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Abstract  The role of internal boundaries as an integral part of the structure of composite materials is discussed. 
Computer model of the percolation structure of the composites is proposed. The model used algorithms that based on the 
Monte-Carlo method is build. The two- and three dimensional composites model is studied and parameters of percolation 
clusters formed in the model are calcu lated. The oscillate interactions model of a composite structure components is offered. 
Analytical expressions for an estimat ion of the process period are received.  
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1. Introduction 
Understanding the relationship between structure and 

properties of matter, understanding of the structure as a 
model description, which sets the order in the distribution of 
characteristics values and the law of their evolution[1, 2], 
can, depending on the task, to focus attention on certain 
features of the material and neutralize the other. The models 
considered in  this paper, describe the properties of resulting 
in the first place, the structure of the intermediate 
asymptotic[3]: in this case come to the fore a cluster 
component of the material and its internal boundaries (IB) – 
attribute components of the structure of the mesoscopic 
scale[3-6]. 

An internal boundary of the material is a  fractal surface 
[4], separating different substances or different phases of 
one substance, or passing on material defects[7]. (Note that 
sometimes the internal boundaries are considered in the 
absence of heterogeneity or qualitative differences.Consider, 
as an example, the Earth's equator as the boundary between 
the upper and lower hemispheres of homogeneous sphere, 
and if allowed zero-dimensional boundaries, then the North 
Pole, and the centre of gravity, etc.[8]).  

The inclusion of IB in the structural parameters of the 
material has several aspects. First, the IB are the inevitable 
result disproportionate and macroscopic structural units; 
second, the material is a complex system and, therefore, 
must have internal boundaries[9, 10]. 
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Research connected domains such as interior boundaries, 
using the methods of percolation theory[3, 4] is a relevant 
for nearly half a century. In such problems, both physical 
body cluster systems and their influence on the object as a 
whole are studied. Interest in the percolation clusters (PC) 
of the particles and the internal boundaries of the material 
can be easily  exp lained. PC substantially  alter the processes 
of conduction, lead to the anomalous diffusion, determine 
the mechanical strength and corrosion resistance, impact on 
longevity, and other physical, chemical and mechanical 
properties. In addition, near the structural phase transition 
due to the large size of the clusters, their geometry does not 
actually depend on the substance, and has universal 
properties[3, 4, 6].  

In spite of the great influence of the IB on properties of 
materials, was not studied the process of simultaneous 
forming of two cluster systems – clusters of particles and 
clusters of IB. The other two models presented in the article, 
describe some aspects of the force interaction of the clusters 
IB.  

2. Percolation Model of Composite 
Structure  

The increase of concentrations of material subsystems 
certain elements in the stochastic process of its genesis and 
evolution leads to initiation of a connected region of a 
certain phase (PC), which penetrates the physical body. 
This causes a qualitative leap in the development of the 
structure – the implementation of the structural phase 
transitions[3, 4, 11, 12]. One of the characteristic dimensions 
of the percolation cluster at the transition becomes 
comparable to the dimensions of the physical body. This 
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leads to an abrupt change of the correlat ion length in the 
material, the appearance of a preferred direction and the 
lowering of the symmetry  of the object. Thus, the 
percolation cluster, which sometimes takes a fract ion of one 
percent of the body[13], do not just change some of its 
physical and chemical parameters, but in essence, defines 
the new state of matter[14]. 

The model is solved continuum percolation prob lem. 
Simulation of cluster formation processes is carried out on a 
square field of size 370×370 standard units of length, the 
elements of a percolation cluster – circle whose diameter is 
in the process of model experiment is fixed, or chosen from 
a set of values having a normal distribution. Control 
parameters of the model are the ratio between the diameter 
of the particles and the side of the field, as well as between 
the sizes of the part icles forming the clusters. In model 
experiments, generally, the side of the square of the field is 
40-50 t imes greater than the diameters of the particles. The 
coordination spheres consistent increase has been selected 
as the algorithm of cluster growth. Random Number 
Generation (RNG) with a uniform distribution[15] plays an 
important role in this process. The coordinates of cluster 
centers are selected using RNG, then – one o f the centers, 
which will be another act of filling, and, finally, the 
generation indicates a place in the filled  area, which be 
located next part of the growing cluster. RNG determines 
the specific value of the particle size, which are in the given 
interval.  

