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Abstract  Due to the complex nature of hybrid anisotropic materials used for laminated circular cylindrical shells, 

computing the critical stresses under various boundary and loading conditions is more sensitive and therefore reasonable 

simplification of the governing equation is in big demand. This article first extended and developed the shell theory originally 

formulated by Donnell and Vlasov for isotropic materials to accommodate for hybrid anisotropic materials, then formulated 

for a simplified governing equation by means of adopting the asymptotic integration method of anisotropic elasticity theory 

and effective length scales. Comparison of two different shell bending theories is discussed. Also presented are proper 

choices of the governing equations for different loading conditions. The theories are created and extremely useful for 

sensitive anisotropic non-homogeneous materials, which can be applied to layered walls of cylindrical shells with various 

materials.  
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1. Introduction

In this paper, we will start with classical Love assumptions 

as described in the Reference [1] and the cylindrical shells in 

Reference [2] for conventional isotropic materials that is 

directionless Young’s modulus and developed the theories 

further for multiple anisotropic materials.  

Space shuttles, rocket fuel storage tanks, aircraft fuselages, 

above ground fuel storage tanks and pipelines are all 

cylindrical shells. The advantages are not only its functional 

capacity and aerodynamic features but also a simple 

coordinate system for the mechanical analysis compared to 

spherical or conical shapes. Also once we build the analysis 

for the cylindrical shells we can easily convert to the other 

shape shells as shown in the References [8, 17, 16, 19, 20]. 

The coordinate system is of longitudinal (X, z), 

circumferential (φ, θ) and radial (r) as shown in Figures 1 and 

2. The original and non-dimensional coordinates as shown in

the figures are used to allow an asymptotic integration 

process. According to the exact three-dimensional theory of 

elasticity, a shell element is considered as a volume element. 

All possible stresses and strains are assumed to exist and no 

simplifying  assumptions are  allowed in the formulation of 
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the theory. We therefore allow for six stress components, six 

strain components and three displacements as indicated in 

the following equation: 

 ij ijkl klC   , 1, 2 , 3i j   , 1 , 2k l     (1)

where σij and εkl are stress and strain tensors respectively and 

Cijkl are elastic moduli. 

There are thus a total of fifteen unknowns to solve for in a 

three dimensional elasticity problem. On the other hand, the 

equilibrium equations and strain displacement equations can 

be obtained for a volume element and six generalized 

elasticity equations can be used. A total of fifteen equations 

can thus be formulated and it is basically possible to set up a 

solution for a three-dimensional elasticity problem. It is 

however very complicated to obtain a unique solution which 

satisfies both the above fifteen equations and the associated 

boundary conditions. This led to the development of various 

theories for structures of engineering interest. A detailed 

description of classical shell theory can be found in various 

references [1-13]. 

Considering a small anisotropic free body diagram as 

shown in the Reference [13] and referring to the list of 

symbols, Table 1, we can formulate three equilibrium 

equations and six stress-displacement equations, all shown in 

the Reference [13] and [20]. Considering anisotropy and 

lamination of the materials we will introduce an angle, γ, 

being the angle between the principal axis of cylindrical 
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coordinate and the principal angle of anisotropic materials of 

each layer, assuming all changing each layer, the material 

properties are transformed also shown according to seven 

equations as shown in the References [13] and [20].  

Table 1.  List of Symbols 

LIST OF SYMBOLS 

a: Inside Radius of Cylindrical Shell 

h :Total Thickness of the Shell Wall 

Si :Radius of Each Layer of Wall (I = 1,2, 3 --- to the number of layer) 

L : Longitudinal Length Scale to be defined, Also Actual Length of the 

Cylindrical Shell 

Ei : Young’s Moduli in I Direction 

Gij : Shear Moduli in i-j Face 

Sij : Compliance Matrix of Materials of Each Layer 

r: Radial Coordinate 

l : Circumferential Length Scale to be defined 

Ɣ :Angle of Fiber Orientation 

σ : Normal Stresses 

ε : Strains Normal 

z, θ, r : Generalized Coordinates in Longitudinal, Circumferential and 

Radial Directions Respectively 

τ : Shear Stresses 

εij :Shear Strains in i-j Face 

λ ; Shell Thickness / Inside Radius (h/a) 

Cij : Elastic Moduli in General 

X, φ, Y: Non Dimensional Coordinate System in Longitudinal, 

Circumferential and Radial Directions Respectively 

 

Donnell, Bartdorf, Goldenveiser, Vlasov and many others, 

as shown in the References [2, 6, 8, 10, 13, 16-21] classified 

the cylindrical shell theories into the three categories as  

Very short effective length  

Intermediate effective length  

Long effective length 

The lengths are compared to the cylinder radius and 

thickness. 

