.8% 2.2% 5.1% 

scatter with numerical 26.3% 18.5% 14.0% 9.2% 9.3% 24.4% 

Kuwabara 
scatter with bibliography 6.3% 7.8% 7.5% 9.0% 1.0% 2.3% 

scatter with numerical 29.2% 20.3% 14.6% 9.0% 8.1% 21.8% 

Berdichevsky and Cai 

ISCM (hexagonal) 

scatter with bibliography 9.8% 5.5% 6.5% 9.2% 1.7% 4.6% 

scatter with numerical 25.9% 18.1% 13.6% 8.8% 8.9% 24.0% 

Tamayol and Bahrami 

(square) 

scatter with bibliography 33.9% 9.1% 2.6% 7.3% 6.5% 8.5% 

scatter with numerical 2.0% 6.9% 17.0% 16.6% 19.2% 37.4% 

 

4. Numerical Simulation in a Transient 
Free Boundary Problem Mode 

In the previous section the transversal numerical 

simulation was performed in a steady state mode in which a 

single phase problem was solved, where the studied fluid is 

located in the saturated region Figure 7. The capillary 

pressure and surface tension were neglected; thus the 

measured microscopic permeability value was the 

transversal saturated microscopic permeability.  

Figure 7.  Flow front progression 
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In this part, a numerical simulation in a transient mode is 

done; where capillary pressure and surface tension are taken 

into account. The flow front progression is registered in 

function of time, and corresponding velocity values for 

selected flow front positions are recorded. Average 

permeability is then derived from local permeability values. 

Due to computational limitations, only the transversal 

microscopic unsaturated permeability will be predicted. The 

selected models from the previous comparative study 

between the numerical results (steady state mode), analytical 

models, and bibliography measurements will be compared 

with results derived from the new simulations (transient 

mode).  

4.1. Simulation Parameters in Transient Mode 

The two fluids selected in this simulation are: Air and 

Epoxy Resin. Same meshing technique and boundary 

conditions are used when simulating in a transient mode, 

whereas, different parameters are took into consideration 

when the transient simulation is performed, which are the 

surface tension, mobility, and relative tolerance. 

4.1.1. Surface Tension 

The COMSOL MULTIPHYSICS allows the calculation 

of capillary pressure between each two fibers. Capillary 

pressure is the necessary pressure to force “non-wetting fluid” 

to displace the “wetting fluid” in a capillary. Capillary 

pressure [32] can be mathematically expressed as Pc, 

equation (6); where Pnw and Pw are the pressures of the 

non-wetting phase and wetting phase across the interface  

𝑃𝑐 = 𝑃𝑛𝑤 − 𝑃𝑤                 (6) 

In other words, capillary pressure is defined by the 

capillary forces divided by the surface between the two 

fibers or between the fiber and the plane. Young-Laplace 

equation [33] Eq 7 is of fundamental importance in order to 

understand the capillary forces; where r1 and r2 are two 

principal radii of curvature, γ is the surface tension between 

air and fluid Figure 8 for Epoxy Resin (γ=44*10-3 N/m), σSA 

is the surface tension between the solid and air, σSW is the 

surface tension between solid and fluid and Ψ is the wetting 

angle. 

∆𝑃 = 𝛾  
1

𝑟1
+

1

𝑟2
                  (7) 

 

Figure 8.  Wetting angle between fluid and surface 

 

Figure 9.  Fluid subjected to capillary forces in sphere-sphere or 

sphere-plane geometries [33] 

Figure 9 and Table 17 show the capillary forces in 

sphere-sphere & sphere-plane geometries, where D is the 

distance between two interacting solid surfaces, F is the 

capillary force, l is the Azimuthal radius of a meniscus, R1 

and R2 are the radii of two spherical particles, r is the 

meridional radius, β is the angle characterizing position of 

three phase contact line on sphere, γ is the surface or 

interfacial tension and θ1, θ2 contact angles on the two 

interacting surfaces. 

4.1.2. Mobility and Relative Tolerance 

The mobility is related to the time-scale of the 

Cahn-Hiliard diffusion and therefore governs the 

diffusion-related time scale of the interface. The χ parameter 

should be optimized to maintain a constant interface 

thickness and avoid damping the convective motion. A very 

high mobility can also lead to excessive diffusion of droplets 

[34]. Relative tolerance is the permitted variation in some 

measures and characteristics of an object or work piece. It 

indicates the precision of reading flow time results. 