The model clusters in the process of growth reach the 
size where ord inary part icles can no longer be attached. The 
distance between the clusters at the same t ime becomes 
comparable to the part icle d iameter. This feature, as well as 
the fact that the geometry of the structures do not allow a 
new particle to lie on the plane, gives rise to the surface of 
the gaps and ways of arbitrary shape and size (Figure 1). 
This approach is actually  formed  by two  cluster systems – 
the particle and the internal boundaries, which are the 
background for each other, as in  mosaic by M. Escher. (In 
contrast to the "white" and "black" clusters, discussed in 
[11], IB forms the PC, which belongs to the known class of 
percolation theory problems with a zero threshold[13]).  

The result of model calculations for PC and largest of 
small cluster (LSC) are presented in Tables 1 and 2. Tables 
demonstrate of the model capabilit ies: presented the 
calculated parameter and theirs accuracy. These find ings – 
the result of statistical processing of the two types of 
computer experiments. In the first experiment, according to 
the previously described algorithm, increase the cluster of 
circles of fixed diameter around the centre of a random 
clustering was carried out. In the second experiment, the 
diameter was chosen with the help RNG with uniform 
distribution. Statistical sampling was done from Gaussian 
set of diameters, the largest of which is equal to the 
diameter from the experiment with the same circles. The 
dashes in the right column in  Table 1 are typical: the onsets 
of clusters are extremely rare in such a setting of plane 
percolation problem, h is absence is typically.  

Two-dimensional problem is easily generalized to three 
dimensions. The volume problem is implemented in a cube 
containing 106 cells. The typical implementation of the 
cluster structures in three-dimensional model: percolation 
clusters of spheres and internal boundaries (for clarity, in an 
empty field ) are shown in Figure 2.  

 
A                      B 

Figure 1.  Cluster systems created from a set of equal particles (A) and 
particles with a normal size distribution (B) 

 
Figure 2.  The cluster system of internal boundaries and spheres in 
three-dimensional model 
Table 1.  Characteristic Parameters of a Particles Clusters and Internal 
Boundaries in the Two-Dimensional Model  

Parameters Fixed diameter Random 
diameter 

Power of the particles 
clustering system (397 ± 20)∙10-3 (581 ± 54)∙10-3 

Fractal dimension 
of the particles PC 1.32 ± 0.09 – 

Radius-vector of center 
of mass for particles 

LSC 
286.47 ± 26.82 315.38 ± 32.06 

Radius-vector of center 
of mass for particles PC 288.14 ± 23.38 – 

Value of the particle 
SC radius gyration 84.79 ± 9.65 25.28 ± 2.61 

Correlation length 
of the particles clusters 149.17 ± 13.68 44.07 ± 4.73 

Mass-to-gyration 
radius of particles 

PC ratio 
10.41 ±1.05 – 

Mass-to-gyration 
radius of particles 

LSC ratio 
10.13 ±1.06 9.95 ±1.21 

Power of the LSC IB (29.3 ± 2.8)∙10-3 (20 ± 1.8) ∙10-3 

Power of the PC IB (38.4 ± 3)∙10-3 – 

Gyration radius of the 
LSC IB 93.08 ± 9.99 36.05 ± 3.44 

Gyration radius of the 
PC IB 116.74 ± 14.03 – 
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Table 2.  Characteristic Parameters of a Particles Clusters and Internal 
Boundaries in the Three-Dimensional Model  