2. Formulation of Simplified Bending 
Theory of Anisotropic Materials  

As many investigators suggested we will develop the 

shell theories within the classification of intermediate 

effective length. More specifically, we foresee it is more 

practical and simplified solutions can be obtained by 

limiting our investigations within the intermediate length 

scale and long circumferential length scale as shown below 

and develop a cylindrical shell theory based on the length 

scales as follows: 

    (2) 

Where a is inner radius, h is the total thickness L is 

longitual length scale and ℓ is circumferential length scales 

respectively. The effective length scale of Equation (2) was 

efficiently used by Donnell, Bartdorf and Vinson in the 

References [2], [19] and [21] respectively. On substituting 

these length scales into equations of equilibrium and 

stress-displacement as explained earlier, we obtain: 

 

Figure 1.  Dimensions, Deformations and Stresses of the Cylindrical Shell 



10 S. W. Chung et al.:  Compare and Contrast Bending Shell Theories of Hybrid Anisotropic Materials  

 

 

 

Figure 2.  Details of the Coordinate System 

 

Stress-Displacement Relations 

           (3) 

Equilibrium Equations 

r coordinate

a

r

r

z

z ; Longitudinal,

 ; Circumferential,

r ; Radial,

L, ; Longitudinal and circumferential

  length scales

a ; I.D. of cylinder

h ; Total thickness of shell wall

x= 
z
L

o= 
a a

= 

y= 
r-a
h



 International Journal of Composite Materials 2017, 7(1): 8-19 11 

 

 

                 (4) 

 

where symbols are as defined in the Table 1 and the 

Reference [13] and λ is total thickness (h) divide by inner 

radius (a), λ = h/a. 

We can now obtain the first approximation equations as 

follows: 

       (5) 

In the above, superscripts, 0, 1, 2 are the order of 

asymptotic expansion of each variables. 

From the inspection of equations (5) it is seen that 

a).  The dominant stresses in this theory are the in-plane 

normal ones. 

The in-plane shear stress is of order λ1/2 compared to 

them. 

b)  The radial, longitudinal and circumferential 

displacements are of order zero, one and two, 

respectively in λ1/2, while all the remaining in-plane 

components of compliance matrix are of zero order.  

Integration of the first three equations of (5) with respect 

to the thickness coordinate y yields, 

         (6) 

The middle three equations of (5) can now be solved for 

the in-plane stresses as follows: 

   (7) 

Where Cij (i,j = 1,2,3) are the components of a symmetric 

matrix given by 

  (8) 

After substituting the equations and boundary conditions 

into the equations (3) and (4) we can arrive to the following 

governing equations of the theory. 



12 S. W. Chung et al.:  Compare and Contrast Bending Shell Theories of Hybrid Anisotropic Materials  

 

 

           (9) 

where  

                     (10) 

3. Formulation of Further Accurate Bending Theory of Anisotropic Materials  

In case we need more accuracy for stress resultants and strain deformations, we can develop a theory associated with 

intermediate length scale and short circumferntial langth scale is developed by applying the length scales as follows: 

                           (11) 

The following systems of differential equations are obtained by substituting the characteristic length scales (11) into the 

equations of equilibrium and stress-displacement as shown in the References [13] and [20], we obtain: 

Stress-Displacement Relations 

      (12) 

Equilibrium Equations 
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          (13) 

On substituting the asymptotic expansions for the displacements and stresses explained in the Reference [13] for the 

compliance matrix into equations (12) and (13), we obtain the following systems of equations representing the first 

approximation theory: 

              (14) 

From the initial terms chosen for the first approximation system shown as superscript (0), we can observe the following 

aspects of the theory: 

a)  The first three equations in (14) show that the transverse normal and transverse shear strains are zero and thus the 

classical hypothesis of the preservation of the normal appears in the theory. 

b)  The dominant stresses are the in-plane ones. They are all of zero order while the transverse shear stresses are order of 

λ1/2 and the transverse normal stress is of λ compared to them. 