Table 17 [33] 

Contact type Calculated dependences 

Sphere-sphere 
𝐹 = 𝜋𝛾𝑅1 sin 𝛽1  2 sin 𝜃1 + 𝛽1 + 𝑅1 sin 𝛽1 .  

1

𝑟
−

1

𝑙
  𝑟 =

𝑅1 1 − cos 𝛽1 + 𝑅2 1 − cos 𝛽2 + 𝐷

cos 𝜃1 + 𝛽1 + cos 𝜃2 + 𝛽2 
 

𝑙 = 𝑅1 sin 𝛽1 − 𝑟 1 − sin 𝜃1 + 𝛽1  = 𝑅2 sin 𝛽2 − 𝑟 1 − sin 𝜃2 + 𝛽2   

Sphere-plane 

𝐹 = 𝜋𝛾𝑅1 sin 𝛽  2 sin 𝜃1 + 𝛽 + 𝑅1 sin 𝛽 .  
1

𝑟
−

1

𝑙
   

𝑟 =
𝑅1 1 − cos 𝛽 + 𝐷

cos 𝜃1 + 𝛽 + cos 𝜃2

 

𝑙 = 𝑅1 sin 𝛽 − 𝑟 1 − sin 𝜃1 + 𝛽   
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4.2. Results for Transient Simulation 

The flow front position is recorded at different selected 

filling time intervals, after extracting the set of results of 

filling time and correspondent flow front position. The 

elementary permeability is calculated using Darcy’s law. 

Then the total permeability is calculated by interpolating 

these results. Figure 10 shows the flow front observed at two 

different positions. The local permeability values at 

successive positions are calculated based on equation (3); 

then an average permeability value is calculated using 

equation (8). 

𝐾𝑍 =
 𝐾𝑍𝑖
𝑖=𝑛
𝑖=0

𝑛
                 (8) 

 

Figure 10.  Flow front observed at two different positions for 0.89 porosity 

unit cell 

The following Table 18 shows the results of the simulation 

in a transient mode which gives rise to unsaturated 

microscopic permeability values. 

Table 18.  Results of the numerical simulation in transient mode 

ε 0.45 0.51 0.6073 0.7 0.8 0.89 

Numerical / 

Transient 

mode (KZ/r2) 

0.01164 0.0168 0.03744 0.128 0.288 0.94 

4.3. Comparative Study (Transient Mode) 

The models previously selected from the comparative 

study with steady state mode numerical simulation are 

subjected to sorting, in which the models with relatively 

lowest scattering in comparison with numerical simulation in 

transient mode are considered to be the most suitable for 

obtaining the transversal microscopic permeability. In this 

comparative study the chosen models are those having a 

scattering less than 10%. 

Table 19 indicates that Berdichevsky and Cai unified 

model (square) shows three scattering values 2%, 2.4%, and 

5.1% which are less than 10%, at porosities 0.6073, 0.8, and 

0.89 respectively. On the other hand, the other three values 

are greater than 10% (30.10% at porosity 0.45, 11.20% at 

porosity 0.51, and 11.60% at porosity 0.7). 

Similarly, Berdichevsky and Cai ISCM square, Gebart 

Square, Tamayol and Bahrami square, Van Der Westhuizen 

and Du Plessis, Sahraoui and Kaviany, Phelan and Wise, and 

Lee and yang exhibit in each one of them three values of 

scattering less than 10% and other three values greater than 

10%. 

Whereas, Berdichevsky and Cai ISCM hexagonal, Gebart 

hexagonal, Drummond and Tahir hexagonal, and Kuwabara 

are better relatively, due to the scattering values that are less 

than 10% at all selected porosities as shown in Table 19. 

Table 19.  Scattering derived from the comparison with the numerical simulation in transient mode results 