Parameters Fixed 
diameter 

Random 
diameter 

Particles clustering 
system power (440 ± 50)∙10-3 (636.9 ± 59)∙10-3 

Particles PC fractal 
dimension 1.49 ± 0.14 1.39 ± 0.12 

Radius vector of the LSC 
center of mass 39.34 ± 4.03 36.86 ± 3.83 

Radius vector of the PC 
center of mass 40.73 ± 4.48 51.57 ± 5.34 

Value of the SC radius 
gyration 20.42 ± 2.44 12.61 ± 1.25 

SC correlation length 38.58 ± 3.72 24.39 ± 2.24 

LSC degree of anisotropy 
Axy 

5.57 ± 0.73 3.89 ± 0.41 

LSC degree of anisotropy 
Axz 5.42 ± 0.69 4.31 ± 0.19 

LSC degree of anisotropy 
Ayz 

26.41 ± 1.80 1.93 ± 0.10 

PC degree of anisotropy 
Axy 

10.64 ± 1.43 10.02 ± 1.35 

PC degree of anisotropy 
Axz 20.73 ± 1.71 26.39 ± 3.25 

PC degree of anisotropy 
Ayz 

4.89 ± 0.65 4.86 ± 0.62 

LSC IB power (900 ± 100)∙10-6 (400 ± 40)∙10-6 

PC IB power (2600 ± 
200)∙10-6 (800 ± 60)∙10-6 

LSC IB gyration radius 19.43 ± 1.99 21.28 ± 2.37 

PC IB gyration radius 29.49 ± 3.45 29.63 ± 1.66 

3. Model of the Force Field of the 
Modified Sierpinski Square 

Conditions of homogeneity violation arise spontaneously 
in various parts of the body. Qualitatively new evolution 
stage of the material occurs when degree of heterogeneity 
increase, and there are enough collective effects. The 
coherent interaction between the elements of the 
proportionate structure (a one scale level heterogeneity) 

leads to configurations that act as the initial elements for 
higher-level structure. This provokes the inflat ion of 
structure, and thus promotes the growth the texture material 
inhomogeneity, leads to the hierarchical subordination, and 
as a consequence, to the generation of fundamentally 
different structures. Material and internal borders are 
interdependent and jointly  developing cluster systems. 
Internal borders evolve due to redistribution of deformation 
in material, changing the characteristic dimensions and 
learning new scales, thus, modifying the material.  

It is known that deformat ion fields essentially depend on 
the configuration of the inhomogeneities. In  the case of 
quasi-linear internal borders, (we are interested in 
primarily), the values of the strain tensor components are 
proportional to r –1[16], and, hence, their effect  can be 
substantial at relatively large d istances well above the 
interatomic. Orientation of the linear inhomogeneities 
occurring at the early stage of the material format ion, of 
course, are not accidental, but ere not correlated.  

Preferential direction in the orientation of newly  formed  
linear irregularities occurs with increasing of their density. 
The deformat ion field activates the generation of parallel 
and hinders their growth in  the perpendicular d irection to 
the least extent. Thus, the linear growth of inhomogeneities 
occurs predominantly in two perpendicular d irections, and 
there occurs a characteristic pattern in the distribution of 
equi-scale cracks. Th is aggravates the anisotropy, leads to a 
self-affine mult ifractal pattern of cracks and internal 
borders. A simple analogy to the plane and in the volume 
can be modified using affine maps such as other fractal 
Sierp inski carpet (square), Menger sponge, and their 
complements, respectively, as well as other suitable form of 
fractals[4, 17].  

Consider the modified Sierpinski carpet, modeling the 
structure of the IB, with preferential direction (Fig. 3).  

 

Figure 3.  Modified Sierpinski carpet with mirror symmetry 

We consider a “wire” model of the Sierpinski carpet. Let 
the initial square frame be divided by four wires into nine 
equal squares. The procedure is repeated many times on 
each of the 5m frames that are constructed in the subsequent 
step (see Fig.3). We also assume that on each side of frames 
of an arbitrary “generation”, there are point sources 
distributed with a line density λ and generating a field with 
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the strength E ~ 1/r2. We find the analytic form of the force 
field generated by the mult i-scale network of the internal 
edges of the Sierpinski square of an arbitrary subdivision 
step m.  