Integration of first here equation in (14) with respect to y yields  

                               (15) 

where vr , vƟ, vz are the components of displacement at y=0 surface. You will find the linear y dependence of the in-plane 

displacements.  

On substituting (15) into next three equations of (14), we obtain the in-plane stress-strain relations: 
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                         (16) 

where strain components €i and curvature components ki defined at y = 0 surface are given as follows: 

                 (17) 

and [C] is the inverse of the first approximation compliance matrix. 

                             (18) 

The transverse stresses can now be solved by substituting the in-plane stresses obtained in (16) into the last equations of 

(7.4) and integrating with respect to y, we then get:  

            (19) 

where Trz, TrƟ and Tr are the stress components at y = 0 and Aij , Bij , Dij , Eij are the products obtained by integration of stress 

strain coefficient components over the thickness coordinate.  
Satisfaction of boundary conditions provides 

                                (20) 

The following equations are expressed in terms of strains and curvatures: 

                   (21) 

Where p* = p / (σλ), to non-dimensionalize where λ is total thickness (h) divide by inner radius (a), λ = h/a. The equation 

(21) can be expressed in terms of displacements by substituting relations (17) for strains and curvatures. This will lead to the 
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following equations for unknown displacements vr, vƟ and vz: 

     (22) 

 

 

Figure 3.  A Laminated Cylindrical Shell, Material Orientation γ 
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Figure 4.  Comparison of Radial Displacements of the Bending and Pure Membrane Theories 

The above equations represent as the characteristic 

governing equations describing the theory of cylindrical 

shell of intermediate length and short longitudinal length 

scale and short circumferential length scale of hybrid 

anisotropic materials while the equations (9) represent the 

governing equation of the theory of intermediate length with 

short longitudinal length scale (ah)1/2 and long 

circumferential length scale (a), a being inner radius of the 

cylinder and h is the total thickness of shell wall. Both 

governing equations are similar but equation (22) is very 

complicated for solutions satisfying the boundary conditions. 

We can visualize for the axi-symmetric deformation, all the 

terms differentiated by variable, φ are disappeared, and thus 

the equation (22) reduces to equation (9). However, we are 

allowed to reduce it only when the shell is subject to internal 

pressure loading as shown in Figure (6). 

The internal pressure causes axi-symmetric deformation. 

We are not allowed to apply the simplified bending theory 

to the shells loaded externally and or compressed in 

longitudinal direction. 
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4. Application 

To demonstrate the validity of the theories developed 

here, we will choose a problem of a laminated circular 

cylindrical shell under internal pressure and edge loadings. 

The shell is assumed to build with boron/epoxy composite 

layers. Each layer is taken to be taken to be homogeneous 

but anisotropic with an arbitrary orientation of the elastic 

axes. We need not consider the restriction of the symmetry 

of the layering due to the non-homogeneity considered in 

the original development of the theory expressed earlier. 

Thus each layer can possess a different thickness. 

We assume here that the contact between layers is such 

that the strains are continuous function in thickness 

coordinate. As the ijC  are piecewise continuous functions, 

the in-plane stresses are also continuous. We would expect 

them to be discontinuous at the juncture of layers of 

dissimilar materials. The transverse stresses are continuous 

functions of the thickness coordinate, r. 

Although as mentioned above the theory developed can 

take unlimited hybrid random layers but for an example, a 

four-layer symmetric angle ply configuration. For this 

configuration the angle of elastic axes   is oriented at 

  ,  ,  ,   with the shell axis and the layers 

are of equal thickness.  

Figure 3 shows a laminated Cylindrical Shell, Material 

Orientation γ. Figures 4 and 5 are the deformation patterns 

along the longitudinal axis and Figure 6 is a recommended 

use of the two different theories, the original Donnell-Vlasov 

and simplified versions. 

Let the shell be subjected to an internal pressure p , an 

axial force per unit circumferential length N . The axial 

force is taken to be applied at r a H   such that a 

moment ( )N H d  is produced about the reference 

surface r a d  . We introduce dimensionless external 

force and moments as previously described. 