Analytical models / ε 0.45 0.51 0.6073 0.7 0.8 0.89 

Berdichevsky and cai unified model Square 30.1% 11.5% 2.0% 11.6% 2.4% 5.1% 

Berdichevsky and cai unified model Hexagonal 7.7% 3.1% 7.7% 11.2% 0.7% 0.2% 

Berdichevsky and Cai ISCM square 39.6% 21.1% 6.1% 17.4% 0.3% 7.1% 

Berdichevsky and Cai ISCM Hexagonal 8.3% 3.1% 8.7% 8.7% 3.8% 7.7% 

Gebart Hexagonal 7.9% 3.5% 9.1% 8.3% 4.2% 8.1% 

Gebart Square 26.8% 7.0% 8.3% 3.2% 14.0% 21.2% 

Drummond and Tahir hexagonal 5.2% 8.2% 10.1% 8.2% 3.3% 5.5% 

Tamayol and Bahrami square 32.6% 11.5% 4.9% 6.8% 8.5% 11.6% 

Van Der Westhuizen and Du Plessis 14.7% 2.1% 9.2% 5.8% 10.8% 20.6% 

Kuwabara 4.7% 5.3% 9.7% 8.5% 3.0% 5.4% 

Sahraoui and Kaviany 32.6% 14.4% 1.0% 10.7% 3.0% 1.0% 

Phelan and Wise 26.8% 7.0% 8.3% 3.2% 14.0% 21.2% 

Lee and yang 31.8% 13.6% 1.1% 10.9% 4.2% 7.1% 
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Chart 6.  Comparison with transversal results 

 

5. Discussion and Analysis 

The comparative studies listed in the previous part of the 

article are done in order to choose the best models which 

serve in predicting the microscopic permeability. 

After performing the comparison between the longitudinal 

models and the results of the bibliography and numerical 

simulations in steady state mode, the models Bahrami and 

Tamayol, Drummond and Tahir, Berdichevsky and Cai 

ISCM square, and Berdichevsky and Cai unified square are 

elected to be the most accurate in predicting longitudinal 

microscopic permeability. This selection was done based on 

the low scattering values in these comparisons. 

Regarding the comparative study between the transversal 

models and the results of the bibliography and numerical 

simulations in steady state mode, a primary selection was 

done which highlighted the models that show lower 

scattering values in comparison with the other models. The 

selected models are Berdichevsky and Cai unified model 

Square, Berdichevsky and Cai unified model Hexagonal, 

Berdichevsky and Cai ISCM Square, Berdichevsky and Cai 

ISCM Hexagonal, Gebart Hexagonal, Gebart Square, 

Drummond and Tahir Hexagonal, Tamayol and Bahrami 

Square, Van Der Westhuizen and Du Plessis, Kuwabara, 

Sahraoui and Kaviany, Phelan and Wise, and Lee and Yang. 

Those models are subjected to a secondary selection 

process which aims to ensure choosing the most convenient 

models able to fulfill the prediction of transversal 

microscopic permeability when recommended in any study. 

This selection process is spread on two steps. First, a 

numerical simulation in transient mode is done at the same 

given unit cells previously. This simulation solves a dual 

phase problem and thus gives permeability value which is 

more realistic and resembling a real experiment. Second, a 

comparative study is done between the analytical results of 

the models and the obtained results from the numerical 

simulation in transient mode. The models which show the 

least scattering in this comparison are Berdichevsky and Cai 

ISCM (hexagonal), Gebart (hexagonal), Drummond and 

Tahir (hexagonal), and Kuwabara. These selections are the 

most convenient models for predicting transversal 

microscopic permeability which is involved in obtaining the 

permeability tensor value. 
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6. Conclusions 

The microscopic permeability analytical models were 

subjected to sorting by comparing their permeability outputs 

to results derived from other prediction methods. A 

numerical study was performed, distinguished by utilizing a 

unit cell with random fiber arrangement which was most 

representative for real experiment. A comparative study was 

done between analytical modeling, bibliography, and 

numerical results. Its analysis presents that Bahrami and 

Tamayol, Drummond and Tahir, Berdichevsky and Cai 

ISCM and unified (square) models have good agreement 

with this data for longitudinal microscopic permeability 

components. Concerning transverse microscopic 

permeability, Berdichevsky and Cai ISCM (hexagonal), 

Gebart (hexagonal), Drummond and Tahir (hexagonal), and 

Kuwabara models were elected to be the most accurate 

models. On the other hand, transient mode simulations gave 

rise to results synchronized with the static mode simulations, 

which revealed the consistency of the study. 

The profit of this study is to know the most convenient 

analytical models to predict the microscopic permeability in 

unidirectional fiber bundles. Furthermore, in order to 

calculate an accurate permeability tensor, the value of the 

microscopic permeability should be obtained precisely. 

Moreover, the microscopic permeability could be employed 

in some other studies such as capillary pressure or 

permeability modeling studies.  

Nomenclature 

KL: Longitudinal microscopic permeability 

KT: Transversal microscopic permeability 

ε: Resin volume fraction 

Vf: Fiber volume fraction 

Va: Maximum fiber volume packing factor 
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