We assume that the origin  does not lie on any line 
containing edges of cells of the carpet of the mth generation. 
Let the carpet center be at the point (ξ; η). 

We set  
Ex ≡ Xm (ξ; η), Ey ≡ Ym (ξ; η),  

( , ) ( 1) , ( , ) ( 1) ,n nn p p n p pξ ξ η η= + − = + −  

/ 3 , ,mh H m= ∈ Ν  
A (u;v) = k λ /(u2 + v2)1/2 , B (u;v) = k λ v /u (u2 + v2)1/2,  

where k  is a  coefficient depending on the selected set of 
units. 

Then, the strength created by the carpet in the point with 
coordinates (x; y ) is determined by the fo llowing recurrent 
relations  
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4. Oscillatory Interaction of Different 
Scale Structures 

The force field  of randomly located quasi-parallel linear 
inhomogeneities is a complex interference pattern. One of 
the possible mechanisms of interaction of structural 
inhomogeneities and exploration of their scales are also 
associated with the interference. When some of the material 
field of equi-scaled cracks add up to form a local area with 
the magnitude of deformat ion, exceeding the average value, 
it creates preconditions for the format ion energy of larger 
linear inhomogeneity. 

Statistical self-similarity in the location of the borders 
leads to some "mult iplicity" in the configuration of fields, 
this mechanis m is pro jected for all large scale, creating an 
increasingly large cracks and interfaces, covering a 
considerable space. In turn, the more powerful deformation 
fields of large linear inhomogeneities provoke their further 
growth by acting on smaller scale heterogeneity.  

This occurs simultaneously at all scales, reveals 
interdependence and mutual influence of different levels of 
structural inhomogeneities, the existence of positive 
feedback and interaction between the oscillating linear 
inhomogeneities of d ifferent structural levels. Let  us 
examine these processes as rapidly damped oscillatory 

solid-state reaction. Let the physical body is an oscillatory 
system in this sense. This is an autonomous distributed 
non-conservative system with damped anharmonic 
vibrations. 

If we assume that the generalized force of resistance 
acting in  the system which is proportional to  the velocity of 
propagation of energy in the system between linear 
inhomogeneities of different scale levels, adjusted for the 
level of validity of assumptions, the equation of motion (in 
a linear approximation) will have a standard form  

x″ + 2γx′ + ω2 x = 0, 
where γ – the generalized damping coefficient, ω – cycling 
frequency. Let us estimate the conditional period T of these 
oscillations[18] for a system of linear irregularities cuboid. 
We introduce the inverse of the coefficient of rigidity o f the 
body – compliance C = 1/k, which determines how far the 
scale of the process may spread to crack, and for which 
there is a calculat ion formula 

C = 8a3/(E h3 b), 
where a – crack length, h – the distance from it to the edge 
of the body, b – thickness of the plate, E –  Young’s 
modulus[19].  

Assuming γ s mall, we have  
ω2 ≈ ω0

2 = 1/(m⋅C), 
then 

T = 4π (2 a3 m / E h3 b)1/2, 
where m – mass of the body.  

Another evaluation of the conditional period may  be 
obtained by determining the logarithmic decrement a serial 
(with an interval o f period) the energy values of Wn[18, 20]  

T = (1/γ)⋅(Wn – Wn + 1) /(Wn + Wn + 1).  
A possible application of the results obtained is the 

description of oscillatory  interaction for multiscale internal 
boundaries in a heterogeneous material. 

5. Conclusions 
Understanding of the similarity of properties of particles 

and IB clusters, the ability to calculate their parameters and 
force interaction, can enhance the opportunities for 
influence on the design of materials. 
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