To demonstrate the validity of the derived theory, we 

have simplified loading and boundary conditions as 

follows: 

,

2 2

                  ( 0,   / )

0,  ,        ( ,   / )

(1 / )



 

    
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  

r r x z

r

z z

V V V V x y d h

v N N M M x l y d h

d a N M T

(23) 

Here,  l  is the dimensionless length of the cylindrical 

shell. 

In the theories developed in the previous chapters, the 

distance d at which the stress resultants were defined was 

left arbitrary. We now choose it to be such that there exists 

no coupling between zN  and 1K  and zM  and ijC . 

 

Figure 5.  Side View of Axi-symmetric Deformation 
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Figure 6.  Loading Combination and Corresponding Equations 

As the loading applied at the end of the shell is 

axi-symmetric, all the stresses and strains are also taken to 

be axi-symmetric. We thus can set all the derivatives in the 

expressions for the stresses and strains and in the equations 

for the displacements equal to zero. 

Numerical calculations are now carried out for a shell of 

wall of various hybrid laminae. 

Each of the layers is taken to be equal thickness and thus 

the dimensionless distances from the bottom of the first 

layer are given by 

1 2 3 4 50,  0.25,  0.5,  0.75,  1.0S S S S S      

each layer of the symmetric angle ply configuration (elastic 

symmetry axes y are oriented at (  ,  ,  ,  ) is 

taken to be orthotropic with engineering elastic coefficients 

representing those for a boron/epoxy material system, 

5
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Here direction 1 signifies the direction parallel to the 

fibers while 2 is the transverse direction. Angles chosen 

were  =0, 15, 30, 45 and 60. Use of the transformation 

equations in Reference (13) then yields the mechanical 

properties for the different symmetric angle ply 

configurations. 

We next apply the following edge loads: N p  and 

take /p  , (3 / 4)H h  and the reference surface 

we take / 1/ 2d h  . 

Shown in Figures (4) and (5) are the variation of the 

dimensionless radial displacement with the actual distance 

along the axis for the different theories. The reference surface 

for the chosen configuration is given by / 1/ 2d h  . The 

integration constants determined from the edge conditions. 
It is also seen that wide variations in the magnitude of 

radial displacement take place with change in the cross-ply 

angle. The maximum displacement occurs at  = 30 degree 

while the minimum displacement is at  = 60 degree. Also 

shown in the Figure 5 is the patterns of near edge zone for 

both bending theories, One is simplified bending theory 
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shown in the equation (9) and the other the expanded 

Donnell Vlasov bending theory for hybrid anisotropic 

materials. The results of both bending theories are identical 

for the case of internal pressure loading as explained earlier. 

In each case, the displacements increase with increase in 

  up to  =30 degree and thereafter decrease.  

5. Conclusions 

The classical Donnell-Vlasov theory for intermediate 

length circular cylindrical shells of isotropic materials was 

extended further to accommodate for the hybrid anisotropic 

materials. The first approximation shell theories derived by 

use of the method of asymptotic integration of the exact 

three-dimensional elasticity equations. We have introduced 

the characteristic effective length scales as shown in this 

paper, L for longitudinal, ℓ for circumferential.  

We choose L = (ah)1/2 and 
ℓ = (ah)1/2 to arrive at the 

equivalent Donnell-Vlasov equations and L = (ah)1/2 and   

ℓ = a to simplified version. Both theories are pros and cons. 

Recommended use for different loading conditions were 

shown. 

The analysis is valid and useful for materials which are 

non-homogeneous to the extent that their properties are 

allowed to vary with the thickness coordinate (r). 

Although twenty one elastic coefficients are present in 

the original formulation of the problem, only six are appear 

in the first approximation theories. The fact that these 

expressions can be determined is very useful when 

discussing the possible failure of composite structures. 

For design of space shuttles and other vehicles, a shell 

structure must be carefully designed for all possible loading 

conditions, extremely high negative and positive pressure 

and temperature, which demands further accurate shell 

theories. We have developed both shell theories for the 

purpose. 

However due to the fact that the equations of modified 

Donnell-Vlasov theory is extremely sensitive and 

complicated to solve for all stresses and strains of hybrid 

anisotropic materials under different loading conditions, we 

found the need and use of simplified version. The governing 

equations of (22) and (9) will better explain it. 
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